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Abstract We report the experimental observation of low frequency fluctuations with a spec-
trum varying as 1/ f α in three different turbulent flow configurations: the large scale velocity
driven by a two-dimensional turbulent flow, the magnetic field generated by a turbulent
swirling flow of liquid sodium and the pressure fluctuations due to vorticity filaments in a
swirling flow. For these three systems, 1/ f α noise is shown to result from the dynamics of
coherent structures that display transitions between a small number of states. The interevent
duration is distributed as a power law. The exponent of this power law and the nature of the
dynamics (transition between symmetric states or asymmetric ones) select the exponent α of
the 1/ f α fluctuations.

Keywords 1/f noise · Turbulence · Rare events

1 Introduction: 1/ f Noise and Turbulence

Originally observed in different types of electrical conductors [1], 1/ f noise (also known
as flicker noise) refers to a self-similar power spectrum with an exponent close to −1. This
definition has been extended to power spectra of the form E( f ) ∝ f −α , withα between 0 and
2. Although this low frequency behavior has been observed in a great variety of systems, no
general mechanism has been identified. There exist many theoretical descriptions: existence
of a continuous distribution of relaxation times in the system [2,3], fractal Brownian motion
[4], intermittent transition to chaos [5] to quote a few.

Exponents between 0 and 2 have been widely observed in spectra of turbulent flows. The
standard description of turbulent cascade is that velocity fluctuations have energy between the
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scale of energy injection lI and the scale of energy dissipation ld . When Taylor’s hypothesis
is valid, a power law f −5/3 is observed on a frequency range that is limited by τ−1

I and
τ−1
d , where τI (respectively τd ) is the turn-over time of eddies of size lI (resp. ld ). This
power law is related to eddies associated to the k−5/3 Kolmogorov spectrum that sweep the
measurement point [6]. In the case of wall turbulence, a 1/ f spectrum has been observed
and related to the advection of structures with a 1/k spectrum in wavenumber [7]. However,
we emphasize that the above spectra are not the ones observed in the low frequency limit.
Other power-law behaviors have been reported for frequencies much smaller than the inertial
range, i.e. frequencies that are not related to any spatial scale through a Taylor’s hypothesis.
Such 1/ f α fluctuations have been reported for the pressure [8] and the velocity [9] in von
Karman swirling flows, for the magnetic field in magnetohydrodynamic turbulence [10–13],
for two-dimensional turbulence [14] and also in the solar wind [15]. It has been shown in these
studies that 1/ f noise is related to the slow dynamics of coherent structures that have been
widely studied because of their impact on the statistical properties of turbulent velocity field
[16]. However, the explicit relation between the low frequency spectrum and the dynamics
of coherent structures has been emphasized only recently [14].

A relation between spectra and distributions of bursts has been first discussed by Man-
neville who studied 1/ f fluctuations using a mapping which exhibits long laminar phases
interrupted by chaotic bursts. He showed that in this deterministic model, 1/ f noise is related
to a self-similar distribution of waiting times between bursts. More precisely, a signal made
of bursts with waiting times τ distributed as τ−2, exhibits a f −1 spectrum [5]. In a similar
approach, Geisel et al. showed that the power spectrum is given by E( f ) ∼ f −α for a dis-
tribution of waiting times given by P(τ ) ∼ τα−3 [17]. Lowen and Teich then extended this
result by including the case of random transitions between symmetric states [18].

It is tempting to apply the previous approach to coherent structures coexisting with tur-
bulent fluctuations. This requires to identify transitions between different states. It has been
shown that two-dimensional turbulence (respectively von Kármán flows) display transitions
between symmetric states [19,20] (respectively between different flow patterns [9]).We show
here that the statistical properties of these transitions are responsible for the 1/ f fluctuations.
We consider three different fields: the large scale circulation in two-dimensional turbulence,
the magnetic field generated by a vonKármán flow of liquid sodium and pressure fluctuations
in a turbulent von Kármán swirling flow. For all these systems, we demonstrate that 1/ f noise
is related to the dynamics of large scale coherent structures that transition between different
states. The distribution of the time spent in one of the states follows a power law with an
exponent that sets the value of the exponent of the power spectrum.

The organization of the paper is as follows. In Sect. 2 the renewal theory and the prediction
of Lowen and Teich [18] are recalled. A qualitative argument is presented to understand the
connection between the 1/ f spectrumand self-similar distribution ofwaiting times. In Sect. 3,
we analyze the data obtained in three experiments in the light of these theoretical predictions.

2 Renewal Process with Heavy-Tailed Distributions of Interevent
Durations

2.1 Description

A renewal process is a stochastic process defined by a sequence of N events associated to
a series of durations (τi )N , with τ random, positive and independent identically distributed
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Fig. 1 Top renewal process defined by random transitions between two-states, associated to the values x = ±1.
Bottom the auto-correlation function C(t) is given by the integration of the product x(T )x(T − t), which is
mostly made of long phases of constant polarity and phases of fast oscillations. The former phases contribute
to the long-range correlation

variables. In the following, the events correspond to transitions between two states S called
A and B and τi is the time spent in one state after the i − 1 event. We introduce the variable
x(t), such that x(t) = xA, when S = A and x(t) = xB , when S = B. The distribution of
the duration τ is PA for the state A and PB for the state B. The process is symmetric when
PA = PB . Figure 1 (top) illustrates a symmetric renewal process with xA = 1 and xB = −1.

The power spectrum of x is defined by

E( f ) = 1

T f

〈
x̂( f )x̂∗( f )

〉
with x̂( f ) =

∫ T f

0
x(t)ei2π f t dt (1)

where 〈·〉 is the average over the realizations and T f = ∑N
i=1 τi is the duration of the process,

that ultimately tends to infinity. In this study, we are interested in self-similar power spectra
with E( f ) ∼ f −α , and 0 < α < 2.

2.2 Relation Between the Exponents α and β

We start with a qualitative argument to explain how the distribution P(τ ) ∼ τ−β controls the
value of the exponent α [18]. Towit, we first obtain the auto-correlationC(t) of x and thenwe
calculate the power spectrum of x using the Wiener-Khinchin theorem. The autocorrelation
function C(t) is defined by

C(t) = 〈x(0)x(t)〉 (2)

TheWiener–Khinchin theorem states that the Fourier transform ofC(t) converges to E( f )
for T f → ∞.We consider a symmetric process with xA = 1 and xB = −1 as sketched in Fig.
1. We fix β > 2 so that 〈τ 〉 < ∞. For an ergodic process and T f 	 〈τ 〉, the auto-correlation
C(t) is obtained by

C(t) = 1

T f

∫ T f

0
x(T − t)x(T )dT (3)

We observe that the product x(T )x(T−t) is composed of fast oscillations and long periods
of constant polarity, due to long phases of duration τ in x(T ) (Fig. 1, bottom). We assume
that only the phases with τ > t contribute to the autocorrelation with a contribution τ − t .
In other words, the average contributions of short phases with τ < t vanish. It follows that
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Fig. 2 Time series displaying bursts from x = 0 to x = 1. The process is asymmetric and the duration of
the low amplitude phases is distributed according to a power law, P ∼ τ−β . In contrast the large amplitude
phases have durations that are not distributed following a heavy-tailed distribution

the autocorrelation is approximated by

C(t) 
 1

T f

∫ T f

t
(τ − t)n(τ )dτ for 〈τ 〉 � t � T f (4)

with n(τ ) the number of phases of duration τ , which is equal to P(τ )T f /〈τ 〉, with T f /〈τ 〉
the total number of events. Then, Eq. (4) becomes

C(t) 
 1

〈τ 〉
∫ T f

t
(τ − t)P(τ )dτ. (5)

If P(τ ) is an exponential function, the autocorrelation function is also an exponential function,
as expected for a Poisson process. For P(τ ) ∼ τ−β and β > 2, the autocorrelation scales as
C(t) ∼ t−β+2. Finally, the power spectrum E( f ) is given by the Fourier transform of C(t)

E( f ) ∼ f β−3
∫

u−β+2e−2πui du (6)

with the change of variable u = f t and for T f → ∞. We thus obtain α = 3 − β. The
result is extended to 1 < β < 2 [18,21] by considering a distribution with P ∼ τ−β for
τi � τ � τe, and zero otherwise or exponentially distributed. For a symmetric process
(PA = PB), the power spectrum is then given by

E( f ) ∼
{
f −(3−β) for 1 < β < 3
ln(τi f ) for β = 3

(7)

for τ−1
e � f � τ−1

i .
Bursting processes can also be considered. The signal x(t) is composed of short intermit-

tent bursts of duration T separated by intervals τ distributed as P(τ ) ∼ τ−β (see Fig. 2).
The result differs from the symmetric case when β < 2. Consider a time series for which
x(0) = 1. Let n(T f ) be the number of bursts within a time interval of length T f . We estimate

I =
∫ T f

0
x(0)x(t)dt 
 n(T f )T (8)

The number of bursts is roughly, n(T f ) = T f /〈τ 〉T f where 〈τ 〉T f is the average duration
of the x = 0 phases when we consider a time series of duration T f . For β < 2, 〈τ 〉T f does
not tend to a constant at large T f , which obviously results from the divergence of the first
moment of the distribution P . Then an estimate of 〈τ 〉T f is given by

〈τ 〉T f =
∫ T f

0
τ P(τ )dτ 
 T 2−β

f (9)
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We thus have n(T f ) 
 T β−1
f . Averaging I over realizations and differentiating with respect

to T f , we obtain the autocorrelation function as C(t) ∝ tβ−2. The exponent of the power
spectrum then satisfies α = β − 1.

To sum up, the predictions for the power spectrum of a bursting process are [18,21]

E( f ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

f −(β−1) for 1 < β < 2
ln( f τi )−2 f −1 for β = 2
f −(3−β) for 2 < β < 3
ln(τi f ) for β = 3

(10)

We note that for symmetric or bursting processes, α is equal to 3−β for β > 2. It implies
that the effect of asymmetry in the process is relevant only for distributions with β < 2.

These results hold for a range of frequencies f corresponding to the inverse range of
durations τ over which P(τ ) displays a power law. In particular, if P(τ ) displays a cut-off
for time larger than τe, 1/ f noise may be observed down to the low frequency cutoff τ−1

e .

3 Application to Turbulent Time Series

We now illustrate how coherent structures generate a 1/ f spectrum in three different con-
figurations involving turbulent flows. After shortly describing the experiments, we identify
transitions in the time series. We then show that the measured exponents α of the power
spectrum and β of the distribution of waiting times follow the theoretical predictions of Sect.
2, which depend on the value of β and on the nature of the process (bursting or symmetric).
We recapitulate the results in the following table (Table 1).

3.1 Two-Dimensional Turbulence

We have performed an experiment that consists in driving a flow with an electromagnetic
force in an electrically conducting fluid [14]. A thin layer of liquid metal (Galinstan) of
thickness h = 2 cm, is contained in a square cell of length L = 12 cm. The cell is located
inside a coil producing a uniform vertical magnetic field of strength up to B0 = 0.98T. A
DC current I (0–200 A) is driven through the bottom of the cell using a periodic array of 8
electrodes with alternate polarities. The current density j is radial close to each electrode. The
Lorentz force fL = j × B0 creates locally a torque. For small injected currents, the laminar
flow corresponds to an array of 8 counter-rotating vortices shown in Fig. 3 (center, top). The
flow remains mostly two-dimensional, due to Ohmic dissipation of the perturbations with
velocity dependence along the direction of the magnetic field.

Table 1 Summary of the experimental results

System Variable Process α β Relation

Two-dimensional turbulence Velocity Symmetric 0.7 2.25 α = 3 − β

Von Kármán sodium dynamo Magnetic field Bursting 0.5 2.5 α = 3 − β

Von Kármán flow Pressure Bursting 0.6 1.58 α = β − 1

We recall the experimental configuration (first column), the measured variable (second column), the nature
of the process (third column), the measured exponents α and β and the expected relation between them,
depending on the value of β and on the nature of the process
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Fig. 3 Left Schematics of the experimental set-up. The Lorentz force close to the electrodes generates an
array of height counter-rotating vortices in the laminar regime (center top picture). The turbulent flow (center
bottom picture) is characterized by coherent vortices forcing a large scale circulation. The flow rate is measured
between the center and the wall, using the induced voltage�V .Right time seriesUL (t) of the flow rate divided
by the distance L/2 for Rh = 15
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Fig. 4 Left frequency power spectra E( f ) of UL (t) for Rh = 16, 19, 24 (from bottom to top). For clarity,
the spectra have been multiplied by 1, 10 and 100. The f −0.7 law is displayed as a dashed line. Right ratio of
the power spectrum of s(t), the sign of UL (t) and UL (t), rescaled such that it tends to 1 for f → 0

When the forcing is strong enough, the flow becomes turbulent (Fig. 3, center bottom).
Two-dimensional turbulence is characterized by an inverse cascade of energy [19]. The energy
is transferred to large scales and a circulation at the scale of the box displays lifetimes larger
than its turn-over time. The dissipation is mostly provided by the friction of the bulk flow
with the bottom boundary layer for very large Reynolds number Re. The ratio of the forcing
to the large scale dissipation that results from bottom friction is given by the dimensionless
number Rh. Typically, the flow becomes turbulent for Rh 
 5.

The velocity measurements are performed with a pair of electric potential probes (Fig. 3):
one is located in the middle of the cell and the other one close to the lateral wall. The probes
measure a potential difference�V , due to the integral contribution of the local electromotive
force E = −u × B0. Thus, �V = φL B0, with φL the flow rate between the center and the
wall of the cell. We use the velocity amplitudeUL , defined byUL = φL/(L/2). The voltage
is sampled at a frequency rate fr = 10Hz. A typical time series of UL is shown in Fig. 3
(right) for Rh = 15.

For 15 ≤ Rh ≤ 28, these time series exhibit a clear 1/ f α power spectrum over nearly two
decades for f < 3.10−1Hz (Fig. 4, left). This frequency range is smaller than the inverse
of the large eddy turnover time τL = L/σU , with σU the standard deviation of UL . It is
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Fig. 5 Left Exponents α (circle) and β (square) for times series with different Rh. The exponent of the
spectrum of s(t) (plus) and the sum α+β (diamond) are also displayed. Right distribution P(τ ) of the waiting
time τ between sign changes for Rh = 16, 19, 24. The dashed line indicates τ−2.25

also smaller than the damping rate τ−1
D due to large scale friction which is the most efficient

dissipation mechanism at large scale. For the range of Rh studied here, these two time scales
are comparable, i.e. τL 
 τD , with typical values between 1 and 6 seconds. Thus the observed
1/ f spectrum is not directly related to the energy cascade, but to the coherent dynamics of
the large scale circulation. A systematic study of the exponents α, defined by E( f ) ∼ f −α ,
shows that their value is almost constant and equal to 0.7 for Rh ∈ [15, 28] (black circles,
Fig. 5, left).

A closer inspection shows that the time seriesUL is composed of long phases of constant
polarity of duration τ superimposed with random fluctuations. In Fig. 3, we highlight a phase
of constant polarity with duration τ of 20 s (see the event indicated by a double-arrow). The
inverse of this time τ−1 belongs to the frequency range of the 1/ f spectrum. Due to the
symmetry of the forcing,UL displays random transitions between both polarities. In order to
show that these transitions generate the 1/ f noise, we transform the signalUL into a two-state
signal s(t), which is defined by the sign of UL , i.e. s ≡ sign (UL). A typical time series is
composed of one thousand transitions from one direction of rotation to the other. The ratio of
the power spectrum of UL to the one of s is reported in Fig. 4 (right) and is almost constant
over the frequency range corresponding to the 1/ f spectrum. Thus both power spectra have
the same behaviour at low frequency. A systematic study of the exponent αs of the power
spectrum of s(t) (black cross in Fig. 5) shows that its value is very close to the exponent α

(black circles). This implies that the slow dynamics of UL , which is responsible for the 1/ f
noise, is mostly contained in s(t).

We calculate the probability density function of the duration between sign changes of s
and report it in Fig. 5 (right). The distributions exhibit a power-law behavior for durations
τ ∈ [2, 20]s corresponding to frequencies f ∈ [5.10−2, 5.10−1] Hz included in the range
over which 1/ f noise is observed. We recover the association of a self-similar distribution of
interevent durationswith a self-similar spectrumof the time series.A systematicmeasurement
of the exponent β (black square, Fig. 5, left), defined by P(τ ) ∼ τ−β , shows that β 

2.25.

The sum α + β (diamonds in Fig. 5, left) remains close to 3, as predicted by equation (7)
for a symmetric renewal process. All the previous results confirm that the random changes of
the sign of UL with waiting time distributed as P ∼ τ−2.25, is at the origin of the observed
1/ f noise.
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Fig. 6 Left time series B(t) of the azimuthal magnetic field, fluctuating around its mean value (dashed line).
The grey line corresponds to the bursting process s(t) extracted from B(t). Right power spectrum of B(t)
displaying a f −0.5 behavior at low frequency (dashed line)

3.2 Dynamics of the Magnetic Field Generated by a von Kármán Flow of Liquid
Sodium

The generation of magnetic field by a turbulent flow of liquid sodium has been widely studied
in the VKS experiment, described in detail in Ref. [12]. The flow is driven by two counter-
rotating coaxial impellers in a cylindrical vessel (see Fig. 8, left). When the rotation rate
of the impellers is larger than a critical frequency Fc, a magnetic field is generated by a
self-sustained induction process, called the dynamo effect. The large scale magnetic field is
mostly a stationary axial dipole with superimposed magnetic fluctuations due to the strong
turbulence of the flow. 1/ f noise in the power spectrum of the magnetic field has been
reported in dynamo regimes [12] and also below the dynamo threshold when an external
magnetic field is imposed to the turbulent flow of liquid sodium [10]. We consider below the
dynamo case but the same analysis hold for both.

We have performedmeasurements of the azimuthalmagnetic field B(t) inside the vessel in
the mid-plane between the impellers for F = 20 Hz (just above the dynamo threshold). The
measurements of the other components of magnetic field show similar results. A time series
of B(t) is displayed in Fig. 6 together with its power spectrumwhich exhibits a f −α spectrum
with α 
 0.5 for f ∈ [1, 15] Hz, i. e. below the inertial frequency range. For f > 20 Hz,
the power spectrum scales as f −11/3, due to the passive stretching of the magnetic field by
the small-scale turbulent fluctuations.

As observed in Fig. 6, the magnetic field B(t) displays bursts with amplitudes up to eight
times the average value. We first low-pass filter the times series of B(t) below 200 Hz. We
then define a two-states signal s(t) by phases of weak and large amplitudes. Among the
possible criteria to define a burst, we consider a threshold equal to twice the average value
of B, such that above (resp. below) it, the system is in the high (resp. low) amplitude state.
The resulting two-states signal s(t) is displayed in Fig 6 (left) in grey. The power spectrum
of s(t) (in grey) is compared to the one of B (in black) in Fig. 7 (left). At low frequency, both
power spectra follow the same power law. The distribution P(τ ) of waiting times τ between
bursts is displayed in Fig. 7 (right). For the range of duration τ ∈ [5.10−2, 25.10−2]s, P(τ )

follows a power law τ−β with β 
 2.5.
We know from equation (10) holding for burst processes, that α should be equal to 3−β.

The bursting process observed in the VKS experiment for the dynamo case follows this
relation with α = 0.5 and β = 2.5.
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Fig. 8 Left Sketch of the VKS and von Kármán experiments: two impellers counter-rotate at frequency F .
The vertical thick line indicates the location of the magnetic probes in the VKS experiment. Right time series
p(t) of the wall pressure from Abry et al. [8]

3.3 Pressure Fluctuations in von Kármán Swirling Flows

1/ f noise has also been reported for the pressure signal in von Kármán swirling turbulent
flows in water [8]. The results presented below are extracted from this reference where a
detailed description of the experiment can be found. The pressure p(t) is measured on the
lateral boundary of the cylinder. Pressure drops are due to vorticity concentrations passing
close to the pressure probe.

The time series of p(t) displaying large pressure drops is shown in Fig. 8 (right). The
related power spectrum is shown in Fig. 9 (left, black circles) and exhibits 1/ f noise at
low frequency with an exponent α = 0.6. It has been shown in Ref. [8] that removing the
pressure drops from the signal using a wavelet technique, almost suppresses the 1/ f noise
from the power spectrum of the filtered signal p̃ (Fig. 8, left, black diamonds). We observe
again in this example that the 1/ f noise results from the bursts. Thus, we define a two-state
signal that consists of the long phases of weak amplitude between successive bursts and the
short phases of large amplitude pressure drops (the bursts). The distribution of waiting times
between successive bursts is displayed in Fig. 9 (right) and exhibits a power law in the range
log(τ ) ∈ [−1.7,−0.5] (i.e. τ ∈ [0.02, 0.3] s) roughly corresponding to the frequency range
log( f ) ∈ [0.6, 1.8] (i.e. f ∈ [4, 60] Hz) of the 1/ f noise. In this range, the fitted exponent is
β = 1.58. We also remark that the distribution has an exponential tail, but only for durations
larger than the inverse of the minimum frequency over which 1/ f noise is observed.
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Fig. 9 Left power spectra of p(t) (circle) and p̃ (diamonds), the filtered pressure without bursts. The dashed
line indicates the law f −0.6. Right distribution of the waiting time between pressure drops. The law τ−1.58

is displayed with a dashed line

In contrast to the previous case, the exponent β is smaller than 2 and the theoretical
prediction is then α = β − 1. Once again, the agreement between the prediction and the
fitted exponents is very good with β − 1 = 0.58 and α = 0.6.

4 Conclusion

We have shown that the 1/ f fluctuations observed experimentally in three different turbulent
flows are related to the coherent dynamics of large scale structures, which randomly transition
between different states. The dynamics are characterized by the nature of the process (asym-
metric bursts or symmetric transitions), and by the power-law distribution of the interevent
durations. These two properties fully determine the exponent of the power spectrum.
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