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We investigate dynamo action for a parallel flow of an electrically conducting
fluid located over a boundary with spatially varying magnetic permeability. We
first compute the dynamo threshold numerically. Then we perform an asymptotic
expansion in the limit of small permeability modulation, which gives accurate results
even for moderate modulation. We present in detail the mechanism at work for
this dynamo. It is an interplay between shear (an ω-effect) and a new conversion
mechanism that originates from the non-uniform magnetic boundary. We illustrate
how a similar mechanism leads to dynamo action in the case of spatially modulated
electrical conductivity, a problem studied by Busse & Wicht (Geophys. Astrophys.
Fluid Dyn., vol. 64, 1992, pp. 135–144). Finally, we discuss the relevance of this
effect to experimental dynamos and present ways to increase the dynamo efficiency
and reduce the instability threshold.
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1. Introduction
Dynamo action is the transformation of mechanical work into electromagnetic

energy without the use of permanent magnetism or an external current source. It is
an instability process that amplifies perturbations of current or magnetic field, when
electromagnetic induction due to the motion of an electrically conducting medium
overcomes Ohmic dissipation. This process has been used since the end of the
nineteenth century to generate electricity from mechanical work (Siemens 1867). In
these widely used rotor dynamos, the current lines are imposed by electric wiring and
the geometry of magnetic field lines is constrained by ferromagnetic material. If high-
magnetic-permeability material were not used, these rotor dynamos could in principle
still operate, but for much higher rotation rates that are rather difficult to achieve in
simple devices. It was first proposed by Larmor (1919) that the magnetic field of
the sun is also generated through a dynamo process by the flow of an electrically
conducting fluid. It is now believed that the magnetic field of most planets and stars
is generated by dynamo action. In contrast to rotor dynamos, these geophysical or
astrophysical ones are homogeneous dynamos, i.e. the electrical conductivity and the
magnetic permeability of the fluid are assumed to be constant within the whole flow
domain. This makes the dynamo mechanism much more difficult to describe.
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In addition, it has been found that magnetic fields with too many symmetries cannot
be generated by dynamo action (Cowling 1933; Lortz 1968) and that too simple flows,
for instance planar flows, cannot generate a magnetic field (Zel’dovich 1957). However,
planetary and stellar interiors involve gradients of temperature, density and chemical
composition, thus making homogeneous models questionable. It was proposed that
a spatially dependent electrical conductivity can favour dynamo action. A model
was studied by Busse & Wicht (1992), who showed that the simplest flow with a
uniform velocity field along a boundary with spatially periodic variation of electrical
conductivity can generate magnetic field.

Interest in this type of dynamo has been motivated again recently, following
the observation of a magnetic field generated by a von Kármán swirling flow of
liquid sodium (VKS experiment: Monchaux et al. 2009). Indeed, within the limited
parameter range of the experiment, dynamo action has been observed so far only
when propellers made of iron are used to drive the flow. These propellers consist of
iron disks fitted with eight iron blades, thus involving a spatially periodic variation of
magnetic permeability. It has been proposed by Giesecke, Stefani & Gerbeth (2010)
that this could favour dynamo action in the VKS experiment. Although this is not the
only possible mechanism, it is worth studying it in order to evaluate how realistic it
could be. Part of the results reported in this study were announced in Gallet, Pétrélis &
Fauve (2012) and are presented here in detail.

The paper is organized as follows: in § 2, we present a simple model analogous
to the one of Busse & Wicht (1992): a uniform flow of an electrically conducting
fluid along a boundary with a spatially periodic magnetic permeability. The kinematic
dynamo problem is solved numerically in § 3. We show that a dynamo is generated in
this configuration and study how its threshold depends on the width of the boundary
and on the modulation of magnetic permeability. The structure of the most unstable
eigenmode and the nature of the bifurcation are analysed in § 4. The problem is solved
analytically in § 5 in the limit of small-amplitude modulation and the mechanism for
dynamo action is explained. We show that a similar mechanism operates in the case
of a spatial modulation of electrical conductivity studied by Busse & Wicht (1992). In
§ 6 we discuss the relevance of this mechanism for the VKS experiment. We conclude
in § 7 with a discussion of our results in the framework of spatial symmetries and
anti-dynamo theorems.

2. A minimal model

In figure 1 we consider a system similar to the one in Busse & Wicht (1992),
but in which the magnetic permeability of the boundary is modulated in space
while the electrical conductivity is constant: a fluid of electrical conductivity σ and
magnetic permeability µ0 flows uniformly with a velocity Uex in the semi-infinite
space z̃ > 0. Under this fluid is a rigid boundary of the same electrical conductivity,
and of magnetic permeability µr(x̃)µ0, with µr(x̃)= m0 + m1 sin(x̃/L), where m0 is the
mean magnetic permeability, and m1 and 2πL are the amplitude and wavelength of the
permeability modulation. Denoting as D the dimensionless thickness of this modulated
boundary, it extends down to z̃ = −DL, under which is a medium of infinite magnetic
permeability. The boundary being at rest, there is an infinite shear at z̃ = 0 which
converts magnetic field perpendicular to the boundary into magnetic field parallel to
the flow.
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FIGURE 1. A minimal model: an infinite shear at the interface between an electrically
conducting fluid and a boundary of spatially modulated magnetic permeability.

2.1. Induction equation with space varying permeability

We use L and µ0σL2 as length and time scales, and define the magnetic Reynolds
number as Rm = µ0σUL. Denoting without a tilde the dimensionless coordinates, the
induction equation inside the fluid reads

∂tB+ Rm∂xB=1B, (2.1)

where ∆ is the Laplacian operator. Inside the modulated boundary, the Maxwell–
Faraday equation together with Ohm’s law yields

µr∂tH =−∇ × (∇ ×H), (2.2)

with B = µ0µrH . This gives only two independent scalar relations, the third one
coming from the zero divergence of B:

∇ · (µrH)= 0. (2.3)

The problem being translation-invariant in the y-direction, the Fourier modes in this
direction decouple. Let us consider an eigenmode Hesteiky, where Re(s) is the growth
rate, Im(s) is the angular frequency, and k is the wavenumber in the y-direction.
Equation (2.3) gives Hy in terms of Hx and Hz. This expression for Hy is used in the x-
and z-components of (2.2) to get the two coupled equations

µ3
r sHx = µ2

r (∂xxHx − k2Hx + ∂zzHx)+ (µ′′rµr − (µ′r)2)Hx + µrµ
′
r∂xHx, (2.4)

µ2
r sHz = µr(∂xxHz − k2Hz + ∂zzHz)+ µ′r∂zHx, (2.5)

where µr(x)= m0 + m1 sin x and µ′r is its x-derivative.

2.2. Solution inside the fluid and boundary conditions
We want to solve (2.4) and (2.5) analytically or numerically. The boundary conditions
at z = −D are Hx = 0 and Hy = 0, which gives ∂zHz = 0 using (2.3). The matching
relations at the fluid–boundary interface z= 0 are:

(i) continuity of the normal component of B: Bz|0+/µ0 = µrHz|0− ;
(ii) continuity of Hx: Bx|0+/µ0 = Hx|0− ;
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(iii) continuity of Hy, which using (2.3) yields ∂zBz|0+/µ0 = ∂zHz|0− + (µ′r/µr)Hx|0− ;

(iv) continuity of the y-component of the electrical field

∂zHx|0− − ∂xHz|0− = 1
µ0
(∂zBx|0+ − ∂xBz|0+)+ Rm

Bz|0+
µ0

. (2.6)

The last term of this equation is the ω-effect coming from the infinite shear
located at z = 0. It is proportional to Rm and produces a field in the x-direction
from a field in the z-direction.

The induction equation inside the fluid has x-independent coefficients. We use a
Fourier decomposition in this direction too to get the solutions

B(q) exp(st + iky+ iqx−
√

s+ k2 + q2 + iqRmz), (2.7)

where q is the wavenumber in the x-direction. For each Fourier mode in the
x-direction, we can thus write

∂zBx|(q)0+ =−
√

s+ k2 + q2 + iqRmBx|(q)0+, (2.8)

∂zBz|(q)0+ =−
√

s+ k2 + q2 + iqRmBz|(q)0+, (2.9)

and combine the four matching relations written above to get two boundary conditions
on the field inside the structured boundary

∂zHx|(q)0− − iqHz|(q)0− +
√

s+ k2 + q2 + iqRmHx|(q)0− + iq{µrHz|0−}(q)
−Rm{µrHz|0−}(q) = 0 , (2.10)

∂zHz|(q)0− +
{
µ′r
µr

Hx|0−
}(q)
+
√

s+ k2 + q2 + iqRm{µrHz|0−}(q) = 0, (2.11)

where {F}(q) is the amplitude of field F on the Fourier mode eiqx. Note that the Fourier
modes are coupled: as µr is x-dependent, a term like {µrHz|0−}(q) involves the Fourier
amplitudes q − 1 and q + 1 of Hz|0− . The system (2.4)–(2.5) to be solved involves
two equations coupling two real-valued fields. These equations are second-order in z.
Accordingly, we have two complex boundary conditions at z = 0 and two at z = −D,
which correspond to eight real boundary conditions.

3. Numerical calculation of the onset of linear instability
Solving the kinematic dynamo problem consists of computing the allowed values of

s. One then seeks a critical value of Rm for which the real part of s vanishes. This
task is performed using a numerical code which is spectral in the x-direction and uses
finite differences in z. More information on this code is given in appendix A. Let us
first focus on the harmonic response of the system, i.e. we seek a solution with the
same spatial period in the x-direction as the permeability modulation, the possibility of
a subharmonic response being discussed in the next section.

3.1. Dynamo induced by the magnetic permeability modulation
The first result is that there is a dynamo: provided Rm is high enough, the
magnetic permeability modulation together with the flow destabilizes a magnetic mode.
Modulating the magnetic permeability of the boundary is thus a way to bypass the
anti-dynamo theorem for planar velocity fields (see discussion in § 7.2).
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FIGURE 2. (Colour online) (a) Critical magnetic Reynolds number, (b) wavevector and
(c) angular frequency at criticality, as a function of the relative magnetic permeability
modulation, for D = 1. For m0 = 10 the most unstable mode is stationary. For m0 = 100
and m0 = 1000, the Rmc and kc curves almost lie on top of each other, which indicates the
existence of a limiting curve as m0 becomes large. The frequency at onset drops by a factor of
ten when m0 increases from 100 to 1000.

We plot in figure 2 the critical magnetic Reynolds number, the wavenumber kc and
the angular frequency Im(s) at criticality, as a function of the relative permeability
modulation mr = m1/(m0 − 1). We assume that the boundary is nowhere diamagnetic,
so that µr is everywhere higher than one. The quantity mr is always between 0 and
1, whatever the value of m0. Zero permeability modulation gives mr = 0, while a
maximum permeability modulation µr(x) = m0 + (m0 − 1) sin x corresponds to mr = 1.
The computations are performed for D = 1. The stronger the permeability modulation,
the lower the dynamo onset. As this modulation goes to zero, the critical Rm diverges
in agreement with an anti-dynamo theorem valid for zero modulation. This divergence
scales as m−4

r .
The first unstable eigenmode is stationary for m0 = 10. For m0 large (m0 = 100,

1000), it is oscillatory provided that the modulation is weak enough, and it becomes
stationary for strong modulation (mr of order unity). When m0 is increased from 100
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FIGURE 3. (Colour online) Critical magnetic Reynolds number as a function of m0 for D= 1
and a magnetic permeability µr(x) = m0 + (m0 − 1) sin x. The dynamo is stationary. The
wavenumber of the most unstable mode varies, but remains in the range kc = 2.3± 0.1.

to 1000, the dynamo threshold as well as the value of mr for transition between
stationary and oscillatory dynamos is roughly unchanged. However, we observe that
the angular frequency of the oscillatory mode decreases by a factor 10. It is almost
independent of mr and is of order of 1/m0. In dimensional units, it is thus of the
order of an inverse diffusive time scale based on the spatially averaged magnetic
permeability.

Finally, for a fixed value of mr and high values of m0, the dynamo onset is a
decreasing function of m0 which tends to a finite limit as m0 →∞. We show in
figure 3 the onset of stationary dynamo as a function of m0 for m1 = m0−1 (maximum
modulation of µr, corresponding to mr = 1) and D = 1. The onset is still minimized
with respect to the wavenumber k. This minimum value is obtained around k = 2.3 for
the parameter values of this figure. Within 5% accuracy, the critical magnetic Reynolds
number is 5483 for m0 = 10, 763 for m0 = 100, and 458 for m0 = 1000.

3.2. Influence of the thickness D of the modulated boundary

We plot in figure 4 the critical magnetic Reynolds number Rmc and wavenumber at
criticality kc as a function of the thickness D of the boundary. Rmc decreases to a
finite value in the limit of large D. It diverges as D−1 when D goes to zero. This
divergence traces back to the magnetic field gradients being stronger: at low values of
D the characteristic scale of the eigenmode in the y-direction is the thickness of the
boundary. We also note that if D is large enough compared to L, the first unstable
mode is stationary.

The bifurcation structure observed in the parameter space of the system is thus
quite rich. The transition between stationary and oscillatory modes close to the
codimension-two bifurcation point and the symmetries broken by the bifurcated
solutions are studied below. In § 5 we describe in detail the different regimes observed
in the parameter space, using an asymptotic expansion valid for weak permeability
modulation.
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FIGURE 4. (Colour online) (a) Magnetic Reynolds number and (b) wavenumber at criticality
as a function of the thickness of the modulated boundary, for m0 = 10 and m1 = 3 (mr = 1/3).
Solid lines with circles are from the numerical computation, and dashed lines come from the
asymptotic expansion for weak permeability modulation presented in § 5.

4. Structure and dynamics of the eigenmode
4.1. High-permeability regions channel the magnetic field

The eigenmode inside the boundary is shown in figure 5 for m0 = 10 and mr = 1.
The field H is localized where the magnetic permeability is the lowest. It has sharp
variations in x close to the minimum of µr, which is located at x = 3π/2. This
localization of H gets stronger when m0 increases (with still m1 = m0 − 1). As a
consequence the numerical resolution needed to perform the computation increases
strongly when m0 goes from 10 to 1000. By contrast, the field B has variations much
smoother than H in the x-direction.

The field has a non-zero x-averaged component. Outside the modulated boundary
this large-scale field is mostly along the x-direction. This traces back to the high value
of Rmc, which corresponds to a strong ω-effect that converts a tiny field along z into
a strong field along x. An x-dependent field is superposed on this large-scale field.
It is localized close to the boundary z = 0 and decreases very rapidly as z increases.
Away from the boundary, one sees mostly a field along x and independent of x. Close
to z = 0, the regions of large magnetic permeability strongly bend the magnetic field:
the field lines of B cross the boundary z = 0 in such a way that they are in the
high-permeability regions for z< 0.

4.2. Competition between stationary and oscillatory eigenmodes

We showed in figure 2 a transition from oscillatory to stationary dynamo when mr

increases for large m0, with a discontinuous jump in wavenumber and frequency at
onset. To shed some light on this transition, we plot in figure 6 the growth rate Re(s)
of the least stable mode as a function of k, for m0 = 100, Rm = 10000, and several
values of mr. This graph shows how the stationary and oscillatory eigenmodes are
related: as k decreases from large values, two stationary eigenvalues collide to produce
two complex-conjugate eigenvalues, with imaginary parts proportional to the square
root of the distance from the collision point. Such collision points are ubiquitous in
stability analyses. They originate from the determinant of the linear system having
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FIGURE 5. (Colour online) Neutral mode of the magnetic field for m0 = 10, m1 = 9 (mr = 1),
D = 1. The wavenumber at criticality is kc = 2.3 and the magnetic Reynolds number is
Rmc = 5483. Frames (a–d) correspond to the field inside the boundary, while (e) and (f ) show
the field inside the fluid. This field varies harmonically in the y-direction (Hx and Hz in phase,
Hy in quadrature). For these parameter values, the field is stationary.

a zero discriminant at the collision point, thus switching from having two real roots
(eigenvalues) to two complex-conjugate ones.

From such graphs one can extract the growth rate of the most unstable mode as a
function of mr. We compute it by maximization over k. As can be seen in figure 7,
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mode is oscillatory; ·, mr = 0.707, the oscillatory branch splits into two stationary branches
(the lower stationary branch is represented only for this value of mr); �, mr = 0.716, this is
the transition point where the stationary and oscillatory eigenmodes are equally stable; their
maximum growth rate is close to zero, the system being near the codimension-two point
(Rm,mr)= (10 120, 0.71519). ◦, mr = 0.808, the most unstable mode is stationary.
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FIGURE 7. (Colour online) Growth rate Re(s) and angular frequency Im(s) of the least
stable mode, maximized over k, for Rm = 10 000, m0 = 100 and D = 1. The transition from
oscillatory to stationary eigenmode occurs for mr = 0.716, with a discontinuous jump in
frequency and wavenumber k of the least stable mode. The growth rate at the transition
point is negative but very close to zero, the system being near to the codimension-two point
(Rm,mr)= (10 120, 0.71519).
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the most unstable mode is oscillatory for mr < 0.716 and stationary for mr > 0.716.
At the transition point mr = 0.716, the system switches from oscillatory to stationary
behaviour with finite frequency at the transition, and a jump in y wavenumber. In other
words, because the wavenumber k is not a control parameter, the continuous transition
between stationary and oscillatory eigenmodes in the constant-mr curves of figure 6
results in discontinuous jumps in figure 2(b,c).

The transition point between the oscillatory and stationary eigenmodes in figure 7
corresponds to a very small absolute value of the growth rate of these two modes.
This traces back to this transition point being very close to the codimension-two
point, where the stationary and oscillatory modes are both neutrally stable for the
same parameter values. For D= 1 and m0 = 100, the codimension-two point is located
at (Rm,mr) = (10 120, 0.71519). Note that this codimension-two point differs from
the one obtained for a Takens–Bogdanov bifurcation, in the vicinity of which the
oscillation frequency continuously goes to zero (Guckenheimer & Holmes 1986). As
said above, this results from the selection of a different wavenumber with maximum
growth rate in the oscillatory and stationary regimes. This frequently occurs in
spatially extended systems, as for instance in the case of thermal convection in a
rotating layer studied by Knobloch & Silber (1990).

4.3. A symmetry-breaking transition
We plot in figure 8 the lines of (Bx,By) in the plane z = 0+, that is the horizontal
plane that lies inside the fluid but very close to the modulated boundary. We first
observe that the shape of the field lines does not seem to be affected by the flow
breaking the x→−x reflection symmetry. As mentioned by Busse & Wicht (1992) in
the case of magnetic field generated by a spatial modulation of electrical conductivity,
this is observed when the boundary is thin (here D = 1). In the limit of a thick
boundary, field lines are more clearly asymmetric, as expected for a system that
has no x→ −x reflection symmetry (see Wicht & Busse 1994). In addition, the
asymmetry is more apparent in the flow for z > 0 as shown in figure 5. Although
the velocity field imposes a preferred direction along x, the oscillatory eigenmodes do
not propagate along x: they remain ‘trapped’ by the magnetic permeability modulation,
which prevents a drift in the x-direction. By contrast, the problem is invariant under
the y→−y reflection symmetry. We observe that, while the stationary eigenmode is
symmetric in y, the oscillatory eigenmodes are not. In the latter case, the y→−y
symmetry is broken by the spatial structure of the mode. This selects the direction of
propagation of the field. One oscillatory eigenmode can be obtained from the other
one through a reflection in y, therefore these two eigenmodes propagate along y in
opposite directions.

4.4. Subharmonic response
When discussing the structure and dynamics of the eigenmode, it is important to
address the possibility of a subharmonic instability in the system. Indeed, the linear
system of equations we are studying has periodic coefficients in the x-direction. So
far we have looked only at the harmonic response of this system. However, when a
parameter of a differential equation is modulated periodically (in space or time), the
system sometimes displays a subharmonic response, the frequency of which is smaller
than the forcing frequency.

In the context of a dynamo with space-varying magnetic permeability, one may
speculate whether the x modulation of the permeability can destabilize an eigenmode
with a spatial period higher than that of the modulation. We should in general allow
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FIGURE 8. (Colour online) Contours of the horizontal magnetic field in the plane z = 0+.
(a,b) The two oscillatory eigenmodes obtained for Rm = 10 000, m0 = 100, D = 1, mr =
0.657 and k = 0.5. These eigenmodes break the y→−y symmetry and therefore propagate
along y, in opposite directions. The black arrows indicate the directions of propagation of
the eigenmodes. (c) Stationary eigenmode computed for mr = 0.758 and k = 2, all other
parameters being the same. This eigenmode is symmetric to a reflection in y.

for such subharmonic response, and address the problem using Floquet theory. The
general solution for (2.4) and (2.5) then reads

Hx = eiQxH̃x, (4.1)

Hz = eiQxH̃z, (4.2)

where the functions H̃x and H̃z are 2π-periodic in x, and Q is a real number which
determines the periodicity of the eigenmode. For instance, Q = 1/2 corresponds to
the 4π-periodic subharmonic response of the system. The decomposition is inserted
into (2.4) and (2.5), which leads to a system of equations for the 2π-periodic functions
H̃x and H̃z. We solved these equations numerically, with the parameter Q ranging from
0.1 to 0.5, and we did not find any unstable subharmonic modes, even for very high
values of the magnetic Reynolds number. The subharmonic modes are thus much more
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stable than the harmonic ones. In the following computations we thus focus on the
harmonic response and describe the physical mechanism of the dynamo effect due to
spatial modulations of magnetic permeability. This mechanism gives some insight into
why subharmonic modes with Q ∈ [0.1, 0.5] are more stable than harmonic ones. This
is discussed in the last section of the paper.

5. Asymptotic expansion for weak-magnetic-permeability modulations
With the goal of shedding light on the mechanism of this dynamo, we now focus on

the limit of weak magnetic permeability modulations. Let us write µr = m0(1+ ε sin x),
with ε � 1. The relative permeability modulation is mr = m0ε/(m0 − 1). In this limit
the x-dependence of the eigenmode is mostly of two kinds:

(i) a large-scale field, i.e. independent of x;
(ii) a harmonic response, that is a field in cos x and sin x.

The harmonic response is much weaker than the large-scale component: it comes from
the effect of the magnetic permeability modulation on the large-scale field, and is thus
ε times smaller than the latter. We define an average in the x-direction

〈f 〉 = 1
2π

∫ x+π

x−π
f (x̃) dx̃, (5.1)

and decompose each one of the fields involved in (2.4) and (2.5) into two components

Hx =Hx(z)+ hx(x, z), (5.2)
Hz =Hz(z)+ hz(x, z), (5.3)

where Hx and Hz are the large-scale components and hx and hz are the harmonic
components. Let us finally assume the ordering Hz� hx, hz�Hx, with

hx, hz ∼ εHx, (5.4)

Hz ∼ ε4Hx. (5.5)

We will see in what follows that the two quadratures of hx and hz (i.e. cos x and sin x)
come at different orders of the asymptotic expansion, and the scaling will be given
explicitly only at the last stage of the computation.

5.1. Coupled evolution of the large-scale and small-scale fields
Let us divide (2.4) by µ2

r before x-averaging it, to get at leading order

∂zzHx − (k2 + m0s)Hx = 0. (5.6)

Its solution that satisfies the z=−D boundary conditions is

Hx = H̃x sinh
(√

k2 + m0s(z+ D)
)
. (5.7)

The fluctuating part of the equation gives at dominant order

∂zzhx − (k2 + 1+ m0s)hx = ε(1+ m0s) sin(x)Hx, (5.8)

and its solution that satisfies the z=−D boundary conditions is

hx =−ε(1+ m0s)H̃x sin(x) sinh
(√

k2 + m0s(z+ D)
)

+ [a cos(x)+ b sin(x)] sinh
(√

k2 + 1+ m0s(z+ D)
)
. (5.9)
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The fluctuating part of (2.5) divided by µr yields at leading order

∂zzhz − (k2 + 1+ m0s)hz =−ε cos(x)∂zHx, (5.10)

and its solution that satisfies the z=−D boundary conditions is

hz = ε
√

k2 + m0sH̃x cos(x) cosh
(√

k2 + m0s(z+ D)
)

+ [c cos(x)+ d sin(x)] cosh
(√

k2 + 1+ m0s(z+ D)
)
. (5.11)

The x-average of (2.5) divided by µr gives finally

∂zzHz − (k2 + m0s)Hz + 〈ε cos(x)∂zhx〉 = 0. (5.12)

Notice that the two quadratures of hx scale differently with ε: from (5.9), the sin x
quadrature of hx is of order εHx, whereas from (5.12) the cos x quadrature of hx is of
order Hz/ε ∼ ε3Hx.

The solution to this equation that is compatible with the boundary conditions at
z=−D is

Hz =−ε a

2

√
k2 + 1+ m0s cosh

(√
k2 + 1+ m0s(z+ D)

)
+ H̃z cosh

(√
k2 + m0s(z+ D)

)
. (5.13)

5.2. Boundary conditions at z= 0 and dynamo onset
The large-scale and small-scale fields are expressed in terms of six real amplitudes
H̃x, H̃z, a, b, c, d, so that we need six boundary conditions at z= 0. These are obtained
by considering the boundary conditions (2.10) and (2.11) for the harmonics q = 0
(large-scale field), q = +1 and q = −1. Details on the computation are given in
appendix B. The result is a system of six linear equations with complex coefficients
that relate the amplitudes. The complex determinant of this system must vanish for the
system to have a non-zero solution. This selects the value of s. At the dynamo onset,
the real part of s vanishes and its imaginary part is the angular frequency at onset.
Finally, numerical results indicate that the dynamo onset diverges like ε−4 when ε goes
to 0. We thus write Rm = R̃m/ε4 and expand the determinant of the system to the
first non-zero order in ε. Imposing that this complex determinant vanishes gives two
implicit equations for the critical value of R̃m and the frequency at onset.

In what follows, as in the numerical computations presented above, we impose no
constraint on the value of k: the system is infinite in the y-direction and perturbations
with arbitrary wavelength in y are allowed to develop. We then fix m0 and D
and seek the first mode which becomes unstable as the magnetic Reynolds number
increases. With this asymptotic approach we confirm the numerical results presented in
figure 2: for a weak modulation of magnetic permeability, we find the same magnetic
Reynolds numbers, wavenumbers and frequencies at criticality. More generally, a
careful inspection of the parameter space shows that two modes are in competition
(and not three modes, as incorrectly stated in Gallet et al. 2012).

(i) An oscillatory mode: it is the first unstable mode when D is small and m0 is large.
The wavenumber at onset is of the order of unity for D = 1. The frequency of
oscillation at onset goes to zero like 1/m0 as m0 increases.

(ii) A stationary mode.
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FIGURE 9. (Colour online) Nature of the first unstable mode in the (D,m0) plane, computed
asymptotically for a weak magnetic permeability modulation. Symbols correspond to
numerically computed values and the solid line is a guide for the eye.

The stationary or oscillatory nature of the first unstable mode is shown in the
(D,m0) plane in figure 9. Let us recall that this diagram has been computed using an
asymptotic expansion and is thus valid for weak magnetic permeability modulations
only. For strong enough modulations, we have always observed a stationary first
unstable mode (see figure 2).

In the case of a stationary eigenmode, the vanishing determinant yields an analytical
expression for the onset√

R̃mc =
[
2
√

2sinh2
(

2
√

k2 + 1D
)
(sinh(kD)+ cosh(kD))(m0 cosh(kD)+ sinh(kD))

]
×
[
4m0k(k2 + 1)sinh2(kD)cosh4

(√
k2 + 1D

)
− 4m0k2

√
k2 + 1 sinh(2kD) sinh

(√
k2 + 1D

)
cosh3

(√
k2 + 1D

)
+ k
(

cosh2(kD)
(

m0k2sinh2
(

2
√

k2 + 1D
)
+ 4(k2 + 1)sinh4

(√
k2 + 1D

))
+ (k2 + 1)sinh2(kD)sinh2

(
2
√

k2 + 1D
))

− 2
√

k2 + 1(2k2 + 1) sinh(2kD)sinh3
(√

k2 + 1D
)

cosh
(√

k2 + 1D
)]−1

,

(5.14)

where we assumed k > 0 without loss of generality.
This expression should be considered only where the right-hand side has a positive

value, that is for high enough wavenumbers. If |k| is below some value k0(D) the
right-hand side of (5.14) is negative: there is no stationary unstable mode with such
low wavenumbers. As k approaches the value k0(D) from above, the denominator
of (5.14) tends to zero and R̃mc diverges. The curve R̃mc as a function of k is drawn in
figure 10.

The expression (5.14) is to be minimized with respect to k to find the wavenumber
at criticality and the dynamo onset. It has a single minimum. The result of the
minimization is shown in figure 4. There is a very good agreement with the numerical
computation although ε = 0.3 is not particularly small. However, this expression for
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FIGURE 10. (Colour online) R̃mc given by (5.14) as a function of wavenumber k for several
values of D. The solid line corresponds to the D→∞ limit (5.19). R̃mc has a single
minimum as a function of k and diverges when k approaches a finite value k0(D). These
plots correspond to m0 = 10.

the onset is quite intricate, and we now wish to consider some limits in which the
physics is more easily understood.

5.3. Onset and structure of the neutral mode for D→∞
In the limit of a modulated boundary that occupies the entire half-space z < 0, the
most unstable mode is stationary (s= 0 at onset) and the hyperbolic sines and cosines
in z are replaced by exponentials which decrease as z→−∞. Let us introduce the
scalings and write the fields in the following form:

Hx = Ĥxekz, (5.15)

hx =−εĤx sin(x)ekz + (ε3â cos(x)+ εb̂ sin(x))e
√

k2+1 z, (5.16)

hz = εkĤx cos(x)ekz + (εĉ cos(x)+ ε3d̂ sin(x))e
√

k2+1 z, (5.17)

Hz =−ε4

√
k2 + 1

2
âe
√

k2+1 z + ε4Ĥzekz, (5.18)

where all the quantities with a hat are of O(1). These quantities satisfy the system
of equations written in appendix B, in which the hyperbolic sines and cosines are
replaced by 1, and using the substitution H̃x = Ĥx, a = ε3â, b = εb̂, c = εĉ, d = ε3d̂,
H̃z = ε4Ĥz. The onset of instability is the D→∞ limit of expression (5.14):√

R̃mc = 4
√

2(1+ m0)

2k(k2 + 1)+ m0k(2k2 + 1)−√1+ k2(1+ 2k2 + 2m0k2)
, (5.19)

which should be considered only where it is positive, that is for k > k0 = (m2
0 − 1)−1/2.

The threshold has a single minimum value as a function of k:

Rmc = 864
ε4

(
m0 + 1
m0 − 1

)3

for kc =
√
(2+ m0)

2

3(m2
0 − 1)

. (5.20)
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FIGURE 11. (Colour online) Neutral eigenmode in the limit D → ∞ and m0 → ∞:
from the field Hx (a), the permeability modulation induces an O(ε) component, (b and
c), which is advected by the fluid, producing an O(ε/

√
Rm) = O(ε3) field (d), which

using the permeability modulation once again produces a large-scale field Hz (e), of
O(ε2/

√
Rm)= O(ε4). The shear at z= 0 then regenerates the field Hx through the ω-effect.

For a given and weak relative magnetic permeability modulation mr, the threshold is
thus a decreasing function of the average permeability m0 of the boundary. Its lowest
value is obtained in the limit m0→∞, with

kc = 1√
3

and Rmc = 864
ε4
. (5.21)

The structure of the neutral mode is quite complicated for arbitrary m0 but simplifies
in this double limit of small ε and infinite m0:

Ĥx =−216
√

3, â=√3, b̂=−72
√

3, ĉ= 216, d̂ = 0, Ĥz = 1. (5.22)

Note that d̂ is zero only for infinite m0.

5.4. Physical mechanism of this dynamo
The neutral mode is drawn at each order in figure 11, in the limit of infinite m0.
This plot, together with the scaling laws, sheds some light on the underlying physical
mechanism of this dynamo. This mechanism operates in four steps.
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FIGURE 12. (Colour online) Sketch of the effects involved in the dynamo process. At steps
(i) and (iii), the tangential component (thick arrow) is converted into a normal one (thin
arrow) by the modulation of magnetic permeability in the boundary. At steps (ii) and (iv), the
normal component (thick arrow) created at the former step is converted into a tangential
one (thin arrow) by the shear. In the boundary, white colour stands for large magnetic
permeability.

(i) Let us assume that there is a large-scale field Hx inside the boundary: the
modulation of µr creates a small-scale field of order h1 ∼ εHx. However, another
action of the permeability modulation on h1 cannot produce a large-scale field Hz:
the terms to be averaged are products of quantities oscillating in quadrature and
the small scales do not act on the large ones. This traces back to the following
symmetry: without the flow, the system is invariant to a reflection about the
plane x = π/2 (for instance). The magnetic field is either even or odd under
this transformation, and thus the large-scale field cannot have both an x- and
a z-component. One thus has to invoke the flow which breaks the symmetry
x→−x, in the step of conversion of Hx into Hz.

(ii) For the small scales to produce large-scale field, one needs to create some
field in quadrature with h1. This is done through advection by the flow. At the
z = 0 boundary, the boundary condition (2.11) gives approximately

√
Rmh2 ∼ h1,

hence h2 ∼ Rm−1/2h1. This scaling law corresponds to the skin effect: in a frame
travelling with the fluid at velocity Uex, the field that comes out of the boundary
is an oscillating field that penetrates into the fluid only in a skin layer of depth of
order Rm−1/2.

(iii) The field h2 interacts once again with the permeability modulation to produce a
large-scale field Hz ∼ 〈h2µr〉 ∼ εh2.

(iv) Finally, this field Hz is sheared, which generates large-scale field along x through
the ω-effect: Hx ∼ RmHz.

These successive steps can be written as a cycle: Hx ∼ RmHz ∼ Rmεh2 ∼√
Rmεh1 ∼

√
Rmε2Hx. At onset, the gain of this cycle is of the order of unity. This

gives Rm∼ ε−4, in agreement with the results presented above.
The four steps of the mechanism are sketched in figure 12: a magnetic field line

along the modulated boundary is channelled by the large-permeability regions to
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FIGURE 13. (Colour online) Dynamo mechanism for a weak electrical conductivity
modulation. In-plane vectors are magnetic field (thick arrows), and vectors perpendicular
to the plane are electrical currents (circles with dots or crosses). At steps (i) and (iii),
loops of electrical current are channelled by the high conductivity regions, which produces
vertical magnetic field. At steps (ii) and (iv), the flow shears the normal magnetic field into
field parallel to the boundary. Inside the boundary, light colour stands for large electrical
conductivity.

produce small-scale field perpendicular to the boundary (step i). At step (ii), this
small-scale field is sheared by the flow, which induces small-scale field parallel to the
boundary. This latter is again channelled by the large-µr regions and large-scale field
perpendicular to the boundary is produced. The ω-effect due to the shear converts this
normal field back into a large-scale field parallel to the boundary (step iv).

5.5. Modulation of electrical conductivity
A similar mechanism can be invoked to explain the dynamo effect reported by

Busse & Wicht (1992), replacing the permeability modulation by a modulation
of electrical conductivity, with regions of large electrical conductivity channelling
electrical currents. The proposed mechanism is sketched in figure 13. It proceeds in
four steps.

(i) Start with a large-scale magnetic field along x. This field depends upon y
sinusoidally (it is a Fourier mode in y) and is therefore associated with loops
of electrical current contained in y–z planes. Because regions of high electrical
conductivity channel electrical currents, these loops are tilted by the conductivity
modulation, which produces a small-scale field in the z-direction.

(ii) The shear flow converts the small-scale vertical field into a small-scale horizontal
field.

(iii) This small-scale horizontal field is associated with loops of electrical current,
alternating in sign along x. Regions of large electrical conductivity channel
electrical currents and these loops get tilted. This produces large-scale (i.e. x-
independent) magnetic field along z.

(iv) This large-scale field is sheared by the flow, producing large-scale field along x.
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FIGURE 14. (Colour online) Critical magnetic Reynolds number for dynamo action due to
spatial modulation of electrical conductivity (data from Busse & Wicht 1992). The thickness
of the modulated boundary is D = 0.1 and the wavenumber in the y-direction is fixed at
k = 1. The dashed line indicates the scaling law predicted for low modulation. Inset: critical
magnetic Reynolds number compensated by the κ−4 scaling predicted for low conductivity
modulation.

This mechanism leads to the same scaling law for the dynamo threshold as with
a magnetic permeability modulation, Rmc ∼ ε−4, where ε is now the amplitude
of the electrical conductivity modulation. This prediction for the critical magnetic
Reynolds number is in agreement with the results of Busse & Wicht (1992).
Indeed, their computation corresponds to a setup similar to figure 1, in which the
boundary has constant magnetic permeability µ0 and modulated electrical resisitivity
σ−1[1 + κ sin(x/L)]. Still denoting the magnetic Reynolds number as Rm = µ0σUL,
Busse & Wicht’s results for the threshold of dynamo action translate into an Rmc

versus κ curve for the critical magnetic Reynolds number for steady dynamo action.
This curve is shown in figure 14 using data from their paper. It displays an Rmc ∼ κ−4

scaling regime for low-resisitivity modulation, in agreement with the mechanism
described above.

From a comparison of the second snapshots of figures 12 and 13, we note that
the permeability and conductivity modulations create harmonic components that have
opposite signs for a given sign of the large-scale field, and a given phase of the
modulation (for instance when its amplitude vanishes, going from positive to negative
values). Provided the qualitative arguments given above remain valid in a system
where both the permeability and the conductivity are modulated, a larger effect is
expected if the two modulations have opposite amplitudes, that is if a large- (resp.
low-) permeability region corresponds to a low- (resp. large-) conductivity region.

6. Relevance of this mechanism to experimental dynamos
We have demonstrated that a spatial modulation of magnetic permeability can

generate a dynamo field from a flow which would not be a dynamo in the absence of
modulation (whatever the value of the magnetic Reynolds number). However, in the
geometry described above this mechanism is not very effective and leads to critical
values of Rm hardly achievable in the laboratory. For a strong permeability modulation
and m0 of about 100, the critical magnetic Reynolds number is of order 103. For
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FIGURE 15. An alternative model: we consider a finite and uniform shear inside an
electrically conducting fluid, under which is a boundary of spatially modulated magnetic
permeability.

a liquid sodium experiment with characteristic size of tens of centimetres, this
corresponds to a critical velocity for the fluid of the order of 1 km s−1, which
cannot be achieved in the laboratory.

This mechanism in the present state thus seems irrelevant for the VKS experiment.
However, we will now see that slight modifications of the system make it a much
more efficient dynamo, with critical Rm achievable in a laboratory experiment.

6.1. Finite shear at z= 0

In the results reported in §§ 3 and 4, infinite shear is localized at z = 0. The high
dynamo onsets correspond to a very thin skin layer, scaling like Rm−1/2

c . In an actual
experimental device, the width of the shear layer may not be much thinner than this
skin layer. Let us consider then the opposite situation in which the shear extends up
to infinity. We will see that this modification leads to larger skin depths and small
dynamo thresholds. To wit, we consider the velocity field u = (Sz, 0, 0) sketched in
figure 15. The magnetic Reynolds number is now defined using the shear amplitude:
Rm= µ0σSL2. For a Fourier mode B(z)est+iqx+iky the induction equation inside the fluid
reads

dzzBz − (s+ q2 + k2 + iqRmz)Bz = 0, (6.1)
dzzBx − (s+ q2 + k2 + iqRmz)Bx =−RmBz. (6.2)

The solution that tends to zero for z going to infinity is

B(q)x =−aq
Rm1/3

(iq)2/3
Ai′(Fq(z))+ bqAi(Fq(z)), (6.3)

B(q)z = aqAi(Fq(z)), (6.4)

where Ai are Ai’ denote respectively the Airy function and its first derivative, and

Fq(z)= s+ k2 + q2 + iqRmz

(iqRm)2/3
. (6.5)
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The above solution is valid only for q 6= 0. The q= 0 Fourier mode must be dealt with
separately and leads to the solution

B(0)x =
a0Rm

2
√

s+ k2
z exp

(
−
√

s+ k2 z
)
+ b0 exp

(
−
√

s+ k2 z
)

(6.6)

B(0)z = a0 exp
(
−
√

s+ k2 z
)
. (6.7)

In these expressions the coefficients (aq)q∈Z and (bq)q∈Z are integration constants.
After a straightforward calculation, the continuity of Bz, Hx, Hy and the y-component
of the electric field leads to two boundary conditions for the field inside the modulated
boundary:

∂zHx|(q)0− = iqHz|(q)0− − iq{µrHz|0−}(q) + (iqRm)1/3
Ai′(Fq(0))
Ai(Fq(0))

Hx|(q)0−

− Rm2/3

(iq)1/3

(
Fq(0)− (Ai′(Fq(0)))

2

(Ai(Fq(0)))
2

)
{µrHz|0−}(q), (6.8)

∂zHz|(q)0− =−
{
µ′r
µr

Hx|0−
}(q)
+ (iqRm)1/3

Ai′(Fq(0))
Ai(Fq(0))

{µrHz|0−}(q) , (6.9)

for q 6= 0, and for q= 0:

∂zHx|(0)0− =−
√

s+ k2Hx|(0)0− +
Rm

2
√

s+ k2
{µrHz|0−}(0), (6.10)

∂zHz|(0)0− =−
{
µ′r
µr

Hx|0−
}(0)
−
√

s+ k2{µrHz|0−}(0). (6.11)

These new boundary conditions replace (2.10) and (2.11) when assuming a finite shear
that extends up to infinity.

6.2. A much more efficient dynamo
We display in figure 16 the critical magnetic Reynolds number of the finite-shear
dynamo. The onset is much lower than for an infinite shear located at z = 0. More
interestingly, at small modulation ε the onset diverges as Rmc ∼ ε−3. The exponent of
divergence thus goes from −4 to −3 when one considers a finite shear instead of an
infinite shear located at z = 0. This traces back to a modification of the skin depth
in the presence of finite shear. The argument (6.5) of the Airy functions scales at
large z like Rm1/3z. Hence the skin depth no longer scales as Rm−1/2, but as Rm−1/3:
the magnetic field penetrates deeper into the fluid and advection is enhanced. Coming
back to the previously discussed mechanism, step (ii) becomes h2 ∼ Rm−1/3h1, so that
the cycle reads Hx ∼ RmHz ∼ Rmεh2 ∼ Rm2/3εh1 ∼ Rm2/3ε2Hx. The onset is obtained
when the gain of this cycle is of the order of unity, which gives Rmc ∼ ε−3. Finally,
we mention that this dynamo is oscillatory at onset, with an angular frequency ranging
from 0.14 at low modulation to 0.25 at maximum modulation. It corresponds to a
travelling wave in the y-direction.

Such a modification of the skin depth also occurs in the Ponomarenko dynamo
when one considers a smooth velocity profile instead of a discontinuous one (Gilbert
1988): if the velocity field has a finite-amplitude jump, the eigenmodes develop on a
characteristic scale Rm−1/2 in the radial, azimuthal and axial directions, whereas for a
smooth velocity profile this characteristic scale is Rm−1/3.
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FIGURE 16. (Colour online) Onset of dynamo action computed for a finite shear inside the
fluid, m0 = 10 and D = 1.0. The wavenumber at criticality has little dependence on mr and
is close to 0.6. Pulsation at onset ranges between 0.14 for weak modulation and 0.25 for
maximum modulation.

6.3. Influence of the thickness D

The onset, wavenumber and angular frequency at criticality are plotted in figure 17
as a function of the thickness D of the modulated boundary; m0 is either 10 or
100, the modulation being fixed to its maximum value m1 = m0 − 1. The onset is
a rapidly decreasing function of D which saturates for large D. For m0 = 100 the
critical magnetic Reynolds number becomes as low as 15. The dynamo is oscillatory
and would correspond in the VKS experiment to a wave travelling in the radial
direction. However, the frequency at onset goes to zero as m0 and/or D increase, so
that switching from Cartesian to cylindrical geometry might be sufficient to make this
dynamo stationary.

This mechanism is the first to suggest a determining role of the VKS impeller
ferromagnetic blades in the magnetic field generating process. However, using the
definition Rm = µ0σSL2, where 2πL is the distance between the blades, gives small
values of the magnetic Reynolds number in the VKS experiment. Indeed, if we assume
that the azimuthal velocity close to the disks decays on an axial length equal to the
blade height (41 mm), the shear for a rotation frequency of 25 Hz is approximately
S = 600 s−1. Using L ' 2 cm for the VKS experiment gives a maximum magnetic
Reynolds number of 3. This is smaller than any value of dynamo threshold reported
in this study. A better description of the geometry and velocity field of the VKS
experiment would be necessary for further comparison, and to quantify the conversion
of toroidal to poloidal magnetic field induced by the ferromagnetic blades. In the
following section, we focus on the role of the disk to which these blades are attached.

6.4. Role of the ferromagnetic disk
With the goal of studying the role of the ferromagnetic disk on which the blades are
attached, we consider the situation in which the medium at z < −D is an insulator
with magnetic permeability µ0. Inside the insulator the Laplacian of the magnetic field
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FIGURE 17. (Colour online) (a) Dynamo onset, (b) wavenumber and (c) angular frequency
at criticality as a function of the thickness D of the modulated boundary, for a uniform shear
flow. For m0 = 100 and large enough D, the critical Rm reaches values of the order of 15.

vanishes. A Fourier mode of wavevectors q and k respectively in x and y thus has the
z-dependence exp(

√
q2 + k2 z). This solution is the one that vanishes as z goes to −∞.

Making use of the continuity of Bz, Hx and Hy, one can derive the following boundary
condition at z=−D for the field inside the boundary:{

µ′r
µr

Hx|−D+

}(q)
+ ∂zHz|(q)−D+ =

√
k2 + q2{µrHz|−D+}(q). (6.12)

Setting to zero the normal component of the electric field at the insulator boundary
gives the second boundary condition

Hx|(q)−D+ =
iq√

q2 + k2
{µrHz|−D+}(q). (6.13)

This relation can be used to simplify the first boundary condition and express the
z-derivative of Hz at −D+ only in terms of Hz|−D+ . The two boundary conditions allow
this new eigenvalue problem to be solved.

We compare in figure 18 the dynamo onset obtained for an insulating medium at
z < −D to the one obtained for an ideal ferromagnetic material (µr =∞). In order
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FIGURE 18. (Colour online) Onset of dynamo action: the medium at z < −D is either
made of insulating material (dashed line) or of ideal ferromagnetic material (µr =∞, solid
line). Circles: m0 = 10 and m1 = 9; squares: m0 = 100 and m1 = 99. The wavevector in
the y-direction is fixed to k = 0.5. The dynamo is stationary for an insulating medium and
oscillatory with very low frequency for an ideal ferromagnetic material.

to make possible some comparisons with the VKS experiment, the wavenumber in y
is fixed to k = 0.5. This direction would be the radial one in the VKS experiment,
and the extension of the eigenmode in this direction is of the order of the disk radius,
which is of the order of the distance between two blades. For low values of D the
onset is lower with an insulator at z < −D, whereas for D > 2.5 the dynamo is more
efficient with a ferromagnetic medium at z < −D. This crossing of the curves traces
back to two opposing effects of the ferromagnetic material.

(i) The presence of ferromagnetic material at z=−D imposes Bx = 0 at the boundary.
If D is small, the field along x cannot be very large inside the modulated boundary
and the conversion of this toroidal field into poloidal field is limited.

(ii) The ferromagnetic medium channels the field in the z-direction: the field enters the
medium at z = −D and escapes it at an arbitrary x without any cost in terms of
Ohmic dissipation. By contrast, for an insulating medium part of the field lines
must close inside the modulated boundary, which results in stronger field gradients
and enhanced Ohmic dissipation.

To illustrate these effects we compare in figure 19 the fields inside the modulated
boundary, computed for D = 2 and either an insulating or a ferromagnetic medium
at z < −D: the magnetic field enters the ferromagnetic medium and escapes it half
a spatial period away. The eigenmode is oscillatory with a very low frequency for a
ferromagnetic medium, whereas it is stationary for an insulating one.

Note that when the VKS impellers are made of ferromagnetic blades attached
to stainless steel disks, no magnetic field is observed at the highest reachable
magnetic Reynolds number. A Cartesian equivalent of the VKS experiment would
rather correspond to the region D > 2.5 of figure 18, so that the trend exhibited
in the numerical results is consistent with experimental observations. Nevertheless,
the difference between the dynamo thresholds computed for a ferromagnetic and an
insulating medium is rather small, and the role of the VKS ferromagnetic disks is
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FIGURE 19. (Colour online) Neutral magnetic field mode for D= 2.0 and k = 0.5: (a,b) real
part of the eigenmode for a ferromagnetic medium at z < −D; (c,d) imaginary part of this
eigenmode; (e,f ) eigenmode for an insulating medium at z<−D.

likely to be more complex. Indeed, when the VKS disks are counter-rotating, the
region behind these disks has an ω-effect whose sign is opposite to the ω-effect
between the two disks. This ω-effect is counter-productive and detrimental to the
dynamo instability. The ferromagnetic disk thus gives an opportunity for the field
to close inside the disk, without having to enter this region of detrimental ω-effect.
Such a detrimental effect from ‘lid layers’ was also reported in numerical simulations
(Stefani et al. 2006). The flow in the vicinity of the disk is also more complicated
than the ones considered here: it has a component parallel to the blades and an
azimuthal modulation. The associated helicity is a source of an alpha-effect, put
forward as an important mechanism for the VKS dynamo (Pétrélis, Mordant & Fauve
2007). Possible future works concern the investigation of the interplay between the
mechanism presented here and other dynamo mechanisms.

7. Discussion
We conclude with an analysis of our results in the framework of spatial symmetries

and anti-dynamo theorems.

7.1. Subharmonic response
In § 4.4, we presented the subharmonic stability problem with an infinite shear at
z = 0. We did not find any unstable subharmonic modes with Floquet wavenumber
Q ∈ [0.1, 0.5], even for very high values of the magnetic Reynolds number. These
subharmonic modes are thus much more stable than the harmonic ones. This may
be explained by the fact that the harmonic response is generically coupled to a
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large-scale, x-independent field, whereas the subharmonic response cannot be coupled
to such a field. Indeed, let us consider a field ψ having both an x-independent and a
subharmonic component

ψ(x, z)= ψ0(z)+ ψ̃1/2(x, z)eix/2, (7.1)

where ψ̃1/2 is 2π-periodic in x. The translation x→ x + 2π transforms the eigenmode
into

ψ ′(x, z)= ψ0(z)− ψ̃1/2(x, z)eix/2. (7.2)

This translation leaves the setup invariant and ψ ′ is thus an eigenmode of the system
for the same eigenvalue. Performing the sum and difference of ψ and ψ ′ leads to the
conclusion that the x-independent and subharmonic components decouple.

Therefore the Q = 1/2 subharmonic response cannot benefit from the coupling with
the large-scale field, which has weak Ohmic dissipation. Indeed, this latter is not
subject to a skin effect and thus has a large spatial extension. It is the coupling
with this large-scale mode that makes the harmonic response unstable. The absence of
coupling between the Q = 1/2 subharmonic response and this large-scale mode makes
it stable.

This symmetry consideration can be described for a simpler system exhibiting
subharmonic instability, for instance a pendulum parametrically driven at twice its
natural frequency: if the forcing is strong enough, the pendulum becomes unstable and
can oscillate at half the driving frequency. This subharmonic response is symmetric
about the zero-angle unstable solution. However, if the pendulum is parametrically
driven at its natural frequency, it can oscillate at the driving frequency but then makes
a non-zero angle on temporal average: the harmonic response is generically coupled to
the temporal harmonic zero, which corresponds to a constant non-zero angle.

Dynamos generated by cellular flows have been found either harmonic or
subharmonic at twice the wavelength of the flow. It has been shown by Matthews
(1999) that the most unstable magnetic mode generated by a simple convective flow
with two-dimensional rolls in a rotating fluid layer is harmonic and involves a large-
scale field, whereas the Couette–Taylor dynamo grows at twice the period of the
Taylor cells as observed by Laure, Chossat & Daviaud (2001). Dynamo action by
Roberts flows, i.e. flows depending periodically on two Cartesian coordinates and
independent of the third one, has been studied by Tilgner & Busse (1995) and Plunian
& Radler (2002). Harmonic magnetic fields are the most unstable in large enough
systems and involve a large-scale component.

Note that when Q is very small, we expect to recover the results obtained for Q= 0,
which we called the harmonic response. How small does Q have to be for the solution
to resemble the harmonic solution? When Q 6= 0, the longest Fourier component of the
eigenmode has wavenumber Q. For localized shear at z= 0, this Fourier component is
damped vertically on a skin depth (RmQ)−1/2. Provided this skin depth is very large,
the Fourier mode Q has a vertical structure similar to an x-independent mode. This
requires Q� 1/Rm. Because the critical magnetic Reynolds number is larger than
∼103 for localized shear at z = 0, Q must be very small to recover the harmonic
response, at most Q' 10−3. We checked that for values of Q much smaller than 1/Rm,
the critical magnetic Reynolds number is close to the value computed for the harmonic
response. However, once Q became of the order of 1/Rm or larger, we could not find
any unstable modes.
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Such low but non-zero values of Q are not relevant to experimental studies.
An experimental device typically has ∼10 ferromagnetic blades, so we focused on
Q > 1/10 when discussing the subharmonic response. The VKS experiment has
cylindrical geometry, and if a comparison is to be made, the x-direction of these
computations would correspond to the azimuthal direction of cylindrical coordinates.
With eight ferromagnetic blades, the lowest allowed values for Q are Q = 0, for the
axisymmetric component, followed by Q = 1/8. Q = 0 corresponds to the harmonic
response described in the present study.

7.2. Bypassing anti-dynamo theorems
The dynamo flows of the present study are of striking simplicity. Without magnetic
permeability modulation, an anti-dynamo theorem discards planar flows (i.e. velocity
fields with one vanishing Cartesian component) as candidates to produce a dynamo
(Zel’dovich 1957). The cylindrical equivalent is the Cowling theorem (Cowling 1933):
there is no purely axisymmetric dynamo magnetic field. A broader version of this
theorem is proven in Ivers & James (1984): even if the fluid is compressible, and the
magnetic field time-dependent, and if electrical conductivity and magnetic permeability
are space-dependent but axisymmetric, there cannot be an axisymmetric dynamo
magnetic field. Taking the limit of an infinite radius of curvature, the extension
to the planar situation seems rather straightforward: if the velocity field, electrical
conductivity, magnetic permeability and magnetic field are independent of the same
Cartesian coordinate, the magnetic field cannot be sustained by dynamo action.

We bypass the first anti-dynamo theorem by imposing a spatial modulation of
magnetic permeability, and the second one by assuming that the magnetic field
depends on the three spatial coordinates.

Appendix A. Numerical method
The numerical method uses spectral decomposition in the x-direction and finite

differences in z. Let us decompose the fields into Fourier series in x:

Hx =
n=+∞∑
n=−∞

un(z)einx and Hz =
n=+∞∑
n=−∞

vn(z)einx. (A 1)

The projection of (2.4) and (2.5) onto each of the Fourier modes leads to a
system of linear ordinary differential equations in z which couple the functions
(un)n∈Z and (vn)n∈Z . The boundary conditions at z = −D and z = 0 have been
computed and couple these functions as well. The procedure consists of truncating
the differential system to n ∈ {−N, . . . ,N} and solving the obtained system with
finite differences in z. Each function un is decomposed onto P uniformly spaced grid
points: u(p)n = un(−D + pdz), with dz = D/P and p ∈ {1, . . . ,P}. The vn functions are
decomposed onto P + 1 uniformly spaced grid points: v(p)n = vn(−D + (p − 1)dz),
p ∈ {1, . . . ,P + 1}. The linear operators of the two equations (2.4) and (2.5) (such
as multiplication by µr(x) or its derivatives, derivation with respect to x or z, etc.)
can be written as matrices of size ((2N + 1)(2P+ 1))2 acting on the vector V =
(u(1)−N, . . . , u(1)N , u(2)−N, . . . , u(2)N , . . . , u(P)−N, . . . , u(P)N , v

(1)
−N, . . . , v

(1)
N , . . . , v

(P+1)
−N , . . . , v

(P+1)
N ),

which has (2N + 1)(2P + 1) coefficients. The boundary coefficients of the matrices
representing z-derivatives are obtained using the boundary conditions. The linear
system of equations to be solved now reads

sMV = R(s)V, (A 2)
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where matrix R depends upon s. One can then use a test value s0 to get the eigenvalue
s1, solution to the problem s1MV = R(s0)V . This value s1 is re-injected into matrix
R before repeating this step. This process converges in a few iterations to a value of
s solving (A 2). When N and P are large enough, the value of s is converged and
independent of the resolution.

Appendix B. Boundary conditions at z= 0 in the weak modulation limit
After replacing µr at the denominator by m0, the x-averaged boundary condition

(2.11) gives

a
[
−ε(k2 + m0s) sinh

(√
k2 + 1+ m0sD

)
− m0ε

√
k2 + s

√
k2 + 1+ m0s cosh

(√
k2 + 1+ m0sD

)]
+ d

[
m0ε

√
k2 + s cosh

(√
k2 + 1+ m0sD

)]
+ H̃z

[
2
√

k2 + m0s sinh
(√

k2 + m0sD
)

+ 2m0

√
k2 + s cosh

(√
k2 + m0sD

)]
= 0. (B 1)

The same boundary condition written for harmonic +1 (that is eix) leads to

H̃x

[
ε(k2 + 1+ m0s) sinh

(√
k2 + m0sD

)
+ m0ε

√
k2 + 1+ iRm+ s

√
k2 + m0s cosh

(√
k2 + m0sD

)]
+ a

[
−
√

k2 + 1+ iRm+ s
m0ε

2

2i

√
k2 + 1+ m0s cosh

(√
k2 + 1+ m0sD

)]
+ c
[√

k2 + 1+ m0s sinh
(√

k2 + 1+ m0sD
)

+ m0

√
k2 + 1+ iRm+ s cosh

(√
k2 + 1+ m0sD

)]
+ d

[
−i
√

k2 + 1+ m0s sinh
(√

k2 + 1+ m0sD
)

− im0

√
k2 + 1+ iRm+ s cosh

(√
k2 + 1+ m0sD

)]
+ H̃z

[
−im0ε

√
k2 + 1+ iRm+ s cosh

(√
k2 + m0sD

)]
= 0. (B 2)

The equation for harmonic −1 is the same but with i replaced by −i, and leaving
s unchanged (although s is pure imaginary at onset). The x-average of boundary
condition (2.10) yields

H̃x2
√

k2 + m0s
[
−sinh

(√
k2 + m0sD

)
− cosh

(√
k2 + m0sD

)]
+ a

[
−m0Rmε

√
k2 + 1+ m0s cosh

(√
k2 + 1+ m0sD

)]
+ dm0Rmε cosh

(√
k2 + 1+ m0sD

)
+ H̃z2m0Rm cosh

(√
k2 + m0sD

)
= 0. (B 3)
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Harmonic +1 of boundary condition (2.10) gives:

H̃x

[
iε(1+ m0s)

√
k2 + 1+ iRm+ s sinh

(√
k2 + m0sD

)
+ (i(1+ s)− Rm)m0ε

√
k2 + m0s cosh

(√
k2 + m0sD

)]
+ a

[(
1− i

Rm− i
2

m0ε
2

)√
k2 + 1+ m0s cosh

(√
k2 + 1+ m0sD

)
+
√

k2 + 1+ iRm+ s sinh
(√

k2 + 1+ m0sD
)]

+ b
[
−i
√

k2 + 1+ m0s cosh
(√

k2 + 1+ m0sD
)

− i
√

k2 + 1+ iRm+ s sinh
(√

k2 + 1+ m0sD
)]

+ c
[
(i(m0 − 1)− m0Rm) cosh

(√
k2 + 1+ m0sD

)]
+ d

[
((m0 − 1)+ im0Rm) cosh

(√
k2 + 1+ m0sD

)]
+ H̃z

[
−im0ε(i− Rm) cosh

(√
k2 + m0sD

)]
= 0, (B 4)

and the equation for harmonic −1 is the same but with i replaced by −i, and leaving s
unchanged.
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