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Abstract. We present recent results on noise-induced transitions in a nonlinear
oscillator with randomly modulated frequency. The presence of stochastic
perturbations drastically alters the dynamical behaviour of the oscillator: noise
can wash out a global attractor but can also have a constructive role by stabilizing
an unstable fixed point. The random oscillator displays a rich phenomenology
but remains elementary enough to allow for exact calculations: this system is
thus a useful paradigm for the study of noise-induced bifurcations and is an ideal
testing ground for various mathematical techniques. We show that the phase
is determined by the sign of the Lyapunov exponent (which can be calculated
non-perturbatively for white noise), and we derive the full phase diagram of the
system. We also investigate the effect of time correlations of the noise on the phase
diagram and show that a smooth random perturbation is less efficient than white
noise. We study the critical behaviour near the transition and explain why noise-
induced transitions often exhibit intermittency and multiscaling: these effects
do not depend on the amplitude of the noise but rather on its power spectrum.
By increasing or filtering out the low frequencies of the noise, intermittency and
multiscaling can be enhanced or eliminated.
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1. Introduction

Most patterns observed in nature are created by instabilities that occur in an uncontrolled
noisy environment: convection in the atmospheric layers and in the mantle are subject
to inhomogeneous and fluctuating heat flux; sand dunes are formed under winds with
fluctuating directions and strengths. These fluctuations usually affect the control
parameters driving the instabilities, such as the Rayleigh number which is proportional
to the imposed temperature gradient in natural convection. These fluctuations act
multiplicatively on the unstable modes. In the same spirit, the evolution of global
quantities, averaged under small turbulent scales, can be represented by a nonlinear
equation with fluctuating global transport coefficients that reflect the complexity at small
scales. For instance, it has been shown that the temporal evolution of the total heat
flux in rotating convection can be described by a nonlinear equation with a multiplicative
noise [1]. The dynamo instability that describes the growth of the magnetic field of the
Earth and the stars because of the motion of conducting fluids in their cores, is usually
analysed in similar terms: the magnetic field is expected to grow at large scale, forced by
a turbulent flow. Here again, the parameters controlling the growth rate of the field are
fluctuating [2].

Since the theoretical predictions of Stratonovich [3], and the experimental works
of Kawaboto, Kabashima and Tsuchiya [4], it is well known that the phase diagram
of a system can be drastically modified by the presence of noise [5, 6]. Because of
stochastic fluctuations of the control parameter, the critical value of the threshold may
change and noise can delay or favour a phase transition [7]–[10]. When a physical
system subject to noise undergoes bifurcations into states that have no deterministic
counterparts, the stochastic phases generated by randomness have specific characteristics
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(such as their scaling behaviour and the associated critical exponents) allowing us to define
new universality classes [11].

A straightforward approach to study the effect of noise on a bifurcation diagram would
consist in analysing the nonlinear Langevin equation that governs the system. However,
the interplay between noise and nonlinearity results in subtle effects that make nonlinear
stochastic differential equations hard to handle [7, 12, 13]. One of the simplest systems
that can be used as a paradigm for the study of noise-induced phase transitions is the
random frequency oscillator (for a recent and detailed monograph devoted to this subject
see [14]). A deterministic oscillator with damping evolves towards the equilibrium state
of minimal energy that represents the unique asymptotic state of the system. However,
if the frequency of the oscillator is a time-dependent variable, the behaviour may change:
due to continuous energy injection into the system through the frequency variations, the
system may sustain non-zero oscillations even in the long time limit if the amplitude of
the noise is large enough.

In this work, we present recent results on noise-induced transitions in a nonlinear
oscillator with randomly modulated frequency. The outline of this paper is as follows.

In section 2, we show that an explicit calculation of the Lyapunov exponent allows
us to determine exactly the phase diagram of the noisy Duffing oscillator [15, 16]. In the
case of a single-well oscillator, a large enough noise destabilizes the origin (which is a
fixed point for the deterministic dynamics). The double-well oscillator presents a richer
structure: the unstable fixed point becomes a global attractor of the stochastic dynamics
when the amplitude of the noise lies in a well-defined interval: this is a typical example of a
reentrant transition (which was observed earlier in the more elaborate setting of spatially
extended systems [17]). These properties are only qualitatively modified when the noise
has temporal correlations.

In section 3, we discuss the scaling exponents associated with the order parameter
in the vicinity of the transition. For a deterministic transition, it is well known that
the different types of bifurcations can be classified by some characteristic exponents.
We show, in the stochastic case, that these exponents can be modified by the noise:
the dynamical variable has a non-trivial scaling behaviour and its time series exhibits
on–off intermittency. Following [18, 19], we explain that multiscaling and intermittency
are intimately linked with each other and that their existence is due to the presence of
low frequency components in the noise spectrum. By using a random process with a
spectral structure richer than that of white or Ornstein–Uhlenbeck noise, we show that
the deterministic exponents can be recovered by a suitable low-band filtering of the noise.
This fact implies that the concept of critical exponents can be ambiguous for noise-induced
bifurcations and is certainly not as useful as it is for deterministic phase transitions.

Section 4 presents a discussion on perturbative expansion of the nonlinear Langevin
equation. Whereas most studies rely on Fokker–Planck type evolution equations for the
probability distribution function (PDF) in which the noise is integrated out by mapping a
stochastic ordinary differential equation into a deterministic partial differential equation
in the phase space of the system, it is also possible to perform a direct perturbative
expansion of the nonlinear Langevin equation by using the classical Poincaré–Lindstedt
method [20, 21]. This technique has the advantage as compared to the more traditional
approaches of being applicable to a noise with an arbitrary spectrum (whereas Fokker–
Planck equations are only valid for white noise). However, due to the presence of low
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frequencies in the noise spectrum, the perturbative expansion breaks down and diverges.
This divergence is at the origin of the multiscaling behaviour and of the anomalous scaling
exponents. The last section is devoted to concluding remarks.

2. Stochastic bifurcations of a random parametric oscillator

In this section, we present the phase diagram of a nonlinear oscillator with a randomly
modulated frequency. The case when the frequency is a periodic function of time is a
classical problem known as the Mathieu oscillator [22]–[24]. The phase diagram of the
(damped) Mathieu oscillator is obtained by calculating the Floquet exponents (defined
as the characteristic growth rates of the amplitude of the system). This phase diagram
presents a pattern of stable regions, in which the system evolves towards its equilibrium
state, and of unstable regions, in which, because of parametric resonance, the amplitude
of the oscillations grows without bound. A nonlinear term is needed to saturate these
oscillations. When the frequency of the pendulum is a random process, the role of the
Floquet exponents is taken over by the Lyapunov exponents. The system undergoes
a bifurcation when the largest Lyapunov exponent, defined as the growth rate of the
logarithm of the energy, changes its sign. Thus, the Lyapunov exponent vanishes on the
critical surface that separates the phases in the parameter space. This criterion involving
the sign of the Lyapunov exponent resolves the ambiguities that were found in studies of
the stability of higher moments [25]–[27] and has a firm mathematical basis [13]. In recent
works [15, 16], we have obtained the exact phase diagram of the random oscillator when
the frequency is a Gaussian white noise. In the last part of this section, we discuss the
effect of non-vanishing time correlation in the noise [28].

2.1. Instability induced by noise: the single-well oscillator

The equation for the amplitude x of a random Duffing oscillator with a fluctuating
frequency is

ẍ + γẋ + (ω2 + ξ(t)) x + λx3 = 0, (1)

where γ is the (positive) friction coefficient, ω the mean frequency and λ the coefficient
of the cubic nonlinear term. The random fluctuations of the frequency are represented by
a Gaussian white noise ξ(t) of zero mean value and of amplitude D

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t′)〉 = D δ(t − t′).
(2)

In this work, all stochastic differential equations are interpreted according to Stratonovich
calculus. By rewriting time and amplitude in dimensionless units, t := ωt and x :=
λ1/2ω−1x, equation (1) becomes

d2x

dt2
+ α

dx

dt
+ x + x3 = x Ξ(t), (3)

where Ξ(t) is a delta-correlated Gaussian variable with vanishing mean value and with
correlations given by

〈Ξ(t)Ξ(t′)〉 = Δ δ(t − t′). (4)
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Figure 1. Phase plane plots of a typical trajectory of the noisy nonlinear
oscillator. Equation (3) is integrated numerically with a time step δt = 5× 10−4.
(a) α = 0.5, Δ = 20, t ≤ 100; (b) α = 2.0, Δ = 20, t ≤ 100; (c) α = 2.0, Δ = 60,
t ≤ 100. Early-time relaxation towards noisy oscillations has been omitted for
clarity in cases (a) and (c). The trajectory spirals down towards the origin in
case (b).

The parameters

α = γ/ω and Δ = D/ω3 (5)

correspond to dimensionless dissipation rate and to noise strength, respectively.
The equation (1) has the origin of the phase space, ẋ = x = 0, as a fixed point. When

the system is deterministic, i.e. when D = 0, the origin is a global attractor for any γ > 0:
for any initial condition we know that x(t) → 0 and ẋ(t) → 0 when t → ∞.

However, in the presence of noise, the asymptotic behaviour of the system becomes
more complex. In figure 1, we present, for three values of the parameters, a trajectory in
the phase plane (x, v = ẋ) characteristic of the oscillator’s behaviour, using the numerical
one-step collocation method advocated in [29]. Initial conditions are chosen far from the
origin, with an amplitude of order 1. Noisy oscillations are observed for small values of
the damping parameter α (see figure 1(a)). For larger values of α the origin becomes a
global attractor for the dynamics (see figure 1(b)). Increasing the noise amplitude Δ at
constant α makes the origin unstable again (see figure 1(c)).
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In other words, for the stochastic oscillator, the following property is true. For a given
γ there is a critical noise amplitude Dc(γ) such that

D < Dc(γ) ẋ, x → 0 when t → ∞
D > Dc(γ) ẋ, x → Oscillating stationary state.

The main problem is to calculate the value of Dc as a function of γ and the other
parameters of the problem.

For random dynamical systems, it was recognized early on that various ‘naive’ stability
criteria [25, 26], obtained by linearizing the dynamical equation around the origin, lead
to ambiguous results. This feature is in contrast with the deterministic case for which
the bifurcation threshold is obtained without ambiguity by studying the eigenstates of
the linearized equations [30]. For the random oscillator, trying to determine the critical
noise amplitude by studying the stability of the moments of the amplitude of the linearized
equations leads to inconsistent results. More precisely, consider the random harmonic
oscillator, obtained by linearizing equation (1) near the origin:

ẍ + γẋ + (ω2 + ξ(t))x = 0. (6)

The second moment 〈x2〉 of the amplitude of the linearized equation converges to 0 in the
long time limit if

D
ω3

< 2
γ

ω
.

The fourth moment 〈x4〉 converges to 0 if

D
ω3

<
2γ

3ω

3γ2 + 4ω2

3γ2 + 2ω2
.

More generally, the moment 〈x2p〉 is stable if

D
ω3

<
2

2p − 1

γ

ω
Fp

(γ

ω

)
.

In fact, it was conjectured in [26] and proved in [27] that, in a linear oscillator with
arbitrarily small parametric noise, all moments beyond a certain order grow exponentially
in the long time limit. In figure 2, we plot the stability diagram for the moments of
order 2, 4 and 6. We observe that the stability range becomes narrower when the
order of the moment becomes higher. This means that any criterion based on finite
mean displacement, momentum or energy of the linearized dynamical equation is not
adequate to show the stability of the initial problem and the bifurcation threshold of a
nonlinear random dynamical system cannot be determined simply from the moments of
the linearized system. In practice, the phase diagram of the nonlinear random oscillator
was usually determined in a perturbative manner by using weak noise expansions [20, 21],
[31]–[33].

The reason for this failure is that in the linearized problem the statistics of the variable
x is dominated by very large and very rare events that induce the divergence of moments
of high order. These rare events are suppressed by the nonlinearity and the bifurcation
threshold becomes well defined. We face the following paradoxes: (i) the stability region
of the origin ẋ = x = 0 for the nonlinear equation has a well-defined threshold for any
value of the noise amplitude: below this threshold the origin is a global attractor of
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8.0
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4.0

2.0

Δ

α

Figure 2. Stability diagram of the moments of the single-well oscillator. The full
curves from top to bottom represent the stability lines of 〈x2〉, 〈x4〉 and 〈x6〉.
The dashed curve is the line on which the Lyapunov exponent vanishes.

the dynamics. In contrast the linearized equation does not have a clear-cut bifurcation
threshold. (ii) Close to the origin the nonlinear term is irrelevant but the nonlinearity has
to be taken into account to suppress the rare events that spoil the statistical behaviour
of the system.

The problem is to find the correct stability criterion for the nonlinear equation that
can be formulated as in the deterministic case on the linear equation and that would allow
explicit calculations.

Such a criterion does exist and is based on the Lyapunov exponent that measures the
growth rate of the random harmonic oscillator’s energy

Λ = lim
t→∞

1

2t
〈log E〉 with E =

ẋ2

2
+ ω2x2

2
, (7)

where x(t) is a solution of equation (6). It has been shown (see [15] and references
therein) that, when the Lyapunov exponent is negative, the Fokker–Planck equation has
a unique stationary solution which is the Dirac delta function at the origin of the phase
space. This means that the origin is a stable global absorbing state. However, when
the Lyapunov exponent is positive and extended, a stationary probability distribution
function exists and describes an oscillatory asymptotic state of the nonlinear random
oscillator. These features are reminiscent of Anderson localization and there exists indeed
a mapping between the random oscillator and a 1d localization model [34, 35].

The equation of the transition line that determines the stability of the origin for the
nonlinear oscillator with a random phase is therefore given by

Λ(γ, ω,D) = 0. (8)
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Figure 3. Phase diagram of the single-well oscillator with multiplicative noise.
The critical curve separates an absorbing and an oscillatory phase in the (α,Δ)
plane. The dashed line represents the small noise approximation (see text).

The following exact closed formula for the Lyapunov exponent of the system can be derived
when the random frequency modulation is a Gaussian white noise [15, 36, 37]:

Λ =
γ

2

( ∫ ∞
0

√
u e−ψ(u) du∫ ∞

0
(du/

√
u) e−ψ(u)

− 1

)
(9)

with

ψ(u) =
2γ3

D

{(
ω2

γ2
− 1

4

)
u +

u3

12

}
. (10)

Inserting this formula in the stability criterion (8) and using dimensionless variables
we obtain the equation of the transition line in the (α, Δ) plane. For a given value of Δ,
the critical value of the damping α = αc(Δ) for which the Lyapunov exponent vanishes
is given by

αc =

∫ +∞
0

du
√

u exp {−(2/Δ) ((1 − (α2
c/4))u + (u3/12))}∫ +∞

0
(du/

√
u) exp {−(2/Δ) ((1 − (α2

c/4))u + (u3/12))}
. (11)

The critical curve α = αc(Δ) is represented in figure 3. It separates two regions in
parameter space: for α < αc (resp. α > αc) the Lyapunov exponent is positive (resp.
negative), the stationary PDF is an extended function (resp. a delta distribution) of
the energy and the origin is unstable (resp. stable). For small values of the noise
amplitude, it can be shown that the exact formula (11) reduces at first order to the
linear relation αc = (Δ/4), in agreement with previous perturbative calculations. For
large values of the noise, we obtain αc � 0.656Δ1/3. We emphasize that the phase
diagram drawn in figure 3 is exact for all values of the noise amplitude Δ and the damping
parameter α.
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 PARAMETRIC NOISE

 THERMAL NOISE

Figure 4. The double-well oscillator with parametric noise.

2.2. Stabilization by noise: the double-well oscillator

In a classical calculation, Kapitza (1951) showed that the unstable upright position of
an inverted pendulum is stabilized if its suspension axis undergoes sinusoidal vibrations
of high enough frequency. Analytical derivations of the stability limit are based on
perturbative approaches, i.e. in the limit of small forcing amplitudes [23, 38, 39].

When the sinusoidal vibrations of the suspension axis are replaced by a white noise,
an exact, non-perturbative, stability analysis can be performed [16]. In particular, for the
stochastic inverted pendulum (see figure 4), we have shown that the unstable fixed point
can be stabilized by noise and have discovered the existence of a noise-induced reentrant
transition.

The general equation for the Duffing oscillator subject to multiplicative noise is given
by:

ẍ + γẋ − (μ + ξ(t)) x + x3 = 0. (12)

When μ < 0, the nonlinear potential has a single well. This case is the same as the one
discussed in the previous section: the origin is deterministically a global attractor that
can become unstable in the presence of noise. When μ > 0, the oscillator is subject to a
double-well potential and the origin is deterministically unstable.

In the presence of noise, the correct criterion for stability analysis is again based on
the sign of the Lyapunov exponent. In order to take into account both possible signs of
μ, it is useful to define the following set of dimensionless parameters:

α =
μ

γ2
and Δ =

D
γ3

. (13)

An exact calculation of the Lyapunov exponent [16] then allows us to draw the phase
diagram represented in figures 5 and 6.

We observe that, when α < 0.21 . . ., there exists a range of noise amplitudes for
which the origin is stabilized by noise: for Δ such that Δ1(α) < Δ < Δ2(α) the origin
becomes an attractive fixed point of the stochastic dynamics. The values Δ1(α) and
Δ2(α) that determine the stability interval are known analytically. We emphasize that
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Oscillatory state

Λ > 0
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Δ*

Figure 5. Phase diagram of the double-well oscillator subject to multiplicative
Gaussian white noise. The solid line is the locus where Λ(α,Δ) = 0. The
bifurcation line α = 0 of the noiseless dynamical system is drawn for comparison
(dotted line). For Δ ≤ Δ∗ � 3.55 (resp. Δ ≥ Δ∗), the origin is stabilized
(resp. destabilized) by the stochastic forcing in the range 0 ≤ α ≤ αc(Δ) (resp.
αc(Δ) ≤ α ≤ 0).

Δ
1
(α)

2
(α)0 Δ

UNSTABLE UNSTABLESTABLE

Figure 6. Stability range for the double-well oscillator: when α < 0.21, the
unstable equilibrium point is stabilized by noise for noise amplitudes between Δ1

and Δ2.

these functions cannot be calculated perturbatively by using a small noise expansion
when α is finite. For α > 0.21 . . ., the stability interval does not exist anymore: the
origin is always unstable and the non-equilibrium stationary state exhibits an oscillatory
behaviour.

2.3. The effect of coloured noise

We now discuss the phase diagram of an oscillator whose frequency is a random process
with finite time memory. More precisely, we consider the case of an Ornstein–Uhlenbeck
noise x(t) of correlation time τ :

〈ξ(t)ξ(t′)〉 =
D1

2τ
exp (−|t − t′|/τ) . (14)

When τ → 0, the process ξ(t) becomes identical to the white noise. The Lyapunov
exponent of the system Λ(ω, γ,D, τ) becomes now a function of τ also.
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Figure 7. Critical curves obtained by numerical simulations of the single-well
random oscillator subject to multiplicative Ornstein–Uhlenbeck noise. The curves
with black dots (•) and with squares (
�) correspond to τ = 1 and τ = 2,
respectively. The full black line is the analytical result for the white noise case.

From a physical point of view, the influence of a finite correlation time on the shape
of the critical curve is an interesting open question: due to the finite correlation time of
the noise, the random oscillator is a non-Markovian random process and there exists no
closed Fokker–Planck equation that describes the dynamics of the probability distribution
function (PDF) in the phase space. This non-Markovian feature hinders an exact solution,
in contrast with the white noise case where a closed formula for the Lyapunov exponent
was found. For the single-well stochastic oscillator, we have calculated [28] this Lyapunov
exponent by using different approximations and have derived the phase diagram. The
main role of the correlation time of the noise, as can be seen in figure 7, is to enhance the
stability region. When τ grows, amplitude of the noise required to destabilize the origin
becomes bigger. This effect can be seen quantitatively in the following exact asymptotic
expansions (see also [40]):

For small values of the noise amplitude: αc �
Δ

4(1 + 4ω2τ 2)
, (15)

For large values of the noise amplitude: αc � C

(
Δ

ωτ

)1/4

, (16)

where the constant C is of order 1. Comparing with the white noise result we observe
that the behaviour of the critical curve for large noise is modified in the presence of time
correlations; the asymptotic exponent is 1/3 for white noise and 1/4 for coloured noise
even if the correlation time τ is small. The presence of a non-vanishing correlation time
thus modifies the scaling characteristics of the system. This change of scaling at large
noise is related to the differentiability properties of the random potential as shown in [41]:
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Figure 8. Phase diagram of the double-well oscillator subject to Ornstein–
Uhlenbeck noise with correlation time τ . The bifurcation lines for τ = 0.1
and 1.0 are obtained from numerical calculations of the Lyapunov exponent.
For comparison, we draw the (analytic) white noise line. In this figure the
dimensionless parameters are given by α = ω2/γ2 and Δ = D/γ3.

the white noise is continuous but nowhere differentiable whereas the Ornstein–Uhlenbeck
process has a first derivative but no second derivative.

For the double-well oscillator subject to Ornstein–Uhlenbeck noise, the results of
numerical computations of the phase diagram are shown in figure 8. Here also we observe
that the noise-induced stabilization of the deterministically unstable fixed point becomes
less efficient in the presence of time correlations. In the weak noise limit, this curve agrees
with the prediction of [20]: αc(Δ) ∼ Δ/(2(1 + τ)). For a noise amplitude of order 1,
the bifurcation line is qualitatively similar to that obtained with white noise. However,
depending on the value of Δ, the value of the bifurcation point αc(Δ) is not necessarily
a monotonic function of τ . A precise understanding of this non-monotonic behaviour
is lacking and the analytical theory of the stability of the double-well oscillator with
time-correlated noise still remains to be done. Although the obtaining of exact results
for the Ornstein–Uhlenbeck noise seems unlikely, various recent works [42] indicate that
the Poisson process provides a useful model for the study of time correlation effects in
stochastic systems. The advantage of the Poisson process is that it is amenable to exact
analytic calculations.

We conclude this section by emphasizing that the results obtained here for the
oscillator with multiplicative noise could be used for other stochastic systems. For
example, it has been shown by Schimansky-Geier et al [43] that the random Duffing
oscillator with additive noise undergoes a phase transition that does not manifest itself
in the stationary PDF (which is simply given by the Gibbs–Boltzmann formula). This
subtle phase transition, which affects the properties of the random attractor of motion in
phase space, can be formulated mathematically as a bifurcation in an associated linear
oscillator subject to a multiplicative noise with a finite correlation time. If we approximate
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Figure 9. Behaviour of the moments near the reentrant bifurcation threshold.
The noisy double-well oscillator subject to parametric white noise is simulated
with a fixed parameter α = 0.2. The critical value of the noise amplitude
corresponding to the reentrant transition is found to be Δc � 0.627: for a noise
amplitude Δ belonging to the interval (0.627–1.70) the origin is stabilized by the
noise. Even-order moments 〈x2〉, 〈x4〉 and 〈x6〉 are plotted versus the distance to
threshold ε = (Δc−Δ)/Δc (symbols). Dashed lines respecting a linear behaviour
〈x2n〉 ∝ ε are drawn to guide the eye. Inset: the mean square position (measured
in the stationary regime) is non-zero for Δ < 0.627 and Δ > 1.70, i.e. the
stationary state is extended.

this noise by an effective Ornstein–Uhlenbeck process, the system becomes identical to
the one studied here.

3. Scaling behaviour near the bifurcation threshold

For deterministic Hopf bifurcation, the amplitude of the order parameter x exhibits a
normal scaling behaviour in the vicinity of the transition line; if ε denotes the distance
from threshold of the control parameter, we have in the deterministic case:

〈x2n〉 ∼ εn. (17)

We now consider the case of the stochastic oscillator. In figure 9, we plot the behaviour
of the amplitude moments in the vicinity of the reentrant transition in a double-well
oscillator. The damping rate α is fixed at a given value and the noise strength Δ is
chosen such that 0 < Δ − Δc(α) � 1, where Δc(α) is the critical value. In this case, the
parameters of the system are tuned just above the bifurcation threshold and the Lyapunov
exponent is slightly positive: 0 < Λ � 1. We observe that even-order moments of the
amplitude scale linearly with the distance to threshold in the vicinity of the bifurcation
line (note that odd-order moments are equal to zero by symmetry):

〈x2n〉 ∼ ε. (18)

doi:10.1088/1742-5468/2007/07/P07016 13

http://dx.doi.org/10.1088/1742-5468/2007/07/P07016


J.S
tat.M

ech.
(2007)

P
07016

Noise-induced bifurcations, multiscaling and on–off intermittency

A similar scaling behaviour is obtained by simulating the single-well oscillator or by
replacing white noise by an Ornstein–Uhlenbeck process. Such a behaviour was also
observed in random maps [44] and in stochastic fields [45]. Such a strong multiscaling
seems to be a typical feature of stochastic bifurcations and has been noticed a long ago [5]
in first-order stochastic differential equations. The fact that the stochastic oscillator
exhibits a similar behaviour can be understood ‘physically’ by noticing that the second-
order time derivative becomes irrelevant in the long-time limit. The mathematical
explanation for this behaviour is also elementary [15]: near the bifurcation threshold,
when the Lyapunov exponent Λ → 0, the stationary probability distribution function
Pstat exhibits a power law divergence at the origin (ẋ = x = 0), and the region near
the origin dominates the statistics: it can be shown that, near E = 0, the stationary
energy distribution scales as Pstat(E) ∼ EcΛ−1, where c is a positive constant. From this
formula, one readily deduces that all moments of the energy (and therefore all moments
of the amplitude of the oscillator) are of the order Λ which itself grows linearly with ε,
the distance from threshold.

Another remarkable feature of the order parameter near threshold is that the time
series t �→ x(t) exhibits on–off intermittency. Again this intermittent behaviour, first
discovered in coupled dynamical systems [46] and in a system of reaction–diffusion
equations [47], is believed to be generic (see, e.g., [48]) when an unstable system is coupled
to a system that evolves in an unpredictable manner (multiplicative noise).

Multiscaling and intermittency lead, however, to the following very puzzling problems:

Problem 1. The multiscaling behaviour given in equation (18) is very clearly seen in
computer experiments but does not seem to be observed in ‘real’ experiments. Similarly,
It is surprising that, despite the genericity of the on–off intermittency mechanism (which
is well established mathematically) this effect has scarcely been reported in experiments.
One might expect that any careful experimental investigation of an instability should
reveal on–off intermittency when the system is close to the onset of instability, and is
hence sensitive to unavoidable experimental noise in the control parameters.

Problem 2. In well known works [20, 21], it was predicted, using perturbation theory, that
the scaling of the stochastic bifurcation should be the same as that of the deterministic
Hopf bifurcation, equation (17). This problem is analysed in section 4.

Problem 1 is solved in [18, 19]. In these works, it is shown that, although the noise
strength controls the transition between the absorbing and the oscillatory states, the
amplitude of the noise is not the only relevant parameter responsible for multiscaling and
intermittency. Rather, these effects are due to the zero-frequency mode of the noise; in
other words, these effects depend on the power spectrum density (PSD) of the noise and
not on its overall amplitude. In order to identify which part of the PSD of the random
forcing really affects the dynamics, one needs a random perturbation with a spectral
density more complex than that of white noise or of Ornstein–Uhlenbeck noise. A useful
type of noise [49] is the harmonic noise ζ(t) whose autocorrelation function is given by

〈ζ(t) ζ(t + τ)〉s = A exp(−2πη|τ |)
(
cos(2πΩτ) +

η

Ω
sin(2πΩ|τ |)

)
, (19)
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Figure 10. Temporal traces of the amplitude of a Duffing oscillator subject to
harmonic noise of constant amplitude A = 0.05. As the value S of the zero
frequency amplitude of the noise is decreased from top to bottom, intermittent
behaviour is suppressed.

where A is the noise amplitude; the corresponding PSD is

C(ν) =
Aη(Ω2 + η2)

π[(Ω2 + η2 − ν2)2 + 2ν2η2]
. (20)

The value of the PDS at zero frequency is therefore given by

S = Aη/
[
π(η2 + Ω2)

]
. (21)

For harmonic noise, the amplitude A and the zero frequency amplitude S can be tuned
independently.

In figure 10, we plot the time series of a Duffing oscillator with a random frequency
perturbation given by a harmonic noise ζ(t). We observe that the zero frequency
amplitude S is the pertinent parameter controlling the intermittent regime: on–off
intermittency disappears when the value of S is lowered. For the simple first-order model,

ẋ = (a + ζ(t))x − x3, (22)

it is possible to determine analytically the transition line between intermittent behaviour
and non-intermittent behaviour in the (S, a) plane, using the cumulant expansion
introduced by Van Kampen [7]. Intermittency occurs when

0 <
a

S
< 1. (23)

This criterion is checked numerically in figure 11.
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Figure 11. Intermittency phase diagram for the solution of (22) with harmonic
noise. (�): intermittent behaviour, (◦): non-intermittent behaviour. The full
line is the transition curve predicted by (23).

Finally, it is possible to prove that multiscaling is a consequence of the intermittent
behaviour of the order parameter x(t) [19]. Therefore as the zero frequency noise
amplitude is reduced, both on–off intermittency and multiscaling are suppressed and
normal scaling (17) is recovered.

This analysis solves problem 1 by explaining why many experimental investigations on
the effect of a multiplicative noise on an instability do not display on–off intermittency. If
the noise is high-pass filtered, as often required for experimental reasons, then the regime
of intermittent behaviour disappears. This is the case, for instance, in [50]: a ferrofluidic
layer undergoes the Rosensweig instability and peaks appear at the surface. The layer
is then subject to a multiplicative noise through random vertical shaking. Close to the
deterministic onset, the unstable mode submitted to a coloured noise does not display
intermittency. Another experimental obstacle to observe intermittency is the presence of
additive noise that destroys the symmetry of the system.

4. Remarks on the perturbative analysis of a noisy Hopf bifurcation

Problem 2 questions the relevance of perturbative expansions for studying noise-induced
bifurcations. Consider, for example, the parametrically driven damped anharmonic
oscillator that naturally appears in the study of many instabilities [53]. Such a system is
described by the following equation:

mẍ + mγẋ = (ε + Δξ(t))x − x3, (24)

where ε is the control parameter and the modulation ξ(t) is of arbitrary dynamics and
statistics: it can be a periodic function or a random noise. For small driving amplitudes
Δ, Lücke and Schank [20] have performed a Poincaré–Lindstedt expansion called the
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Poincaré–Lindstedt expansion [22, 24, 51] (see [52] for applications to field theory). They
have obtained an expression for the threshold εc(Δ) (at first order in Δ). Their result has
been verified both numerically and experimentally and is also in agreement with the exact
result obtained for the Gaussian white noise (in this case a closed formula is available for
εc(Δ) for arbitrary values of Δ). Another result obtained in [20, 21] is the scaling of the
moments near the threshold,

〈x2n〉 = sn (ε − εc(Δ))n + O
(
(ε − εc)

n+1
)
, (25)

where the constant sn depends on ξ(t) and on Δ. The moments have a normal scaling
behaviour: 〈x2n〉 scales as 〈x2〉n. The bifurcation scaling exponent is equal to 1/2 and
is the same as that of a deterministic Hopf bifurcation. However, this expression does
not agree with the results for random iterated maps, for the random parametric oscillator
and with recent studies on on–off intermittency [15, 18, 44]. These works predict that the
variable x is intermittent and that the moments of x exhibit anomalous scaling,

〈x2n〉 � κn(ε − εc) for all n > 0, (26)

i.e. all the moments grow linearly with the distance from threshold. This multiscaling
behaviour, confirmed by numerical simulations for a Gaussian white noise, was derived
using effective Fokker–Planck equations. The origin of the contradiction between
equations (25) and (26) lies in the divergences that appear in the Poincaré–Linsdtedt
expansion. This fact, identified in [21], implies that the results of [20] are valid only for
noises that do not have low frequencies.

4.1. A simple model

The importance of low frequencies in the noise spectrum can be seen analytically in a
model technically simpler than equation (24). To simplify our discussion we work on the
first-order stochastic equation:

ẋ = (ε + Δξ(t)) x − x3, (27)

that we already encountered in the previous section. Here, the noise ξ(t) is a Gaussian
stationary random process with zero mean value and with a correlation function given by

〈ξ(t)ξ(t′)〉 = D(|t − t′|). (28)

The power spectrum of the noise, which is non-negative thanks to the Wiener–Khinchin
theorem [7], is the Fourier transform of the correlation function

D̂(ω) =

∫ +∞

−∞
dt exp(iωt)〈ξ(t)ξ(0)〉 =

∫ +∞

−∞
dt exp(iωt)D(|t|). (29)

Applying elementary dimensional analysis to equation (27), we obtain the following
scaling relations:

x ∼ t1/(2p), ξ ∼ t−1/2, ε ∼ Δ2 ∼ t−1. (30)

The dimension of the noise ξ is so chosen as to render the power spectrum D̂(ω) a
dimensionless function.
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We first remark that the presence of noise does not modify the bifurcation threshold;
indeed the Lyapunov exponent of the system is given by Λ = ε and therefore the
bifurcation always occurs at εc(Δ) = 0.

When ξ(t) is a Gaussian white noise, the stationary solution of the Fokker–Planck
equation corresponding to equation (27) is given by

Pstat(x) =
2

Γ(α)(Δ2)α
x2α−1 exp

(
− x2

Δ2

)
with α =

ε

Δ2
, (31)

where Γ represents the Euler gamma-function. The bifurcation threshold is given by
ε = 0; for ε < 0, the solution (31) is not normalizable: the stationary PDF is the Dirac
distribution δ(x) localized at the absorbing fixed point x = 0. For ε > 0, the solution (31)
is normalizable and the moments of x are given by 〈x2n〉 = ((Γ(α + n))/(Γ(α)))(Δ2)n. In
the vicinity of the threshold, ε is small and we recover multiscaling: the moments scale
linearly with ε, i.e.

〈x2n〉 � ε (Δ2)n−1Γ(n). (32)

4.2. Exact solution for arbitrary noise

For an arbitrary noise ξ(t), it is still possible to obtain an exact solution of equation (27)
for all times. First, we shall derive some remarkable identities satisfied by the exact
solution.

We define the differential operator L as follows,

L =
d

dt
− Δξ(t). (33)

Let us call y1(t) the solution of the adjoint equation L†y1 = 0, which is given by

y1(t) = exp

(
−Δ

∫ t

0

ξ(u) du

)
. (34)

Multiplying equation (27) by the function y1 and taking average values, we obtain

〈y1Lx〉 = 〈εy1x − y1x
3〉. (35)

Integrating the left-hand side of this equation by parts and taking into account the fact
that y1 is in the kernel of the adjoint operator L†, we derive the following relation:

ε =
〈y1x

3〉
〈y1x〉

+
d

dt
ln〈y1x〉. (36)

Similarly, we have

ε = 〈x2〉 +
d

dt
〈ln(y1x)〉. (37)

Dividing both sides of equation (27) by x3 and using the auxiliary variable U = 1/x2,
we observe that equation (27) becomes a linear first-order stochastic in U :

1
2
U̇ = 1 − (ε + Δξ)U. (38)
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This equation can be solved exactly for all time by using the method of variation of
constants. Introducing the initial value x(0) = λ that has the dimensions

λ ∼ t1/2, (39)

we obtain the following explicit formula for x:

x(t) =
λ exp (εt + ΔBt)√

1 + 2λ2
∫ t

0
exp (2εu + 2ΔBu) du

. (40)

We have defined here the auxiliary random variable Bt:

Bt =

∫ t

0

ξ(u) du. (41)

Because ξ is taken to be a Gaussian random process, Bt is also Gaussian.

4.3. Importance of low frequencies in the noise spectrum

In order to determine the scaling on the moments of x, we must evaluate expressions of
the type 〈exp ΔBt〉. Because Bt is a Gaussian random variable, this quantity is given in
terms of the variance of Bt:

〈B2
t 〉 =

∫ t

0

∫ t

0

〈ξ(u)ξ(v)〉 du dv =

∫ t

0

∫ t

0

D(|u − v|)〉 du dv =

∫ +∞

−∞

1 − cos ωt

ω2

D̂(ω) dω

π
.

(42)

The last integral is well defined at ω = 0 (the time t introduces an effective low frequency

cutoff for ω ∼ 1/t). The behaviour of 〈B2
t 〉 for t → ∞ depends on the behaviour of D̂(ω)

at ω → 0. The following two cases must be distinguished:
(i) The spectrum of the noise vanishes at low frequencies, i.e. D(0) = 0. Because

D̂(ω) is an even function of ω, we suppose that D̂(ω) ∼ ω2 for ω ∼ 0 (we disregard
non-analytic behaviour of the power spectrum at the origin. Such non-analyticity would
correspond to long tails in the correlation function of the noise).

(ii) The power spectrum of the noise is finite at ω = 0, i.e. D(0) > 0.
In case (i), the long time limit of equation (42) is readily derived and we obtain (by

using the Riemann–Lebesgue lemma)

〈B2
t 〉 →

∫ +∞

−∞

D̂(ω) dω

π ω2
when t → ∞. (43)

The variance of Bt has a finite limit at large times.
In case (ii), the integral on the right-hand side of equation (42) diverges when t → ∞

and its leading behaviour is

〈B2
t 〉 =

t

π

∫ +∞

−∞

1 − cos u

u2
D̂

(u

t

)
du → D̂(0)t. (44)

The variance of Bt grows linearly with time in the long time limit.
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4.4. Behaviour of the moments

We have seen that the behaviour of the variance of Bt in the long time limit crucially
depends on the behaviour of the noise spectrum at low frequencies. When D(0) > 0
the noise ξ(t) acts dominantly as a white noise and the multiscaling behaviour (32) is
recovered when t → ∞.

When D(0) = 0, the random variable Bt has a finite variance even when t → ∞.
Using equation (40) and keeping only the dominant terms in the long time limit, we
obtain

x(t) � exp (εt + ΔBt)√
2
∫ t

0
exp (2εu + 2ΔBu) du

. (45)

Therefore, we have

x2n(t) �
(
2

∫ t

0

exp (−2ε(t − u) + 2Δ(Bu − Bt)) du
)−n

. (46)

The fluctuations of the random variable being of order one, the integral on the rhs of this
equation is dominated by the contribution of the linear term −2ε(t−u). The contribution
is maximal in the region u � t. Therefore, we have

〈x2n〉 � Cnεn, (47)

where the constant Cn depends a priori on the statistical properties of the noise. This
equation predicts that, subject to a noise without low frequencies, the amplitude x(t)
exhibits a normal scaling behaviour identical to that of the deterministic case.

5. Conclusion

The stochastic oscillator is an ideal model to study the effect of random perturbations on
a nonlinear dynamical system. Various effects of noise can be demonstrated on this simple
model: noise can shift bifurcation thresholds, can create new phases by destabilizing (resp.
stabilizing) stable (resp. unstable) fixed points, and can induce reentrant behaviour.
The relevant parameter that determines the long time behaviour of the system is the
Lyapunov exponent of the underlying linearized dynamics. Exact results can be derived
for white noise and for dichotomous Poisson noise. When the system is coupled to
the smooth Ornstein–Uhlenbeck process, analytical treatments have to rely on various
approximations: however, qualitative aspects on time correlations are well understood.

The effect of noise on the scaling behaviour is subtle: intermittency and multiscaling
can appear if the relative weight of the zero-frequency mode of noise is large enough.
If low frequencies are filtered out, the noise-induced bifurcation becomes qualitatively
similar to the deterministic transition. These features are difficult to extract from
a perturbative analysis of the Langevin equation: they appear as divergences in the
perturbative expansion which must be resummed in order to get correct results. Indeed,
multiscaling of the order parameter cannot be revealed from a finite-order truncation of
the expansion.

Despite the formal simplicity of the problem, exact results have been derived only
recently and many questions still remain to be addressed. For example, little is known
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about the relevance of the noise spectrum on barrier crossing problems and on stochastic
resonance. Analytical results for higher-dimensional systems and for stochastic fields are
rare: such results could be relevant for the study of the trapping of quasi-one-dimensional
Bose–Einstein condensates in random potentials [54].
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[19] Aumâıtre S, Pétrélis F and Mallick K, 2006 J. Stat. Phys. 123 909
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[49] Schimansky-Geier L and Zülicke C, 1990 Z. Phys. B 79 451

Hesse J J and Schimansky-Geier L, 1991 Z. Phys. B 84 467
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