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We show that electric motors and dynamos can be used to illustrate most elementary instabilities or

bifurcations discussed in courses on nonlinear oscillators and dynamical systems. These examples

are easier to understand and display a richer behavior than the ones commonly used from

mechanics, electronics, hydrodynamics, lasers, chemical reactions, and population dynamics. In

particular, an electric motor driven by a dynamo can display stationary, Hopf, and codimension-

two bifurcations by tuning the driving speed of the dynamo and the electric current in the stator of

the electric motor. When the dynamo is driven at constant torque instead of constant rotation rate,

chaotic reversals of the generated current and of the angular rotation of the motor are observed.

Simple deterministic models are presented which capture the observed dynamical regimes. VC 2012

American Association of Physics Teachers.

[DOI: 10.1119/1.3664605]

I. INTRODUCTION

Many textbooks on instabilities and bifurcation phenom-
ena have been published since the early 1980s when chaos
and more generally nonlinear physics became fashionable.
Most of these textbooks introduce these subjects from the
point of view of applied mathematics,1–4 and primarily dis-
cuss the solutions of nonlinear differential equations. Some
of them put more emphasis on physical and engineering
examples or on analogies between instabilities and phase
transitions.5,6 Examples of instabilities in mechanical or
electromechanical systems, electronics, feedback loops, can
be also found in the earlier literature.7 However, most simple
examples concern stationary instabilities. It is more difficult
to find simple illustrations of an oscillatory instability (a
Hopf bifurcation) or a codimension-two bifurcation, that is, a
situation in which two different instabilities are in compe-
tition. Electronic oscillators provide good examples of os-
cillatory instabilities,5,7 but require some knowledge of
electronics which is becoming less common among physics
students. Oscillatory chemical reactions are sometimes con-
sidered,8 but they are studied using ad hoc models and quan-
titative experiments are difficult. Hydrodynamic instabilities
can display oscillatory behavior,9 but their description
involves lengthy calculations and cannot be used as simple
illustrative examples.

The generation of electricity from mechanical work using
a dynamo or the reverse process using a motor is usually ana-
lyzed by focusing on stationary regimes as achieved in the
common daily applications of electromagnetic machines
(see, for example, Refs. 10–14). We will show that a dynamo
driving an electric motor can display both stationary and os-
cillatory instabilities by changing parameters. In Sec. II, we
consider the simplest dynamo model, the Bullard dynamo,
driving a Faraday disk used as a motor. This example
requires only some elementary knowledge of electromagnet-
ism and illustrates stationary, Hopf, and codimension-two

bifurcations. It also displays chaotic regimes. However, the
experimental realization of a Bullard dynamo cannot be eas-
ily achieved. We show in Sec. III that a low cost universal
motor can be used to perform a simple study of the dynamo
effect. The model presented in Sec. IV shows how the satura-
tion mechanism can lead to supercritical or subcritical sta-
tionary bifurcations. In Sec. V, we show how this dynamo
can be used to drive a similar motor. Depending on the elec-
tric current in the stator, this device either displays a station-
ary or oscillatory regime. In the latter, both the current
generated by the dynamo and the angular rotation speed of
the motor reverse periodically. If the dynamo is driven at
constant torque instead of constant velocity, these reversals
can be chaotic.

II. THE FARADAY DISK AND THE BULLARD

DYNAMO

A. A stationary bifurcation illustrated by the Bullard
dynamo

The generation of an electric current from mechanical
work is a common process. It is straightforward to generate
an electric current by rotating a conductor in an external mag-
netic field, but to do so requires a pre-existing current or a
permanent magnet. Finding how to convert mechanical power
into electricity without the aid of permanent magnetism or
an externally imposed field was a great achievement by
Siemens, Wheatstone, and others at the end of the nineteenth
century.15 It is not always emphasized that this transformation
of mechanical work into electromagnetic energy relies on an
instability mechanism, as we will discuss in the following.

We will first illustrate this process using a simple example
which does not require prior knowledge of dynamos and
electric motors. We consider a conducting disk of radius a in
an externally applied magnetic field ~B0 [see Fig. 1(a)]. This
arrangement is called a Faraday disk. The electromotive
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force E between the points A and P can be easily calculated
from the law of induction

E ¼
ð

AP

ð~X�~rÞ � ~B0

h i
� d~r ¼ 1

2
Xa2B0; (1)

and generates a current I ¼ E=R in the circuit of resistance
R. Is it possible to use this current to generate the magnetic
field ~B0? This question might seem strange, but leads to a
typical instability problem. The answer is yes if the geometry
of the circuit is such that a perturbation of the current gener-
ates a magnetic field which amplifies the current by electro-
magnetic induction. The simplest way to achieve self-
generation of a current or a magnetic field is the Bullard
dynamo displayed in Fig. 1(a). Ohm’s law gives

L
dI

dt
þ RI ¼ E ¼ MXI; (2)

where L is the inductance of the circuit and M is the mutual
inductance between the wire and the disk. From Eq. (1) it
follows that E is proportional to X and I, which generates the
magnetic field B.

By using Eq. (2), the stability analysis of the solution I¼ 0
(corresponding to B¼ 0) is straightforward. The current I
and thus the magnetic field B are exponentially amplified if
X>Xc¼R=M. The self-generation of current depends on
the sign of the rotation rate. This result is not surprising
because the wire breaks the mirror symmetry with respect to
any plane containing the axis of rotation. The direction of

winding of the wire gives the sign of M, and thus determines
the sign of X for self-generation.

We have obtained the condition for the onset of dynamo
action. For a rotation rate greater than Xc, Eq. (2) implies
that the current is exponentially growing. This process
should stop at some stage as shown by the equation for the
angular rotation rate

J
dX
dt
¼ C� kX�M I2; (3)

where J is the moment of inertia of the disk, C is the torque
driving the disk, and the mechanical friction torque is
assumed to be proportional to the rotation rate (k is con-
stant). The last term on the right-hand side of Eq. (3) results
from the Lorentz force generated by the magnetic field ~B act-
ing on the current density~j in the diskð

~r � ð~j� ~BÞ d3r ¼ M I2ẑ; (4)

where ẑ is normal to the plane of the disk. This force is oppo-
site to the motion of the disk and is proportional to I2.

It can be easily checked that the proportionality constant
in Eq. (4) is M by looking at the energy budget. We multiply
Eq. (2) by I and Eq. (3) by X, add the results, and obtain

d

dt
ðJX2 þ LI2Þ=2 ¼ ðC� kXÞX� RI2: (5)

In a stationary regime the power of the motor is dissipated
by mechanical losses and Joule heating. The two contribu-
tions proportional to XI2 have to cancel to have energy con-
servation in the absence of dissipative mechanisms and
forcing. The growth of the current is bounded by the avail-
able mechanical power. The stationary solutions of Eqs. (2)
and (3) are I¼ 0 and X¼C=k if C<Cc¼ kR=M. If C>Cc,
we have X¼Xc and I2¼ (C�Cc)=M.

In this simple example there is a stationary bifurcation for
C¼Cc. The broken symmetry at the instability onset is the
B!�B symmetry or the I!� I symmetry of Eqs. (2) and
(3). Although the bifurcated branches of the solution for I for
C>Cc display the usual behavior, that is, the growth of I
proportional to the square-root of the distance to criticality,
X is constant in this regime because we have neglected the
possible nonlinear saturation mechanisms (for example, the
dependence of L or M on B) in Eq. (2). As we will discuss
this behavior does not exist for realistic dynamos and electric
motors.

B. A Bullard dynamo driving a Faraday disk: Hopf and
codimension-two bifurcations

We now use the electrical current provided by the Bullard
dynamo to drive a Faraday disk working as a motor (see
Fig. 2). We first write the governing equations for the current
I and the rotation rate X2 of the dynamo. In addition to the
effects described in Eq. (2), we have to take into account the
back electromotive force of the Faraday disk which is equal
to �aB0X2 where a¼ a2=2. The Faraday disk is driven by
the torque of the Lorentz force which is proportional to B0

and I, with the constant of proportionality equal to a as can
be found by using energy conservation. We obtain

L
dI

dt
¼ ðMX1 � RÞI � aB0X2 (6)Fig. 1. (a) Sketch of the Faraday inductor. (b) Sketch of the Bullard

dynamo.
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J
dX2

dt
¼ aB0I � kX2: (7)

Equation (3) for X1 is unchanged.
We first assume that X1 is constant and perform a linear

stability analysis of the solution I¼ 0. We look for solutions
proportional to est for I and X2 and obtain the characteristic
polynomial for s from Eqs. (6) and (7),

JL s2þ ðkLþ JR� JMX1Þsþ kðR�MX1Þ þ ðaB0Þ2 ¼ 0:

(8)

Although the calculation of the roots of this polynomial is
straightforward, it is easier to discuss the nature of the bifur-
cations by considering when the coefficients of the polyno-
mial vanish.

A stationary instability occurs when the constant term in s
vanishes, that is, X1¼X1c¼R=Mþ (aB0)2=kM, provided
that the coefficient of s is positive. This solution requires that
(aB0)2< k2L=J. Thus, when the external magnetic field B0 is
small enough, the nature of the bifurcation of the solution
I¼ 0 is unchanged compared to the Bullard dynamo alone. It
remains a stationary bifurcation.

If the coefficient of the term proportional to s vanishes first
when X1 is increased, we obtain two pure imaginary solutions
s¼6ix0 provided that the constant term in s is positive, that
is, (aB0)2> k2L=J. In this case the unstable mode is oscillatory
with a pulsation x0 and results from a Hopf bifurcation. Thus,
for B0 sufficiently large, I and X2 grow in an oscillatory fash-
ion. The amplitude of this growing oscillation saturates when
Eq. (3) is taken into account instead of assuming X1 constant,
and the system converges to a limit cycle. We thus find sur-
prising behavior when the current provided by a dynamo
drives a similar electric motor16—the current and the angular
velocity of the motor display periodic reversals.

There is a point in the two-parameter space (X1, B0) for which
the stationary and the oscillatory instability occur concomitantly
when both the term proportional to s and the one independent of
s simultaneously vanish, that is, when (aB0)

2¼ k2L=J and
X1¼R=Mþ kL=JM. This case is called a codimension-two
bifurcation point.2,3 Rich dynamics occur in its vicinity includ-
ing chaotic regimes if Eq. (3) is also taken into account.

III. DYNAMO EXPERIMENTS USING UNIVERSAL

MOTORS

We use two commercial universal motors of the type used
in washing machines. These motors contain two coils

wounded around the polar pieces of the stator, a ferromag-
netic structure. When a current circulates through these coils,
a magnetic field is produced in the space between the poles,
where a cylindrical ferromagnetic structure can rotate. This
component, the armature, contains a set of coils whose termi-
nals are connected to the copper segments of a commutator,
which rotates along with the armature. The electrical contact
between the coils and the external circuit is made through
non-rotating brushes in sliding contact with the commutator.
The function of the commutator and brushes is to maintain a
nearly constant distribution of currents in the armature with
respect to the poles of the stator, no matter the angular posi-
tion of the armature. A description of this type of motor for
non-specialists can be found in Ref. 17.

The armature, or rotor, plays the same role as the disk in
the Bullard dynamo, and the stator plays the role of the coil.
To make this analogy explicit, we introduce a simplified ver-
sion of the evolution equation of the motor. An important
term is the magnetic flux /(Is) created in the rotor by the sta-
tor current, Is. When the armature rotates at angular velocity
X, a voltage XU(Is), with U(Is)¼K/(Is), is generated between
the brushes. The constant factor K takes into account the num-
ber of turns in the coils and the geometry of the magnetic cir-
cuit. For simplicity, we call U(Is) the magnetic flux.

If an angular speed X is imposed to the rotor and a resistor
is externally connected between the brushes, the current
satisfies

L
dI

dt
¼ XUðIsÞ � RI; (9)

where L is the total inductance of the coils, which for sim-
plicity we consider constant, and R is the total resistance of
the circuit. If we consider that the current in the rotor is
injected in the stator, so that Is¼ I, and if we assume that U
is linear in the current, we recover Eq. (2) for the current in
the Bullard dynamo.

The mechanical equation for the rotor is

J
dX1

dt
¼ Ca � IUðIsÞ; (10)

where Ca is the sum of the friction torque and the externally
applied torque. As discussed for the Bullard dynamo, the
term IU(Is) can be obtained using conservation of energy.
Equation (10) follows from the fact that the power of the
electromotive force I�XU(Is) is equal in magnitude to the
power of the Lorentz force �X� IU(Is).

Some of these quantities are easily measured. The resist-
ance of the rotor is of the order of 5X, and the resistance of
the stator is approximately 3X. The inductance of the rotor is
20 mH and the inductance of the stator is 70 mH. The value
of U can be experimentally determined by feeding a current
Is to the stator and measuring the rotor open circuit voltage
DV as a function of X. By using DV¼XU (Is), we determine
U (see Fig. 3). A simple model of its complex behavior
which neglects hysteresis is

UðIÞ ¼ f0 tanhðI=I0Þ: (11)

Although Eq. (11) implies that the inductance L in Eq. (9)
is a function of the current, we assume that it is constant,
which introduces no qualitative changes in the dynamics. To
determine J, we fix the value of Is and apply a periodic

Fig. 2. The current provided by a Bullard dynamo is used to drive a Faraday

disk in the external magnetic field B0.
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current I with angular frequency x to the rotor. By perform-
ing measurements at different values of x, we can calculate
J from J¼U(Is)r(I)=(r(X1)x), where r(I) denotes the stand-
ard deviation. This procedure gives J ’ 1:38� 10�4 kg m2.

Note that the resistance of the rotor depends strongly on
the contact with the brushes. After running the motor for a
while, this resistance can be much different from the one
measured at the beginning of the experiment. Frequent
cleaning of the commutator improves the reproducibility of
the measurements.

IV. GENERATION OF ELECTRIC CURRENT FROM

THE DYNAMO INSTABILITY OF A MOTOR

A. Dynamo operated at fixed velocity

Given the properties of the motor, we now describe its use
as a dynamo. The stator, the rotor, and a load resistance R
are connected in series. The rotor is put into motion by
another motor. We consider two possible ways to operate the
dynamo by either fixing its velocity or the applied torque.

In Fig. 4, we display the evolution of I as a function of X
when the velocity is controlled and slowly varied from 0 to
its maximum value and back. For increasing X, we observe a
sharp transition from a small current to a larger one. A
decrease of X smoothly reduces I to small values.

The bifurcation is somewhat surprising. The simple model
given by Eqs. (9) and (11) predicts a bifurcation for the criti-
cal value Xc¼RI0=f0. The system bifurcates with no hystere-
sis from I¼ 0 for X�Xc to I / 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� Xc

p
for X�Xc. The

disagreement between this model and the experimental
observations is due to the complicated relation between U,
Is, and the history of the system. If we assume a stationary
solution of Eq. (9), RI=X provides a measure of U independ-
ent of the one presented in Sec. III (see the inset of Fig. 3).
We observe that the flux varies slightly depending on
whether X is increased or decreased, a feature that traces
back to the properties of the ferromagnetic material of which
the motor is made.

To understand how the flux affects the bifurcation dia-
gram, we note that the stationary values of the current gener-
ated in the dynamo can be determined graphically by the

intersection between U(I) and RI=X, whose slope varies
from þ1 to 0 as X increases. The precise shape of U is re-
sponsible for the form of the bifurcation diagram. For low
rotation rates, the existing remanent flux, U(Is¼ 0)> 0, is re-
sponsible for the imperfectness of the bifurcation, that is, the
current does not exactly vanish before the startup of the
dynamo. As I increases, U(I) has an inflection point: its slope
initially increases with I and then decreases due to the satura-
tion of iron. This behavior implies that U(I)¼ kI may have
more than one solution. For a certain value of k, that is, of
R=X, two solutions are equal and disappear for larger X.
This change in the number of solutions results from a saddle-
node bifurcation which is responsible for the discontinuous
increase of I when the dynamo starts.

The flux for decreasing values of I is a convex positive
function. Therefore only one solution of U(I)¼ kI exists, and
its value decreases continuously as X decreases. The bifurca-
tion can be described as an imperfect pitchfork with
I / 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� Xc

p
for X�Xc. For decreasing X, I connects

with the branch corresponding to a small value due to the re-
manent magnetization.

B. Dynamo operated at fixed torque

The dynamo can also be operated by controlling the
applied torque Ca. We apply a ramp of increasing torque fol-
lowed by a ramp of decreasing torque and show the bifurca-
tion diagram as a function of Ca in Fig. 5. We see that the
transition is continuous and displays the scaling of a usual
pitchfork bifurcation.

In Fig. 6, we display the different terms involved in
Eq. (10). For a small applied torque, the torque of the Lor-
entz force IU(I) vanishes and the torque of the applied force
is balanced by friction and the inertia of the rotor. Once the
dynamo starts and for Ca larger than a critical torque Ca,c,
the torque of the Lorentz force increases and roughly balan-
ces the excess of torque Ca�Ca,c.

The nature of the bifurcation depends on whether X or Ca

is the control parameter. To explain this difference, consider
the asymptotic expression of the flux: U ’ U0 I þ a I3ð Þ with
a> 0, which is applicable for small I if the flux is not con-
vex. If X is the control parameter, the stationary solutions
are I¼ 0 or X ¼ RI=U Ið Þ ’ R 1� aI2ð Þ=U0. If we let

Fig. 3. Magnetic flux U measured at the rotor as a function of the current in

the stator. The thin line is obtained by applying a fixed current at the stator

and measuring the voltage at the rotor. The thick line is the model in

Eq. (11) with I0¼ 1.8 A and f0¼ 0.0185. In the inset, U is displayed as a

thin line together with the flux (thick lines) obtained from the time series of

Fig. 4, assuming a stationary solution for Eq. (9).

Fig. 4. Current generated in a circuit by a dynamo with resistance R¼ 6X
and R¼ 12X. The angular velocity X of the dynamo is increased from 0 to

2900 rpm (lower branch) and then decreased to 0 (upper branch) for a total

duration of 300 s. Three cycles are present (almost not discernable).
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Xc¼RU0, we obtain the pair of solutions I2¼�(X�Xc)=
(aXc). These solutions exist for X<Xc which indicates that
the bifurcation is subcritical.

If we assume that Ca is the control parameter and assume,
for simplicity, that the fluid friction term kX slows down
the rotor, the stationary solutions satisfy Ca¼ kXþ IU(I)
and XU(I)¼RI. Thus Ca ¼ I kR=Uð Þ þ U½ � ’ kR=U0

þ I2 1� akR=U0ð Þ. If the coefficient of I2 is positive, the
bifurcation is supercritical. We denote the critical torque by
Ca,c¼ kR=U0 and obtain I / 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca � Ca;c

p
. The bifurcation

diagram of this dynamo shows that the nature of a bifurca-
tion (supercritical versus subcritical) depends on the choice
of control parameter.

The stator is subject to a frictional torque which involves
both solid and fluid components. By applying a fixed torque
to the rotor, it is possible to estimate the significance of these
effects. For the motors we used, these quantities depend
on several parameters, including the mechanical contact at
the brushes and may change during the experiment. For
the simplified low-dimensional models that we will intro-
duce in what follows, we assume that the applied torque

compensates for the solid friction term, and we will not
model the effects of the difference between static and
dynamic frictions.

V. DYNAMICAL REGIMES OF A DYNAMO

DRIVING A MOTOR

A. Fixed velocity: A codimension-two bifurcation

We now consider a motor which works as a dynamo and
is connected in series with a second motor. In the latter, the
stator current Is is fixed and has no electrical contact with the
rotor. When the dynamo is on, it generates a current which
circulates in the rotor of the motor and puts it into motion.

We fixed the stator current Is and varied the angular veloc-
ity X1 of the dynamo. For low Is and large values of X1 a sta-
tionary regime is observed: the dynamo generates a current I
and the motor rotates at angular frequency X2 with I and X2

nearly constant. When Is is large, we observe a different re-
gime. For large X1, the system oscillates. In Fig. 7, we dis-
play time series of the dynamo current and the motor angular
velocity X2. The two signals are out of phase: a positive cur-
rent accelerates X2 and a large X2 reduces I. These opposite
effects are the cause of the observed oscillation.

The simplified equations for the evolution of the system in
which these two effects appear in the terms proportional to
U(Is) are

L
dI

dt
¼ X1UðIÞ � RI � X2UðIsÞ ; (12)

J
dX2

dt
¼ IUðIsÞ � kX2: (13)

We recover the equations discussed in Sec. II if U is assumed
to be linear in I. The period of oscillation T0 slightly above
threshold is displayed in Fig. 8. Its behavior is of the form
T�2

0 / Is � Isc, where Isc is the critical current above which
the oscillation is observed, its pulsation being given by the
imaginary part of the solution of Eq. (8).

We note that as for a single dynamo, the bifurcation
depends on how the experiment is performed. In particular,
the values of the thresholds depend on whether X1 is
decreased or increased.

Fig. 5. Square of the current as a function of applied torque. The scaling of

a usual pitchfork bifurcation is recovered, that is, I2 ! Ca�Ca,c close to

threshold.

Fig. 6. Time series of the applied torque Ca (medium), the torque of the Lor-

entz force IU(I) (thick), and the difference between them Ca� IU(I) (thin).

The units of the torque are in N m. A varying torque is applied. Once the

dynamo is on, the excess of torque is balanced by the torque of the Lorentz

force.

Fig. 7. Time series of the current I (thick) and the angular velocity X2 (thin)

of the motor in the oscillatory regime for Is¼ 0.7 A and X1 slightly above

the threshold of the oscillatory regime.
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B. Fixed torque: Chaotic regimes

When the system is operated at fixed dynamo velocity, it
is described by two degrees of freedom, I and X2, so that the
phase space is two-dimensional. In this case dynamical sys-
tems theory states that stationary or oscillatory solutions are
the generic behaviors,3 and no low-dimensional chaos is
expected. The situation is different when the dynamo is
operated at fixed torque. The angular velocity becomes an
additional degree of freedom and phase space is now three-
dimensional.

The parameter space, displayed in Fig. 9 is very rich. A
transition to a regime of a time-independent dynamo is
observed for low torque. If Is is sufficiently large, an increase
of the torque results in transitions which generate a variety
of regimes: chaotic reversals, nearly harmonic oscillations,
and strongly anharmonic ones.

Examples of time series are presented in Fig. 10. In
Fig. 10(a) the current displays strongly anharmonic oscilla-
tions and reaches large values before approaching a quasi-
stationary phase. During the phases in which the current is

nearly constant, the angular velocities X1 and X2 increase
until the current suddenly changes sign. Other oscillatory
regimes are observed (not displayed) in which the current I
does not display these stationary phases. These time series,
which are qualitatively similar to the one displayed in Fig. 7,
are termed nearly harmonic oscillations in contrast to the
strongly anharmonic ones. In Fig. 10(b) the system displays
random behavior. The current oscillates one, two, or three
times around a nonzero mean value and then reverses toward
the opposite value around which it starts to oscillate. This
behavior is reminiscent of solutions of the Lorenz equations
in the regime where chaotic trajectories connect domains in
phase space in which a stationary state is unstable with com-
plex conjugate eigenvalues. In other words, the system

Fig. 8. Period T0 of the current at the onset of the oscillatory regime as a

function of the stator current Is. T�2
0 is displayed in the inset.

Fig. 9. Parameter space for a dynamo connected to a motor. A fixed current

Is is injected in the stator of the motor. Measurements are performed while

increasing torque Ca is applied to the dynamo. A stationary current is gener-

ated above a critical torque (squares). For large enough Is, a subsequent

increase of the torque (diamonds) results in a regime of chaotic reversals of

the current. Further increase of the torque leads to anharmonic oscillations

(open circles) or nearly harmonic ones (triangles). The stars correspond to

the time series displayed in Fig. 10.

Fig. 10. Time series of the current I of the dynamo in a regime of anhar-

monic oscillations for (a) Is¼ 0.7 A and Ca¼ 0.28 N m, in chaotic regimes

of random reversals, with (b) Is¼ 0.7 A and Ca¼ 0.22 N m, and (c) Is¼ 0.7

A and Ca¼ 0.20 N m.
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displays growing oscillations in a neighborhood of an unsta-
ble solution. When the amplitude is large, the trajectory
evolves toward a neighborhood of the opposite unstable solu-
tion and resumes oscillating. Another regime is presented in
Fig. 10(c). The system displays phases of roughly constant
current 6Ic and switches randomly between these states. All
these regimes can be obtained from the numerical solutions
of Eqs. (11)–(13), supplemented by a mechanical equation
for the rotor of the dynamo

J
dX1

dt
¼ Ca � I/ðIÞ: (14)

Computed time series in the regimes of anharmonic oscil-
lations and random reversals are displayed in Fig. 11. The
structure of phase space is revealed in Fig. 12 where trajecto-
ries are shown from the experiment and the numerically
computed time series. The phase space helps to understand
the origin of the chaos in the experiment. Trajectories
approach 6Ic following a spiral (6Ic has two attractive
directions with complex conjugate eigenvalues). These tra-
jectories are repelled in a third direction (with a positive
eigenvalue). This phase space behavior in the vicinity of a
fixed point is well known to generate chaos, following the
Shilnikov scenario.3

The experimental set-up is more sophisticated than the set
of equations. The latter does not take into account the (possi-
bly complicated) solid friction terms, the hysteric depend-
ence of U on the current I, and the decrease of the
inductance L at large currents due to saturation of the ferro-
magnetic material. These effects are not necessary to gener-
ate the complex chaotic behavior of the system. However, it
might be necessary to take them into account to make a more

quantitative comparison between experiment and the low
dimensional model.

VI. CONCLUSION

We have presented a set of experiments using low cost
universal motors in which a variety of bifurcations can be
observed and several properties can be measured quantita-
tively. The experiments can be used in a laboratory course or
be presented as introductory illustrations in courses on bifur-
cation theory or dynamical systems. In addition, when a
dynamo is operated at fixed torque and drives a motor, cha-
otic regimes are observed, including random reversals of the
current and of the rotation of the motor.

Several other experiments can be performed. When two
dynamos are connected in parallel with a resistance, saddle-
node bifurcations can be observed between a regime in
which the two dynamos inject a current in the resistance and
a regime where the two dynamos generate opposite currents
and no current flows in the resistance. When two dynamos
are used such that the stator of one of the dynamos is con-
nected to the rotor of the second one (and vice versa), time
dependent regimes, including regimes of random reversals,
are expected to be observed. This set-up is similar to the
Rikitake dynamo.18

Recently, dynamical regimes of the magnetic field gener-
ated by a dynamo process due to a swirling flow of liquid

Fig. 11. Time series of the solutions of Eqs. (12)–(14). The time series are

similar to the series in Figs. 10(a) and 10(c).

Fig. 12. Phase space (I, X1, and jX2j) for (a) the experimental time series

displayed in Fig. 10(c); and for (b) the numerically computed time series dis-

played in Fig. 11(b).
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sodium have been observed.19,20 Despite the large intensity
of turbulent velocity fluctuations (the kinetic Reynolds num-
ber is larger than 106), the dynamics of the large scale mag-
netic field remains low dimensional and involves two modes.
In the vicinity of their thresholds, the equations for the am-
plitude of the modes are constrained by the symmetries of
the system21 and, to leading order, are of the form of Eqs. (6)
and (7). In the fluid dynamo experiment, effect of the turbu-
lent fluctuations is important in the vicinity of some instabil-
ity thresholds. In particular, they initiate random reversals
when the system is close to a saddle-node bifurcation. In
contrast, in the system presented here the source of random-
ness is associated with the presence of a third mode (the
dynamo angular velocity) which is coupled to the dynamo
current and to the rotation rate of the motor.

We conclude by pointing out that the experiments we have
discussed are an original approach to the rich behavior of
coupled electromechanical devices. They illustrate some aspects
of the problems of conversion and transport of energy, which
are old topics but are likely to regain importance in the future.
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The Fixed Torque Dynamo and Motor Model solves the coupled differential equations for an electric motor driven by a
dynamo (generator). The model can be used to illustrate elementary instabilities or bifurcations discussed in courses on nonlin-
ear oscillators and dynamical systems. When the dynamo is driven at constant torque, chaotic reversals of the generated cur-
rent and of the angular rotation of the motor are observed. The main window displays the dynamo angular velocity (X1),
motor angular velocity (X2), and current (I) time series, while a second window displays the phase space. The stator current
(Is), torque (T), and resistance (R) are adjustable.

http://www.compadre.org/osp/items/detail.cfm?ID=11528

A 3D Faraday Disk Dynamo Model by Anne Cox that shows a conducting disk rotating in a magnetic field is also available.

http://www.compadre.org/osp/items/detail.cfm?ID=9417

The Fixed Torque Dynamo and Motor Model is a supplemental simulation for the paper by C. Laroche, R. Labbé, F. Pétrélis
and S. Fauve, and has been approved by the authors and the AJP editor. Partial funding for the development of these models
was obtained through NSF grant DUE-0937731.
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