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We present a study of several systems in which a large-scale field is generated over a turbulent
background. These large-scale fields break a symmetry of the forcing by selecting a direction.
Under certain conditions, the large-scale field displays reversals so that the symmetry of the
forcing is recovered statistically. We present examples of such dynamics in the context of the
dynamo instability, of two-dimensional turbulent Kolmogorov flows and of turbulent
Rayleigh–Bénard convection. In these systems reversals occur respectively for the dynamo
magnetic field, for the large-scale circulation generated by a periodic forcing in space and for
the large-scale roll generated by turbulent thermal convection. We compare the mechanisms
involved and show that their properties depend on some symmetries of the system and on the
way they are broken.
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1. Introduction

It is often believed that fully developed turbulent flows are statistically invariant under

symmetry transformations of the forcing that generates them. Indeed, although the

transition to turbulence involves successive bifurcations, each of them breaking some

spatial or temporal symmetry, it is often observed that these symmetries are recovered

in a statistical sense when the Reynolds number is increased further. The common belief

is that strong turbulent fluctuations trigger random transitions between symmetric

solutions and thus prevent the flow from staying in a regime with a broken symmetry.

In other words, a strongly turbulent flow is expected to explore all the available phase

space. However, it has been known for a long time that this is not so simple and that

clear-cut transitions keep occurring within the strongly turbulent regime. The oldest

example is provided by the drag crisis (see, for instance, Tritton 1977). The mean drag

of a sphere or a cylinder in a turbulent flow drops suddenly for a critical value of the

Reynolds number Re of order 105 (the pre-factor depending on surface properties). This

corresponds to a transition where the mean flow pattern changes, the wake
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becoming narrower. Another example is related to Rayleigh–Bénard convection, i.e. the
flow generated by heating from below a horizontal layer of fluid. It has been observed
that for a Rayleigh number of order 106, i.e. roughly 1000 times larger than the critical
Rayleigh number for the onset of convection, a large-scale flow is generated with a
horizontal extension equal to the length of the container (Krishnamurti and Howard
1981). Von Karman swirling flows, i.e. flows generated in a cylindrical volume by the
rotation of two co-axial disks, also display turbulent bifurcations. In the case of
co-rotating disks, an axisymmetric mean flow with a strong axial vortex is observed.
When the rotation rates are varied, this flow breaks axisymmetry, thus generating a
roughly periodic modulation of the turbulent velocity field superimposed to turbulent
fluctuations with Re� 105 (Labbé et al. 1996). In the case of disks counter-rotating at
the same frequency, the forcing is symmetric with respect to a rotation of angle �
around a radial axis in the mid-plane between the two disks (see below). It has been
found that this symmetry can be broken through a bifurcation that occurs for Reynolds
numbers in the range 105–106 (Ravelet et al. 2004).

There are a lot of other examples of transitions leading to broken symmetries in
strongly turbulent flows. Bifurcations from a turbulent regime are therefore commonly
observed. However, in contrast to bifurcations from stationary or space and time
periodic flows, that are well documented and for which well-known techniques exist to
handle both the linear stability problem and the weakly nonlinear bifurcated regime, the
concept of bifurcation from a fully developed turbulent flow is more questionable even
at the level of a clear-cut definition. In this respect, the dynamo effect in a liquid metal
provides a very interesting example in which a magnetic field is generated by an
instability process that occurs when the kinetic Reynolds number of the flow is usually
larger than 106. Although the experiments involve some cost and technical difficulties,
once the dynamo regime is reached, the dynamics of the magnetic field can be easily
measured. Then, several interesting problems can be addressed. One of them is related
to the possibility of anomalous scalings of the magnetic energy density above the
dynamo threshold due to turbulent fluctuations (Pétrélis et al. 2007). Another one
concerns the effect of turbulent fluctuations on the dynamics of the large-scale magnetic
field. The symmetry B(r, t)!�B(r, t) of the equations of magnetohydrodynamics is
spontaneously broken at the dynamo onset. Slightly above the threshold of a
supercritically bifurcating dynamo, the magnetic energy density is much smaller than
the kinetic energy density of turbulent fluctuations. However, turbulent fluctuations are
not able to trigger a direct transition from B to �B as would be observed in the naive
analogy of a particle in a two-well potential in the presence of noise. In contrast, the
VKS experiment, described in section 2, has shown that the reversal trajectories display
very robust features that are not smeared out by turbulent fluctuations (Berhanu et al.
2007). In other words, the dynamics of the large-scale magnetic field involves only a few
modes that look weakly coupled to the turbulent background, i.e. the reversal dynamics
takes place in a low-dimensional phase space. Thus, the VKS dynamo provides an
example in which a few magnetic modes are governed by a low-dimensional dynamical
system although they occur on a strongly turbulent background at kinetic Reynolds
number larger than 106.

Similar features are also observed in purely hydrodynamical models and the same
problems can be addressed. This is the case in many geophysical and astrophysical flows
where an oscillatory or a weakly chaotic behaviour can occur in flows at huge Reynolds
numbers. Some climatic phenomena indeed display a characteristic feature of
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low-dimensional chaos: well-defined patterns are observed despite the strongly
fluctuating background. Examples are atmospheric blockings that can affect the
climate on a time scale of several days (Ghil and Childress 1987) or El Niño events that
occur every few years (Vallis 1986). The qualitative features of these phenomena have
been often modelled using a few coupled variables such as mean temperature, wind or
current. The quasi-biennial oscillation (QBO) provides a striking example of a large-
scale almost cyclic reversing flow in the otherwise turbulent atmosphere. It is a roughly
periodic oscillation in the strength and direction of the zonal (east-west) wind in the

lower and middle stratosphere over the equator of the Earth’s atmosphere. It has been
observed for more than 50 years in climatological records. Its period fluctuates, the
mean being slightly larger than 2 years. A reversal first appears at an altitude of roughly
40 km and then propagates downward at a rate of 1 km per month. Thus, these reversals
are related to a downward drifting pattern. The QBO has been understood to arise from
the interaction between upward-propagating waves, generated in the troposphere, and
the mean zonal flow at upper levels where the waves are dissipated (for a review, see
Baldwin et al. 2001). Reversals of large-scale flows driven on a turbulent background
have also been observed in laboratory experiments, such as thermal convection (see
Ahlers et al. 2009 for a review) and Kolmogorov flows, i.e. quasi-two-dimensional (2D)
flows generated by forcing an array of counter-rotating vortices (Sommeria 1986). We
first recall here old and recent observations related to bifurcations generating reversals
of a magnetic field or of a mean flow in the presence of turbulent fluctuations and we
discuss them in the framework presented above. Experimental results and models for
reversals of the magnetic field are presented in section 2. Reversals of the large-scale
flow generated by Kolmogorov forcing are studied in section 3. An experimental
confirmation of Sommeria’s results is provided and compared with a direct numerical
simulation. A description of these reversals using a low-dimensional dynamical system
is given and their main features are compared to the ones observed for the magnetic
field. Reversals of the large-scale flow in Rayleigh–Bénard convection are considered in
section 4. After recalling the results obtained in the literature, we present a new
experiment showing that 3D perturbations can play an important role in the reversal
process. Finally, we discuss the problem of reversals in relation to the phenomenon of
drifting patterns and using the framework of amplitude equations. Thus, different types
of bifurcations leading to reversals in this variety of systems can be easily identified. We
conclude with a discussion on the relative contributions of the deterministic dynamics
and of the turbulent fluctuations to reversals observed in strongly turbulent flows.

2. Reversals of the magnetic field generated in a fluid dynamo

2.1. Dynamos, observations and laboratory experiments

The dynamo process is an instability that converts mechanical work into electric
current, i.e. magnetic energy. This has been used for a long time to generate electricity
from the motion of solid rotators. Larmor (1919) proposed that in the Sun a similar
instability could be operating that would convert kinetic energy of the flow of an
electrically conducting fluid into magnetic energy. Nowadays it is strongly believed that
most astrophysical objects (planets, stars, galaxies, etc.) generate a magnetic field
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through a dynamo instability (Moffatt 1978). Since the work of Brunhes (1906), it is
known that the Earth’s magnetic field keeps a roughly constant direction for long
durations but from time to time it reverses and evolves toward the opposite direction.
Reversals of the Earth’s magnetic field have motivated a lot of studies ranging from
paleomagnetism to numerical simulations of models of the Earth’s interior (see, for
instance, Dormy et al. 2000). The magnetic field of the sun also displays polarity
reversals but they occur in a roughly periodic way every 11 years. Although direct
numerical simulations are possible only in a parameter range orders of magnitude away
from planetary or stellar dynamos, they have been able to display reversals of the
magnetic field (Glatzmaier and Roberts 1995).

In the last decade, the first three experimental observations of fluid dynamos have
been achieved in turbulent flows of liquid sodium: the Riga experiment (Gailitis et al.
2001), the Karlsruhe experiment (Stieglitz and Müller 2001) and the VKS experiment
(Monchaux et al. 2007). The flow lines are strongly constrained by the geometry of the
boundaries in the Riga and Karlsruhe experiments. The VKS experiment involves a von
Karman swirling flow of liquid sodium generated by the rotation of two coaxial soft
iron impellers at frequency F1 (respectively F2) inside a cylinder of aspect ratio of order
one (see the sketch of figure 1). Thus, large-scale velocity fluctuations are important
(comparable the mean flow) in the VKS experiment whereas they are small in the Riga
and Karlsruhe experiments. Correspondingly, the geometry of the magnetic field
generated in the Riga and Karlsruhe experiments is in very good agreement with the
predictions made assuming that the mean flow is acting alone and discarding velocity
fluctuations, whereas a similar assumption leads to strong disagreements for the VKS
experiment. A detailed discussion of the dynamo generation observed in these three
experiments is given in Pétrélis et al. (2007).

Above threshold, the VKS experiment displays a lot of secondary bifurcations to
different dynamical regimes for the magnetic field whereas no secondary bifurcation has
been reported in Karlsruhe or Riga. Some of these dynamical regimes involve reversals
of the magnetic field (Berhanu et al. 2007). When the impellers counter-rotate with the
same frequency F, a statistically stationary magnetic field is generated when F is large
enough. Its mean value involves a dominant poloidal dipolar component, BP, along the
axis of rotation, together with a related azimuthal component B�, as displayed in

R

B BP

1 2
F F

R

B

BP

F1 F2

q q

p p

Figure 1. Sketch of the large scales of the eigenmodes of the VKS experiment. The two disks counter-rotate
with frequency F1 and F2. Left: dipolar part of the magnetic mode. Right: quadrupolar part. Poloidal, BP, and
toroidal, B�, components are sketched.
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figure 1 (left). When the rotation frequencies are different, the magnetic field can
display periodic or random reversals. A time series of the field in the regime of random
reversals is shown in figure 2. The field fluctuates around some value for long durations,
typically hundreds of seconds, and suddenly reverses within an ohmic diffusion time
(roughly 1 s). Although the kinetic Reynolds number is large, Re� 5� 106 for these
flows, it has been observed that low-dimensional dynamics of the magnetic field are not
smeared out by strong turbulent fluctuations. In particular, all reversals involve the
same transitional field morphology: the amplitude of the dipolar field first decreases. If
it changes polarity, the amplitude increases on a faster time scale and then displays an
overshoot before reaching its statistically stationary state. Otherwise, the magnetic field
grows again with its direction unchanged. These features have been also observed in
recordings of the Earth’s magnetic field, the aborted reversals being often called
excursions (Valet et al. 2005).

2.2. Possible mechanisms for reversals of the magnetic field

The first simple models of field reversals are illustrated by rotor disk dynamos following
Rikitake (1958). Although these toy models strongly differ from the full MHD
equations, it is possible to relate Rikitake equations with a simple model of an ��!
dynamo (Moffatt 1978) or to obtain them by drastic truncation of the full MHD
equations (Nozières 1978). One problem with truncated systems is that they usually
describe dynamics that do not persist when higher modes are taken into account, thus
making this approach questionable. A different and hopefully more realistic way to
obtain a few coupled differential equations, is based on the assumption that several
magnetic eigenmodes are competing above the dynamo threshold. It is then possible to
write the corresponding normal forms. This has been done to describe the solar cycle
and its slow modulation (Tobias et al. 1995, Wilmot-Smith et al. 2005). Knobloch and
Landsberg (1996) consider a different model that involves two magnetic modes, a

0 200 400 600 800
−300

−200

–100
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100
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B
 (

G
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440 460 480
−300
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Figure 2. Left: Time series of the magnetic field measured in the VKS experiment in the regime of reversals.
The two propellers counterrotate with different speeds. Right: zoom on two reversals and an excursion (data
from Berhanu et al. 2007).
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dipolar and a quadrupolar one, both generated through a Hopf bifurcation. It has been
also proposed to relate reversals to trajectories close to heteroclinic cycles that connect
unstable fixed points �B (Armbruster et al. 2001). This provides a simple framework to
describe separation of time scales between quasi-steady states with a given polarity,
related to the slowing down of the system in the vicinity of a saddle point, and rapid
reversal events. Melbourne et al. (2001) use this approach to describe the dynamics of
Earth’s magnetic field by writing amplitude equations for an equatorial dipole coupled
to axial dipole and quadrupole. This model has heteroclinic cycles but no connection of
states with opposite polarities except when additional coupling terms that break the
symmetries are taken into account.

Another class of models uses external noise in order to model hydrodynamic
fluctuations that trigger random transitions between the two states �B. However, a
dipolar mode alone subject to multiplicative noise does not lead to reversals even for
large noise intensity. Random reversals occur only when damped modes coupled to the
dipolar one are taken into account (Schmitt et al. 2001). Parker (1969) related the
fluctuations of the velocity field required to generate a reversal to the number of
cyclonic convective cells in Earth’s core, that fluctuate both in number and position. He
also suggested that an alteration of the meridional circulation could generate field
reversals (Parker 1979). This has been observed in direct numerical simulations of the
MHD equations in a rotating sphere (Sarson and Jones 1999).

Since 1995 (Glatzmaier and Roberts 1995), a lot of 3D numerical simulations of the
MHD equations in a rotating sphere have been able to simulate a self-consistent
magnetic field that displays reversals (see the review by Dormy et al. 2000). Although
most relevant dimensionless parameters that can be achieved in direct simulations are
orders of magnitude away from their values in Earth’s core or laboratory experiments,
thus making detailed comparisons questionable, several robust features related to the
symmetry properties of reversals have been observed: a dipole–quadrupole interaction
can be observed in the first reversals simulated by Glatzmaier and Roberts (1995) and
the magnetic field has a quadrupolar symmetry at the transition (see their figure 2). This
has been confirmed by the simulations of Sarson and Jones (1999) who also observed
that reversals are triggered by the random emission of poleward light plumes, i.e. events
that break the equatorial symmetry of the flow. Similar features have been observed by
Wicht and Olson (2004). Li et al. (2002) also observed that ‘‘the dipole polarity can
reverse only . . .where the north-south symmetry of the convection pattern is broken’’.
Nishikawa and Kusano (2008) showed that if the flow or the magnetic field is forced to
remain equatorially symmetric, then reversals do not occur. Finally, it has been also
proposed that reversals involve an interaction between dipolar and quadrupolar modes
from an analysis of paleomagnetic data (McFadden et al. 1991).

2.3. Mechanism for field reversals in the VKS experiment

A striking feature of the VKS experiment is that time-dependent magnetic fields are
generated only when the impellers rotate at different frequencies (Berhanu et al. 2007,
Ravelet et al. 2008). It has been shown in Pétrélis and Fauve (2008) that this is related to
the broken invariance under R� when F1 6¼F2 (rotation of angle � around an axis in the
mid-plane). Dipolar (resp. quadrupolar) modes of the magnetic field are displayed in
figure 1 (left) (resp. right): a dipolar mode is changed into its opposite by R�, whereas a
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quadrupolar mode is unchanged. When the impellers counter-rotate at the same
frequency, the system is invariant under R�. Thus dipolar and quadrupolar modes are
not linearly coupled. They become coupled when the impellers rotate at different
frequencies such that the R� symmetry is broken.

We assume that the magnetic field is the sum of a dipolar component with an
amplitude D and a quadrupolar one, Q. This is justified when the thresholds of these
two large-scale modes have similar values. We define A¼Dþ iQ and we write an
amplitude equation in the form of an expansion in powers of A and its complex
conjugate �A. Taking into account the invariance B!�B, i.e. A!�A, we obtain

_A ¼ �Aþ � �Aþ �1A
3 þ �2A

2 �Aþ �3A �A2 þ �4 �A3 , ð1Þ

where we limit the expansion to the lowest order nonlinearities. In the general case, the
coefficients are complex and depend on the experimental parameters. We obtain
additional constraints on the coefficients when the impellers rotate at the same
frequency because D and Q change in different ways under the transformation R�:
D!�D,Q!Q, thus A!� �A. We conclude that, in the case of exact counter-
rotation, all the coefficients are real. Writing the equations for D and Q, we recover that
the two modes are not linearly coupled as mentioned above. More generally, the real
parts of the coefficients are even and the imaginary parts are odd functions of the
frequency difference f¼F1�F2.

Let us denote the real (resp. imaginary) parts of the coefficients with subscript r
(resp. i). In the counter-rotating case, the solution B¼ 0 is unstable to a growing dipolar
mode for �r4��r (we assume �r4 0 such that the dipolar mode bifurcates first). When
�r is increased, the quadrupolar mode also becomes linearly unstable for �r4 �r. The
linear stability analysis of the solution A¼ 0 gives the dispersion relation for the growth
rate s

s2 � 2�r sþ j�j
2 � j�j2 ¼ 0: ð2Þ

We have a stationary bifurcation for j�j ¼ j�j if �r5 0, a Hopf bifurcation for �r¼ 0 if
j�ij4 j�j4 0, and a codimension-two bifurcation for �r¼ 0 and �2

i ¼ j�j
2.

Writing A¼R exp i�, the stability of finite amplitude solutions can be studied in the
phase approximation provided the amplitude R is slaved to the phase. We assume for
simplicity that the nonlinear terms just saturate the amplitude without qualitatively
changing the dynamics. The imaginary part of the linear part of (1) gives

_� ¼ �i � �r sin 2�þ �i cos 2�: ð3Þ

The stationary solutions disappear via a saddle-node bifurcation when �2
i ¼ j�j

2 and a
limit cycle that corresponds to periodic reversals is generated. This occurs only if �i

increases faster than �i when the R� symmetry is externally broken. If j�ij4 j�ij , the
solutions remain stationary. A broken symmetry that induces j�ij much larger than j�ij

has been found as a mechanism for hemispherical dynamos (Gallet and Pétrélis 2009).
We emphasize that the location of the saddle-node bifurcation is modified when the
nonlinear terms are taken into account.

The above phase approximation breaks down in the vicinity of the codimension-two
point. Another type of bifurcation from stationary solutions to a limit cycle takes place
in that case (Gambaudo 1985, Guckenheimer and Homes 1986). It is a subcritical Hopf
bifurcation that can be easily discriminated from the previous scenario; the limit cycle
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appears with a finite period whereas the period diverges when it is generated through a
saddle-node bifurcation. Stationary and oscillatory solutions coexist in some parameter
range, thus this second scenario displays bistability. Both bifurcation types, saddle-node
and subcritical Hopf, have been reported for the reversals of the magnetic field in the
VKS experiment (Berhanu et al. 2009).

The effect of hydrodynamic fluctuations on reversals can be easily modeled by adding
some noisy component to the coefficients of equation (1). We consider the scenario of
reversals generated through a saddle-node bifurcation. Before the bifurcation, the
solutions of equation (3) correspond to mixed dipolar-quadrupolar modes. The stable
(resp. unstable) ones originate from �D (resp. �Q) when f¼ 0. These solutions are
labeled �Bs and �Bu in figure 3. When a saddle-node bifurcation occurs for a larger
value of f, the stable and unstable solutions collide by pairs and disappear (Pétrélis and
Fauve 2008). A limit cycle is generated that connects the collision point, Bc, with its
opposite.

This provides an elementary mechanism for field reversals. First, in the absence of
fluctuations, the limit cycle generated at the saddle-node bifurcation connects �Bc. This
corresponds to periodic reversals. Slightly above the bifurcation threshold, the system
spends most of the time close to the two states of opposite polarity �Bc. Second, in the
presence of fluctuations, random reversals can be obtained slightly below the saddle-
node bifurcation. Bu being very close to Bs, even a fluctuation of small intensity can
drive the system to Bu from which it can be attracted by �Bs, thus generating a reversal.
Adding a noisy component to the coefficients of equation (1), we obtain random
reversals displayed in figure 4 (left). The system spends most of the time close to the
stable fixed points �Bs. We observe in figure 4 (right) that a reversal consists of two
phases. In the first phase, the system evolves from the stable point Bs to the unstable
point Bu (in the phase space sketched in figure 3). The deterministic part of the
dynamics acts against this evolution and the fluctuations are the motor of the dynamics.

a’b

c

Q

D

a

Bs

−Bs

Bu

−Bu

Figure 3. A generic saddle-node bifurcation in a system with the B!�B invariance: below threshold,
fluctuations can drive the system against its deterministic dynamics (phase a). If the effect of fluctuations is
large enough, this generates a reversal (phases b and c). Otherwise, an excursion occurs (phase a0).
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This phase is thus slow. In the second phase, the system evolves from Bu to �Bs, the
deterministic part of the dynamics drives the system and this phase is faster.

The behaviour of the system close to Bs depends on the local flow in phase space.
Close to the saddle-node bifurcation, the position of Bs and Bu defines the slow
direction of the dynamics. If a component of Bu is smaller than the corresponding one
of Bs, that component displays an overshoot at the end of a reversal. In the opposite
case, that component will increase at the beginning of a reversal. For instance, in the
phase space sketched in figure 3, the component D decreases at the end of a reversal and
the signal displays an overshoot. The component Q increases just before a reversal.

For some fluctuations, the second phase does not connect Bu to �Bs but to Bs. It
is an aborted reversal or an excursion in the context of the geodynamo. Note that
during the initial phase, a reversal and an excursion are identical. In the second
phase, the approaches to the fixed point differ because the trajectory that links Bu

and Bs is different from the trajectory that links Bu and �Bs. In the case of figure 3,
the dipole displays an overshoot at the end of a reversal and reaches smaller values
during an excursion (see figure 4 right). By contrast the quadrupole exceeds its
quasi-stationary value at the beginning of a reversal and reaches larger values during
an excursion.

A direct numerical simulation of the dynamo generated by a flow driven in a sphere
by two counter-rotating co-axial propellers (Gissinger et al. 2010) reproduced the
main dynamical features of the VKS experiment. Reversals of the axial dipole occur
only when the propellers are rotated at different rates. When the magnetic Prandtl
number (Pm) is small enough, they involve an axial quadrupole and the dynamics of
the dipolar and quadrupolar modes during a reversal is similar to the one observed in
the experiment. Finally, although the flow in the VKS experiment strongly differs
from the one in the Earth’s core, dipolar and quadrupolar modes can be defined in
both cases (using different symmetries) and the above model can be used to
understand some features of the reversals of the Earth’s magnetic field (Pétrélis et al.
2009).

0 200 400 600

−1

−0.5

0

0.5

1

t

D

320 340 360
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Figure 4. (left) Reversals of the magnetic field modelled by (1) with an extra noise term that takes into
account the effect of the turbulent fluctuations. (right) Zoom on reversals and excursions.
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2.4. A dynamical system displaying random reversals of the magnetic field

The above model for field reversals involves a planar dynamical system that describes
the dynamics of the amplitude D (resp. Q) of the dipolar (resp. quadrupolar)
component of the magnetic field. Random reversals are obtained only when
multiplicative noise is taken into account in equation (1). A different approach is to
model random reversals in a fully deterministic way by considering a dynamical system
involving a third mode in addition to D and Q such that chaotic regimes become
possible. This has been done by taking into account a zonal velocity mode V that breaks
theR� symmetry and thus couples D and Q (Gissinger et al. 2010). The equations for D,
Q, V should satisfy the following symmetry constraints: D!�D, Q!�Q, V!V
(invariance B!�B of the MHD equations) and D!�D, Q!Q, V!�V (R�
symmetry). The second invariance should be broken when the two propellers rotate at
different frequencies. Keeping nonlinear terms up to quadratic order, we get

_D ¼ �D� VQ, ð4aÞ

_Q ¼ ��Qþ VD, ð4bÞ

_V ¼ �� VþQD: ð4cÞ

We consider that D and Q are close to their bifurcation thresholds (� and � small) but
that V is linearly damped and we take its linear damping coefficient equal to 1 by an
appropriate choice of the time scale. The coefficients of the nonlinear terms can be
taken equal to �1 by scaling the amplitudes. Their relative signs have been chosen such
that the solutions of (4) remain bounded when �4 0 and �5 0.

The dynamical system (4) with �¼ 0 occurs in many problems involving resonant
waves and has been analysed in detail (Hughes and Proctor 1990). The R� symmetry is
externally broken when � 6¼ 0. In the VKS experiment, � represents the difference in
rotation frequencies of the two propellers. A dynamical system similar to (4) has been
obtained by Nozières (1978) using drastic truncation of the MHD equations. However,
in that context both magnetic modes should be linearly damped (�5 0 and �4 0) thus
strongly modifying the dynamics.

Numerical integration of (4) displays reversals of the components D and Q of the
magnetic field for a wide range of parameters. A time recording is shown in figure 5.
The modes D and Q are linearly coupled when � 6¼ 0. The basic mechanism is thus
similar to the one previously described, but keeping the damped velocity mode V into
the system (4) is enough to get chaotic attractors in the vicinity of the �B quasi-
stationary states. Thus, the magnetic field fluctuates in the neighbourhood of one of the
two states �B when the dynamo is statistically stationary. When � is varied, the regime
involving random reversals is obtained through a crisis mechanism (Grebogi et al.
1982), i.e. when the two symmetric attractors become connected in phase space.
Compared to all previous deterministic models (see Pétrélis and Fauve 2010 for a
review), the dynamical system (4) displays dynamical and statistical properties that are
much closer to the ones observed in the VKS experiment or obtained by the direct
numerical simulations at small Pm of Gissinger et al. (2010). In particular, the mean
length of given polarity states is much longer than the duration of a reversal. In
addition, the direct recordings of D or Q do not involve the growing oscillations
characteristic of reversals displayed by the Rikitake (1958) or Lorenz (1963) systems but
absent in dynamo experiments or in direct simulations. In contrast to previous
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deterministic models, the probability density function of D is similar to the one
obtained in experiments or direct simulations.

3. Large-scale circulation over a 2D turbulent flow

3.1. Large-scale quasi-2D flows

Rapid rotation or an externally applied strong magnetic field have been known since a
long time to make flows 2D by inhibiting velocity gradients along the direction of the
rotation axis or of the magnetic field (Chandrasekhar 1961). This situation is of obvious
interest in the geophysical or astrophysical context where rotation can be important.
The properties of turbulent flows strongly differ between these nearly 2D systems and
the usual 3D ones. In 2D, it is well known that an inverse cascade tends to accumulate
energy in the largest scales of the system. Early studies of periodically driven flows
(Sommeria 1986, Tabeling et al. 1987) have shown that an array of vortices becomes
unstable when the forcing is increased and that a large-scale circulation is generated in
the whole system. This large-scale circulation is expected to display rich dynamics
because it is coupled to the smaller scale turbulent fluctuations. Both the large-scale
field and the fluctuations are therefore components of the same turbulent field, the
velocity field. This differs from the former example in which reversals involve a field
(the magnetic field) that is different from the turbulent velocity field.

3.2. Reversals of the large-scale circulation in Kolmogorov flows: experiments and
numerical simulation

We have performed an experimental study of a Kolmogorov flow in a square layer of
mercury of length L¼ 12 cm and depth a¼ 1.6 cm. This layer is placed into a vertical

2000 4000 6000 8000
−3

−2

−1

0

1

2

3

t 

Q

Figure 5. Numerical integration of the amplitude equations (4) from Gissinger et al. (2010). Time recording
of the amplitude of the quadrupolar mode for �¼ 0.119, �¼ 0.1 and �¼ 0.9.
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magnetic field up to B¼ 500G. An electric current I up to 40 A is injected in the fluid

through 36 electrodes placed on a periodic square array. This current generates a

Laplace force which drives the motion of the fluid. When the applied magnetic field is

large enough, the flow is mostly 2D. At low current, a flow made of 36 counterrotating

vortices is generated. For a large Reynolds number Re¼ (BIL2/(	a�2))1/2 and large

values of Rh¼ (aI/(B
�L2))1/2, we observe that a large-scale circulation is generated

either in the clockwise or counter-clockwise direction. When Rh is decreased, random

reversals between these two directions of rotation are generated as already observed by

Sommeria (1986). Let (x, y) be the coordinates measured from the lower left corner of

the square. We present measurements of the x component of the velocity at position

(6, 2) cm and (6, 10) cm. The velocity is measured using Vives probes and is averaged

over 2 cm. In figure 6, a time series is displayed in the regime of random reversals. The

direction of the large-scale circulation remains constant for long durations, here larger

than 1 h, and reverses in less than 100 s.
A numerical simulation of this experiment has been performed. When the magnetic

field is strong enough, the flow is almost 2D and the stream function  obeys the 2D

Navier–Stokes equation

@t� þ Jð� , Þ ¼ �
1

Rh
� þ

1

Re
�2 þ 6� sinð6�xÞ sinð6�yÞ: ð5Þ

The first term on the right-hand side is linear friction coming from the Hartmann layer

on the bottom of the cell. The second one is the viscous term, and the last one mimics

the electromagnetic forcing generated by the 6� 6 electrodes. We solved this equation

using a pseudo-spectral code with uniform time-stepping and stress-free boundary

conditions (i.e. vanishing normal velocity and tangential constraint at the boundaries).

The stream function is decomposed in the domain (x, y)2 [0; 1]2 on the basis

sinðn�xÞ sinð p�yÞð Þðn,pÞ2f1,...,Ng2 . The linear terms are computed in Fourier space, while

the nonlinear one is computed in real space. All the numerical runs described further

5000 10,000 15,000

−0.5

0

0.5

t (s)

v/
v c

Figure 6. Time series of the velocity V/Vc where Vc¼ (BI/(	a))1/2’ 4.28 cm s�1 for Rh¼ 37.7 and
Re¼ 45000. The two curves correspond to measurements located on opposite sides of the cell. The velocity
is averaged between one centimeter and three centimeters away from the lateral wall.
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were performed at Re¼ 2000 using 256 Fourier modes in each direction. We checked
convergence: doubling this number of modes does not modify the numerical solution.

The velocity field obtained from direct numerical simulations is shown in figure 7.

For weak damping coefficients, the laminar solution 7 (a) is unstable and a large-scale
flow is generated. Two states are possible and are shown in figure 7 (b, c). We note that

the forcing is invariant under the reflections with respect to the planes x¼L/2 and

y¼L/2. We call Sx (respectively Sy) these symmetries. The large-scale circulation thus
breaks the symmetry of the forcing by selecting a direction of rotation. Under a critical

value of Rh, reversals of this large-scale circulation are observed in the direct numerical
simulations. An example of time series is shown in figure 8.

3.3. A dynamical system displaying reversals of the large-scale circulation

In the direct numerical simulation it is possible to identify the large-scale structures
that are involved in the process of reversals. They can be decomposed into three

0 0.5 1 1.5 2 2.5

x 10
4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t

D

Qx

Qy

Figure 8. Time series of the amplitude of the large-scale circulation D and of two large-scale components Qx

and Qy (see definition in the text) obtained numerically for Rh¼ 65 and Re¼ 2000.

Figure 7. Stream function of the numerically computed solution of equation (5) for Re¼ 2000, Rh¼ 55,
(a) snapshot at short time, the velocity field displays the same periodicity as the forcing. (b) and (c) are two
snapshots displaying large-scale circulations of opposite signs. The large-scale flow has broken symmetries of
the forcing. Under certain conditions, the circulation reverses from one state to the other.
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main components:

. The amplitude of the large-scale circulation is denoted as D and is defined here
as the Fourier coefficient of sin(�x)sin(�y) in the decomposition of the stream
function.

. A second component, called Qx, is the part of the large-scale flow that is
quadrupolar in the x direction. It is even under Sx and odd under Sy. It can be
measured by the Fourier coefficient of  in sin(2�x)sin(�y).

. A third component, called Qy, is the part of the large-scale flow that is
quadrupolar in the y direction. It is odd under Sx and even under Sy. It can be
measured by the Fourier coefficient of  in sin(�x)sin(2�y).

We observe that reversals of D take place when Qx and Qy reach large values. In

agreement with the experiment, no overshoot is seen at the end of the reversals.
In contrast to the reversals of the magnetic field close to the dynamo onset, we cannot

invoke the proximity of a clear-cut bifurcation to justify a low order truncation.

However at low friction (high Rh), energy accumulates in the lowest Fourier mode and

the resulting global circulation displays little dynamics. When friction is increased, the

accumulation of energy in the lowest Fourier mode is reduced and one of the two next

Fourier modes increases. In order to obtain the minimal model that displays reversing

dynamics, we assume that one can keep only the three large-scale modes described

above. We note that the three components change differently under the different

symmetries of the system. As already mentioned, D and Qx are odd under Sy while Qy is

even. D and Qy are odd under Sx while Qx is even. A simple dynamical system that

verifies these symmetries is

_D ¼ ��D�QxQy ð6aÞ

_Qx ¼ Qx �QyD�Q3
x ð6bÞ

_Qy ¼ �Qy þDQx: ð6cÞ

It should come as no surprise that the equations for Qx and Qy are different. Indeed,
the forcing breaks some of the square symmetries of the container. The forcing is not

invariant to a rotation of angle �/2 around the center of the square. Note for instance

the stagnation point at the center of the cell in the laminar solution displayed in

figure 7(a) which shows that the x and y directions are not equivalent.
Compared to Hughes and Proctor (1990), the set of equations (6) contains an extra

third-order nonlinearity in the second equation. A time series is represented in figure 9

for �¼ 6 and �¼ 2.65: the large-scale circulation D reverses randomly. As in the direct

numerical simulations, the values of Qx and Qy increase during the reversals of D.
One should notice that the present problem maps onto the magnetic one in the

following way: if we replace D,Qy, and Qx, respectively, by the amplitude of the dipolar

magnetic component D, quadrupolar magnetic component Q, and equatorially-

antisymmetric velocity component V, the symmetries Sx and Sy lead to the same

constraints on the dynamical system than the invariance B!�B and the equatorial

symmetry for the magnetic field of an astrophysical object. Therefore the system of

equations (6) could describe the magnetic field of an astrophysical object as well, and

leads to reversals of the magnetic dipole with no imposed equatorial-symmetry

breaking. In this sense it is slightly different from model (2) in which the dynamics of V
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(corresponding to Qx) results from an externally imposed broken symmetry and not
from an instability of the large-scale velocity field that spontaneously breaks this
symmetry. In these low-dimensional models, the system follows chaotic trajectories that
wander in the basin of attraction associated to one polarity of the large-scale field or its
opposite. There are thus two chaotic attractors that are symmetric to each other. As in
the model described in section 2.4, reversals are generated through a crisis mechanism.
In the regime of reversals each attractor has collided with the basin of attraction of the
other one, and after a long duration the system escapes from one state toward its
opposite.

4. Large-scale circulation in turbulent Rayleigh–Bénard convection

4.1. Experiments on the dynamics of the large-scale circulation in Rayleigh–Bénard
convection

Rayleigh–Bénard convection is a canonical example of cellular instability. It is achieved
by uniformly heating from below a horizontal layer of fluid. For small temperature
difference �T across the layer of depth d, the fluid remains in a stable heat conducting
state, with a linear temperature profile and no fluid motion. However, if the fluid’s
density is a decreasing function of temperature, the thermal gradient generates a density
stratification with cold heavy fluid above warm light fluid. For sufficiently large
temperature differences, the resulting buoyancy force overcomes dissipative effects due
to kinematic viscosity, �, and heat diffusivity, �, causing less dense warmer fluid to rise
and cooler fluid to sink. When the top and bottom boundaries have a thermal
conductivity much higher than the one of the fluid, i.e. their temperatures are
homogeneous, periodic parallel convection rolls of horizontal size comparable to d,
result from the circulation of the fluid, when the Rayleigh number, Ra¼ �g�Td3/(��), is
larger than a critical value, Rac (g is the acceleration of gravity, � is the coefficient of
thermal expansion of the fluid). In the case of a large aspect ratio container (ratio of the

0 1000 2000 3000 4000 5000 6000
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Figure 9. Time series of D solution of equations (6) in a regime of reversals (�¼ 6 and �¼ 2.65).
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horizontal size L to the depth d), it has been observed by Krishnamurti and Howard
(1981) that a large-scale horizontal shear flow of horizontal size L is generated for large
enough values of Ra, roughly three orders of magnitude larger than Rac. For
convenience, most high Rayleigh number experiments have been performed in
cylindrical containers of aspect ratio one. In that case, the large-scale circulation
evolves out of the cellular structure observed at convection onset without implying a
secondary bifurcation and an associated broken symmetry. However, even in that
simple case, this large-scale circulation displays dynamics that have been first related to
flow reversals (see Ahlers et al. 2009 for a review of the early experiments and related
models). It has been realised that, although simpler for the machine shop, the
cylindrical geometry is not appropriate to study flow reversals. The convective pattern
at onset and thus the large-scale circulation for large Ra indeed break the rotational
invariance of the container. Thus, the dynamics primarily results from the azimuthal
orientation of the large-scale circulation and the flow measured locally can vanish
without necessarily implying a cessation of the whole large-scale circulation (Ahlers
et al. 2009). Both reorientations and cessations of the large-scale circulation have been
evidenced by recent direct numerical simulations (Mishra et al. 2011). They also
displayed a quadrupolar temperature distribution during flow cessations (as opposed to
the dipolar distribution resulting from the large-scale circulation). Thus, although
different mechanisms are superimposed in the dynamics of large-scale circulation in
cylindrical containers, flow cessations involve the competition between two large-scale
modes with different symmetries, in striking analogy with the mechanism of reversals of
the magnetic field proposed in 2.3.

Only a few studies of the dynamics of the large-scale circulation have been performed
in parallelepipedic containers. Liu and Zhang (2008) reported a large-scale flow in an
elongated box of aspect ratio 2.6 for Ra4 107 together with reversals but they provided
a detailed study only with freely moving nylon spheres within the flow. Another
experiment has been performed recently in a quasi-2D parallelepipedic container of
aspect ratio one, and its results have been compared to direct numerical simulations of
2D convection (Sugiyama et al. 2010). Although the authors insist on the importance
of corner flows superimposed to the large-scale diagonal circulation, a more pertinent
observation is related to the change of symmetry of the large-scale flow observed during
the reversal process. When the dipolar part of the large-scale flow vanishes, a
quadrupolar structure is clearly visible (see their figure 1(b)). We also note that earlier
2D numerical simulations (Breuer and Hansen 2009) performed in a container of aspect
ratio two also displayed the competition between two large-scale modes with different
symmetries during the reversal process. Thus, it appears that, as for reversals of the
magnetic field in the VKS experiment, reversals of the large-scale convective flow in the
quasi-2D configuration also involve the competition between two large-scale modes
with different symmetries. Another similarity between the convective and dynamo
reversals is related to their occurrence in a finite interval range of the control parameters
(Rayleigh and Prandtl numbers Ra, Pr or magnetic Reynolds numbers Rm). In both 2D
numerical simulations of convection, it has been also reported that relatively small
changes in the aspect ratio strongly modify the reversal dynamics and thresholds. This
probably results from the inhibition of the mode with quadrupolar symmetry that is
involved in the reversal process. Finally, the numerical simulations of Sugiyama et al.
(2010) show that reversals disappear when the Prandtl number of the fluid is too small
(Pr� 0.7) or too large. We will report below reversals in a cubic container of
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mercury (Pr’ 0.025). Applying a horizontal magnetic field enables to make the flow
more and more 2D by inhibiting velocity gradients along the direction of the magnetic
field (Fauve et al. 1984). We will show that this strongly affects the reversal process.

4.2. Dynamics of the large-scale circulation in a cubic container subject to a horizontal
magnetic field

We consider a cubic container of size d¼ 45mm filled with mercury of density
	¼ 13.5� 103 kgm�3, kinematic viscosity �¼ 1.12� 10�7m2 s�1, thermal diffusivity
�¼ 4.3� 10�6m2 s�1, specific heat cp¼ 138 J kg�1K�1 and coefficient of thermal
expansion �¼ 1.8� 10�4K�1. The side walls of the experiment are made of PVC
while the top and bottom ones are copper plates. Water circulation through the upper
copper plate maintains the upper temperature fixed. A constant heat flux F is imposed
at the bottom boundary. The lower plate is covered with temperature probes which
allow to determine the temperature difference between the bottom and the top plates
�T and also to identify the spatial structure of the temperature field in the experiment.
A horizontal magnetic field, B, up to 500G can be applied perpendicularly to one of the
sides of the cell. In figure 10, we display the Nusselt number Nu¼F/(	cp��Td) as a
function of the Rayleigh number. In this regime of parameters, the magnetic field has
little effect on the heat transport. For �T’ 48�C, i.e. Ra¼ 1.58� 107, the variation of
the Nusselt number is less than 4% when B is increased from 0 to 500G corresponding
to an interaction parameter, N � ð
B2=	Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=ð�gTÞ

p
, smaller than 0.2.

In the absence of magnetic field, for Ra smaller than Rar’ 4.3� 106, the
temperatures fluctuate around some constant value. In this regime, the larger scale of
the convective pattern is a single roll that fills the whole cell. This roll is expected to be
perpendicular to one of the sides of the cell and we have checked that its direction can
be rotated by tilting the cell. However, no spontaneous change in the large scales of the
temperature pattern is observed even for measurement durations larger than 24 h.

A change of behaviour is observed when Ra reaches Rar. The temperatures fluctuate
for long durations around some value but from time to time, the whole temperature
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Figure 10. (a) Nusselt number as a function of the Rayleigh number for (*): B¼ 0, (?): B¼ 100 G, (h):
B¼ 200G, (*): B varies from 0 to 500G at �T’ 48�C, (�): B varies from 0 to 325G at �T’ 35�C.
(b) Parameter space (B,�T). The blue squares correspond to stationary regimes. The red circles correspond
to reversals of the large-scale circulation. The dashed line indicates the boundary between these two regimes.
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pattern changes suddenly. Two time series of the temperature measured at opposite

positions on the diagonal of the cell, 40mm away from the corners, are displayed in

figure 11. These large-scale modifications are separated by very long-time intervals, so

that statistical properties can only be estimated. We have measured that the mean

duration between these events decreases from more than 3 hrs to around 30 minutes

when �T changes from 13.4 to 27.7�C.
Although the time series share common features with the ones of the reversals

observed in the VKS experiment (figure 2) or in the 2D turbulent Kolmogorov flow

(figure 6), we note that the evolution is more complicated: there are more than two

stationary states and we can identify events where one of the temperatures changes with

no noticeable evolution of the other one. Careful inspection of the evolution of several

probes shows that the modifications of the large scales of the flow are associated to a

rotation of the large-scale roll. This behaviour can be identified by considering

the horizontal temperature gradients. In figure 12, we plot a cut in phase space
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Figure 11. Time series of the temperature measured at two opposite corners of the lower plate for B¼ 0,
�T¼ 15.4�C and Ra¼ 5.13� 106. Measurement rate is 1/3Hz and a sliding average over 10 measurements is
performed to reduce fluctuations.
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Figure 12. Projection of the phase space obtained from temperature differences: Ta�Td and Ta�Tb. (a) In
the absence of applied magnetic field, same data as figure 11. (b) For �T¼ 48�C, a magnetic field B¼ 375G is
applied parallel to the direction a� b.
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(Ta�Tb,Ta�Td) where Ta�Tb and Ta�Td are temperature differences measured
along two perpendicular sides of the cell. The trajectories in phase space are roughly
located along a circle. Between the changes of direction, the system fluctuates close to
one of the four states that correspond to the roll rotation vector pointing towards one
of the four lateral sides of the cell. Indeed, if a roll is aligned with the line a� b, then
Ta�Tb is roughly zero and the direction of rotation of the roll is given by the sign of
Ta�Td. The trajectory in phase space shows that the roll evolves from being
perpendicular to one of the sides to being perpendicular to one of the two neighbouring
sides. Its direction thus changes by �90�. In other words, the large-scale flow displays
random changes of direction and reversals are obtained by the sequel of two changes of
orientation in the same direction. This results in a rotation of 180� that amounts to
change both the velocity and temperature perturbation fields to their opposite. Note,
however, that in contrast to convection in a cylindrical container where a continuous
rotation of the roll axis is possible, it is more pertinent here to understand the reversal
dynamics as resulting from the competition of two perpendicular rolls. This emphasizes
the analogy with the previous examples of sections 2 and 3 where a few large-scale
modes are involved in the mechanism of reversals.

The obtained phase space clearly displays the four-fold symmetry of the experiment.
This square symmetry can be broken applying a horizontal magnetic field.
Measurements have been performed in which a field is applied parallel to the line
joining a and b. In the parameter space displayed in figure 10(b), we observe that
reversals disappear when the magnetic field is large enough. When reversals are
observed in the presence of an applied magnetic field, the trajectories in phase space are
modified. As displayed in figure 12(b), the two states corresponding to rolls
perpendicular to the field (Ta�Td’ 0) have lost stability: the system spends only a
short time in these states. By contrast the system spends long durations in the vicinity of
four new states. These states correspond to Ta�Tb’�(Ta�Td) which in physical
space means that a roll is aligned along the diagonal of the square. These observations
result from the applied magnetic field that reduces the variations of the velocity along
the direction of the field. The large-scale dynamics is thus modified by the following two
effects: first, the rolls are preferably aligned along the magnetic field and rolls
perpendicular to the field are expected to lose their stability; second, turbulence is
reduced because fluctuations along the direction of the field are damped. These two
effects explain that the pair of solutions perpendicular to the field turns unstable and
ultimately that large-scale dynamics is suppressed.

From the point of view of low-dimensional modelling, figure 12 can be easily
understood as phase dynamics. Indeed, in a cylindrical container, the system has
rotational invariance. For a finite system, the axis of the large-scale roll rotates at no
cost. If we assume that this rotational invariance is only weakly broken by the square
geometry, the dynamics will still consist of rotations of the large-scale roll. The system is
thus described by an equation for the orientation angle of the roll axis. The regime with
B¼ 0 corresponds to a system with four stable fixed points. These stable points are
located between four unstable states which are saddles (figure 13(a)). When a magnetic
field is applied, a pair of stable solutions (transverse rolls) loses its stability. The four
new states (diagonal rolls) that are observed can be described as two pairs of stable
states that have been generated from a pitchfork bifurcation of the transverse rolls. The
resulting phase space contains six nodes and, in-between, six saddles (figure 13(b)).
A way to model the random dynamics of the large-scale flow is to consider that
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turbulent fluctuations act as noise that triggers transitions from one state to one of its
neighbours.

As in the case of reversals of the magnetic field, the large-scale flow does not change
sign directly under the influence of turbulent fluctuations (plumes, etc.). This transition
always involves another (or several other) large-scale mode. In the case of square
symmetry, perpendicular rolls are involved. When the square symmetry is broken by an
external magnetic field, more complex mixed states are involved in the reversal process.
For the Prandtl number of mercury, reversals are not observed above a critical value of
the magnetic field. Finally, we note that the time series do not display a clear overshoot
at the end of the reversals.

5. Discussion and conclusion

We have presented three examples of turbulent flows in which a field generated at large
scale reverses. Some properties are common to the three systems. In all cases the large-
scale field breaks a symmetry of the forcing and reversals allow the system to
statistically recover this symmetry.

A clear separation of time scales exists between the duration of a reversal and the
waiting time between reversals. Indeed, random reversals are rare events that are
initiated when the system escapes from the basin of attraction of a fixed point. Once this
phase has been completed, the evolution is fast because it does not require to reach a
rarely visited domain in phase space.

During a reversal the whole field does not vanish. In particular, it is possible to
identify large-scale structures that play a role in the dynamics and are visited by the
system.

The three systems differ from the point of view of symmetries and in the way they are
broken. The magnetic field and the large-scale circulation have two stable states while
the large-scale roll in our convection experiment has four or six stable states. In the case
of the experimental dynamo, one symmetry of the forcing is externally broken by

(a) (b)

Figure 13. Phase space displaying stable solutions (h black) and unstable solutions (* red). (a) The four-
fold symmetry is the one of the experiment in the absence of magnetic field. (b) In the case of an applied
magnetic field, the two formerly stable solutions representing rolls perpendicular to the field are unstable and
two pairs of new stable solutions (the diagonal rolls) are formed through a pitchfork bifurcation. Considering
that turbulent fluctuations allow to evolve from a stable solution toward its neighbouring ones, both phase
spaces represented in figure 12 can be reconstructed.
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rotating the two disks at different speeds. In the other two systems, one symmetry is
spontaneously broken and this selects the direction of rotation of the roll’s axis or the
sign of the transitional two cell flow. These symmetry properties are responsible for the
differences in shape of the reversals observed in the three systems. In particular,
overshoots are observed only for some systems.

This feature can be understood in the case where the dynamics results from the
competition between two modes of opposite symmetries, say D and Q. Then the
evolution at the end of the reversals depends on whether the symmetry is broken or not.
In the former case, the phase space in the vicinity of one of the stationary states has the
form displayed in figure 14(a). The stationary state is a mixed mode. It is reached by
trajectories that tend toward the less attracting direction (small arrow). The generic
behaviour is then that the stationary value of D is exceeded either at the end or at the
beginning of a reversal. The former case leads to an overshoot at the end of the reversals
and is observed for the magnetic field in the VKS experiment as well as in the associated
low-dimensional models (section 2). In contrast, when the symmetry is not broken and
when the stationary state is a pure mode, say on the Q¼ 0 axis, the phase space has the
shape of figure 14(b). Studying the linear stability close to this state and taking into
account the opposite symmetries of D and Q, the attracting directions are found parallel
to the D¼ 0 axis or to the Q¼ 0 one. When the less attracting direction is the former
one, the stationary state is reached by trajectories with constant D. The evolution in the
vicinity of this state thus differs from the case where the symmetry is broken. In
particular, the local behaviour close to the stationary state does not enforce the
existence of an overshoot. This explains the shape of the reversals of the large-scale roll
in Rayleigh–Bénard convection (section 4). Nevertheless, we point out that the phase
space displayed in figure 14(b) is relevant only for the behaviour close to the stationary
state for a system involving two modes. In particular, even if the symmetry is not
externally broken, overshoots can be observed at the end of the reversals either because
the dynamics involves more modes or because of the structure of the phase space far
from the fixed point. For the reversals of the large-scale circulation generated over a
Kolmogorov flow (section 3), we observe both types of reversals. For instance, in the
direct numerical simulations reported here, overshoots are not observed in the time
series of the amplitude of the large-scale circulation when a 6� 6 vortex array is forced.
In contrast, in the case of 2� 4 vortices (not presented here), the reversals terminate
with an overshoot. This last example shows that when the symmetry is not externally

(a) (b)

Figure 14. Phase space when two modes of opposite symmetries are involved. The smallest arrows are the
eigenvectors of largest eigenvalue which define the less attracting direction. (a) When the symmetry is broken,
the stationary state is a mixed mode and the asymptotic trajectories explore large values of D at the end of the
reversal. (b) When the symmetry is not broken and the stationary state is a pure mode, the attracting
directions are parallel to the D¼ 0 and Q¼ 0 axis. The trajectories are not enforced to explore large values
of D.
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broken, no prediction can be made for the existence of an overshoot, whereas when the

symmetry is broken, the generic behaviour is that the reversals display an overshoot.
The geometry of the large-scale dynamics being governed by a low-dimensional

dynamical system, we expect that reversals can also occur in laminar flows. This is

indeed the case. Direct simulations of axisymmetric Rayleigh–Bénard convection in a

cylindrical geometry (Tuckerman and Barkley 1988) as well as the weakly nonlinear

analysis of the same system (Siggers 2003), have shown that the steady state observed

above the convection onset can bifurcate to a travelling wave in which the number of

rolls oscillates between two adjacent values. It has been emphasized that this transition

to periodic behaviour is a symmetry-restoring bifurcation, as the states in the second

half of the limit cycle are related to those of the first half by changing the sign of the

velocity field (and accordingly of the temperature perturbation). A travelling spatially

periodic pattern is indeed the simplest way to generate reversals of the flow measured at

some location. This has been observed in direct numerical simulations of Rayleigh–

Bénard convection with horizontal periodic boundary conditions (Paul et al. 2010). In

that case, randomly occurring lateral shifts of the roll pattern by half a wavelength, lead

to global flow reversals of the convective motion. These events are also observed in a

finite interval range of Rayleigh number (although Ra is much smaller than in the

presence of lateral boundaries). At first sight, one may believe that the presence of

lateral boundaries deeply modifies the bifurcation mechanism leading to flow reversals

but it is worth considering this analogy further. Drift instabilities of cellular patterns

have been indeed observed in various experiments, such as Couette flow between two

horizontal coaxial cylinders with a partly filled gap (Mutabazi et al. 1988), film draining

(Rabaud et al. 1990), directional crystal growth (Simon et al. 1988), Faraday waves

(Douady et al. 1989), etc. Some of them result from resonant 1:2 wave numbers

(Proctor and Jones 1988). More generally, they occur when a secondary instability

spontaneously breaks the reflection symmetry of the pattern which then travels in the

direction related to this asymmetry (Coullet et al. 1989, Fauve et al. 1991, Caroli et al.

1992). If the reflection symmetry, say x!�x, is externally broken, then one generically

expects a spatially periodic pattern that breaks the translational invariance along the

x-axis to drift along the x-axis at onset when the domain is infinite. This is easily

understood in the framework of amplitude equations that amounts to describe a

periodic pattern of wave number k in the form A(t)exp ikxþ c.c.þ 	 	 	. A(t) is a complex

amplitude, c.c stands for the complex conjugate of the previous term and the dots

represent higher order terms in the vicinity of the bifurcation threshold. It is well known

that the form of the equation for _A in series of successive powers of A and �A (the

complex conjugate of A), results from the broken symmetries at the instability onset. If

the system is invariant under the transformation A!�A, this equation, up to leading

order nonlinear terms, is identical to (1), where all the coefficients are complex numbers.

If the system is translationally invariant along the x-axis, the amplitude equation should

be invariant to a rotation in the complex plane, A!A exp i�, where � is an arbitrary

phase; thus �¼ �1¼ �3¼ �4¼ 0. If the system has parity invariance, x!�x, which

implies the invariance A! �A for the amplitude equation, then all the coefficients should

be real. Thus, we get the usual amplitude equation that describes the stationary

bifurcation of a homogeneous periodic pattern,

_A ¼ �rAþ �2rjAj
2, ð7Þ

Reversals of a large-scale field 489

D
ow

nl
oa

de
d 

by
 [

E
co

le
 N

or
m

al
e 

Su
pe

ri
eu

re
],

 [
S.

 F
au

ve
] 

at
 0

2:
34

 2
0 

Ju
ly

 2
01

2 



where all the coefficients are real. When the parity invariance is externally broken, these
coefficients generically have non-zero imaginary parts. When the imaginary part of �,
say �i, is non-zero, then the pattern is generated through a Hopf bifurcation and is thus
a travelling wave that leads to periodic reversals of the flow at a given location. When
the lateral boundaries are taken into account, translational invariance is externally
broken and the leading order additional term that should be considered is � �A. This new
term indeed tends to quench the phase of the pattern. The analysis is similar to the one
in subsection 2.3. Two types of transition from a stationary pattern to travelling waves
exist: one through a saddle-node bifurcation and the other through a subcritical Hopf
bifurcation in the vicinity of the codimension-two point. Both bifurcation types, saddle-
node and subcritical Hopf, have been reported for the axisymmetric convection
problem (Siggers 2003) for which the externally broken reflection symmetry is related to
the curvature of the rolls.

As mentioned above, drift bifurcations of cellular patterns also occur in a parity
invariant system provided the reflection symmetry is spontaneously broken through a
secondary bifurcation. This completes the analogy between drifting patterns in laminar
flows and reversals of large-scale fields in the presence of turbulent fluctuations that can
also occur as a result of an externally or a spontaneously broken symmetry.

In all the cases studied here, reversals occur through the connection in phase space
between two solutions of opposite polarities and involve at least two large-scale modes.
Small scale turbulent fluctuations thus do not play a major role in the geometry of
reversals. They can of course trigger random reversals, for instance below a saddle-node
bifurcation to a limit cycle. However, very similar random behaviours can be obtained
with deterministic models involving three large-scale modes, so that it would not be so
easy to determine the source of randomness in a natural system displaying reversals.
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