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Abstract – We consider the generation of magnetic field by a turbulent flow. For the linear
induction equation (i.e., the kinematic dynamo problem), we show that the statistical moments of
the magnetic field display multiscaling and in particular moments of different order turn unstable
for different values of the control parameter. On a canonical example, we map the problem onto
the calculation of the injected power by a time correlated fluctuating force acting on a Brownian
particle. We are then able to calculate analytically the growth rate of the moments of the magnetic
field and explain the origin of this intermittency. We finally show that the onset for the nonlinear
problem is predicted by the linear onset of the moment of order 0+ (i.e., the logarithm of the
magnetic field).

Copyright c© EPLA, 2018

The dynamo effect is an instability that converts kinetic
energy of an electrically conducting fluid into magnetic
energy. It is the source of the magnetic field observed
in most astrophysical objects, Earth and most planets,
Sun and other stars, galaxies. . . . This effect was identified
by Larmor a hundred years ago and yet many questions
are still unanswered, in particular concerning the effect
of turbulent fluctuations on the dynamo process. One of
the first approaches to tackle this problem is the one of
Kazantsev [1] who modeled a turbulent flow as a delta-
correlated in time process. A similar approach was made
independently by Kraichnan to describe the evolution of
a passive scalar [2]. Kazantsev studied the evolution of
the magnetic energy, i.e., the second moment of the mag-
netic field. In that framework, several predictions were
made depending on the spatial or temporal properties of
the turbulent flow [3–5]. These models consist of a lin-
ear stochastic partial differential equation in which the
stochastic term (that models the turbulent fluctuations)
acts multiplicatively. In a different context, the study of
amplitude equations subject to noise finds that multiplica-
tive noises can create very intermittent behaviors which
affect the moments of the field [6,7]. As a consequence,
different moments grow with different growth rates.
In such a case, the onset of which moment predicts the
dynamo threshold?

To answer this question, we start with a numerical simu-
lation of a turbulent dynamo in the class of the Kraichnan-
Kazantsev dynamo. There have been very few numerical
investigations of such dynamos. Most numerical stud-
ies considered the dynamo instability by a flow due to
a random forcing in the Navier-Stokes equations [8,9].
A numerical solution for the dynamo instability by a delta-
correlated Gaussian distributed velocity field was done
in [10]. We use the same code which is a modified ver-
sion of [11]. The considered velocity field is of the form
u = ∇ × (ψez) + uzez ,

ψ = Uζ1(t)(sin (φ1(t)) cos (kfx+ φ2(t))

+ cos (φ1(t)) sin (kfy + φ2(t)))/kf , (1)

uz = Uζ2(t) (sin (φ1(t)) sin (kfx+ φ2(t))

+ cos (φ1(t)) cos (kfy + φ2(t))), (2)

where ζ1(t), ζ2 (t) are two independent Gaussian white
noises with 〈ζ1(t) ζ1(t′)〉s = 2Dδ (t − t′), 〈ζ2(t) ζ2(t′)〉s =
2Dδ (t − t′) with 〈.〉s the statistical average over realiza-
tions. φ1(t), φ2(t) are two uniformly distributed random
numbers in the interval [0, 2π]. We use the Stratanovich
interpretation for the multiplicative terms that involve the
noise [6]. This flow depends on two coordinates so that it
is less computationally expensive to do statistics over long
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Fig. 1: (Colour online) The spatially averaged magnetic energy
B2 is shown as a function of time t for different Rm for the
flow defined by eq. (1).

time series which allows us to obtain accurate estimates
of the higher-order moments.

We first consider the linear problem (the induction
equation)

∂tB = ∇ × (u × B) + ηΔB, (3)

in which, using the independence of the flow on the
z-direction, we write B = bexp(ikzz) + c.c. The gov-
erning equations are solved in a domain [2πL, 2πL] with
periodic boundary conditions. The field amplitude B is
defined as the square root of its energy B2 = B2 where f
stands for the spatial average. For kzL = 1 and kfL = 4,
the magnetic energy is shown in fig. 1 and displays strong
fluctuations.

We then calculate λn the growth rate of the n-th mo-
ment of the magnetic field, defined by 〈Bn〉s ∝ eλnt. λn

depends on Rm = U/(kfη) and from a linear fit close
to λn = 0, we calculate the threshold of instability of
each moment denoted as Rmc(n). We obtain Rmc(n =
2) = 9.792 ± 2.496, Rmc(n = 1) = 14.742 ± 2.522 and
Rmc(n = 0+) = 20.001± 2.339 (which corresponds to the
log of the field, see discussion below)1. The onset of insta-
bility, calculated from the linear equation, thus depends
on the considered moment.

The flow in these numerical simulations involves many
spatial scales and it is thus difficult to derive analytical
predictions for all the moments. This can be done by
considering a slightly different flow configuration. The ve-
locity field is assumed to be an Ornstein-Uhlenbeck (OU)
process in time and of the form v = Y (t)u, where u is
a prescribed function of space. The noise Y (t) satisfies
〈Y (t)Y (t′)〉s = exp(−|t − t′|/τ)D/τ . Here τ denotes the
correlation time for the OU process. The white-noise case
is recovered in the limit τ → 0.

Our strategy is to use scale separation to obtain an equa-
tion for the part of the magnetic field that evolves at large
scale compared to the scale of the flow. Noting again f the
average over a wavelength of the flow, we write B = B+b.

1The error bars are calculated using the standard bootstrap
algorithm with 95% confidence interval [12].

The fields satisfy

∂B
∂t

= ∇ × (v × b) + η∇2B,

∂b
∂t

− η∇2b = ∇ × (v × B) − ∇ × (v × b).

In the framework of scale separation and for b small com-
pared to B (i.e., Rm small), the second equation reads

∂b
∂t

− η∇2b = ∇× (v×B) = Y (t)(B · ∇u−u · ∇B). (4)

To ease notation, we assume that the fields are 2π periodic
in all directions and denote f̂ = (2π)−3/2

∫
feikrd3r as the

Fourier transform of f . This leads to

∂b̂
∂t

+ ηk2b̂ = iY (t)(B · k û − û · KB), (5)

with k the norm of k and where B, the large-scale field, is
anticipated to be of the form B ∝ exp (iK · r). We obtain
the solution for b as

b̂ = Wk(t)ηk2b̂r, (6)

where b̂r is the steady solution of eq. (5) with Y (t) = 1,
i.e., b̂r = i(B · kû − û · KB)/(ηk2) and Wk(t) is the solu-
tion of

dWk

dt
+ ηk2Wk = Y (t). (7)

We then obtain the effect of the small-scale fields on the
large-scale one as

v × b = iY (t)(2π)−3
∑
k

Wk(t)(B · k û(−k) × û(k)

− û(k) · Kû(−k) × B). (8)

If the velocity field contains modes with wave vectors of
same norm k, the expression is simplified and we obtain

v × b = Y (t)Wk(t)(ηk2α̃B)
= Y (t)Wk(t)(ηk2αB − ηk2βiKB), (9)

where the tensor α̃ is obtained from α and β which are
the alpha and beta tensor [13] that would be obtained with
Y (t) = 1, namely

αpq = (2π)−3i
∑

k,|k|=k

kq

ηk2 (û(−k) × û(k))p, (10)

βpqr = (2π)−3εpmq

∑
k,|k|=k

ûm(−k)ûr(k). (11)

Formulae (9), (10) and (11) give the expression of the
α-tensor for the random flow that we consider. We note
that it has less simple properties than assuming α to be
a Gaussian white noise, a standard way to include fluc-
tuations in a mean-field model, see, for instance, [14].
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In particular, we will find that the distribution of the
fluctuations are non-Gaussian.

The antisymmetric part of the α̃-tensor leads to an ad-
vection of the field and does not affect the growth rate. We
thus consider a symmetric tensor. We then change coordi-
nates to diagonalize it so that α̃B = (α1B1, α2B2, α3B3).
The most unstable mode is obtained by finding, among
the αi of same sign, the two largest |αi|, say α1 and α2

and considering a magnetic field of the form B = B̂e−iKz.
For positive α1,2, the eigenmode Bp =

√
α1B̂1 + i

√
α2B̂2

satisfies

dBp

dt
= Y (t)Wk(t)αηk2KBp − ηK2Bp, (12)

where α =
√
α1α2. We then obtain the large-scale mag-

netic field as

Bp(t) = Bp(0)eαηk2KI(t)−ηK2t, (13)

where I(t) =
∫ t

0 Wk(t′)Y (t′)dt′.
The magnetic field has thus a fluctuating growth rate

controlled by the random variable Y (t). It is then pleas-
ant that this quantity was studied by Jean Farago [15].
Indeed, the velocity of a Brownian particle subject to a
random force in a viscous fluid satisfies eq. (7) where Y (t)
is the random force and ηk2 the viscous damping rate. The
quantity of our desire, I(t), is then the energy injected by
the random force into the particle. This quantity follows
a law of large deviation and at long time its probability
density function takes the form

P (I = tε) � e−tg(ε), (14)

where � means that the logarithms are equivalent and g
the rate function is given for positive energy by its Legen-
dre transform h as [15]

g(ε) = h(γ) − γε, (15)
h′(γ) = ε, (16)

and is infinite for negative ε (see footnote 2). The Legen-
dre transform is given by

h(γ) =
1
2τ

(
−ηk2τ − 1 +

(
η2k4τ2 + 1

+ 2ηk2τ

√
1 +

4Dγ
ηk2

) 1
2
)
. (17)

Then γ is found by inverting h′(γ) = ε.
We can now calculate the growth rate of the moments

of the magnetic field. As the small-scale field b is small

2Equation (15) is obtained for a bounded initial condition for W .
Unboundeed distributions of the initial condition change the rate
function [15,16] but this concerns negative or small values of the
injected power and is not relevant for the calculation of the moments
n ≥ 0.

compared to the large-scale one, the spatially averaged
magnetic energy is proportional to B

2
and we have

〈Bn〉s ∝
∫
enηk2αKεt−ηnK2tP (ε)dε �∫
e−t(g(ε)−nηk2αKε)−ηnK2tdε. (18)

For large t, this is evaluated by the Laplace method. Let
εc(n), γc(n) be the solutions of g′(ε) = −γ = nαηk2K, the
growth rate of the n-th moment is

λn = −g(εc) + nεcηk
2αK − nηK2,

= −h(γc) − nηK2, (19)

where we have used eq. (15) to replace g(ε) by h(γ).
Provided γc is real, we obtain

λn = −nηK2 +
1
2τ

(
1 + ηk2τ −

(
1 + η2k4τ2

+ 2ηk2τ
√

1 − 4DnαK
) 1

2
)
. (20)

We also find that the logarithm of B grows like
(ηk2αKD/(1 + ηk2τ) − ηK2)t.

We note that the behavior of the log can be obtained
directly from the behavior of the moments (here eq. (20)).
Indeed, for n → 0, a standard heuristic estimate of sta-
tistical mechanics writes 〈Bn〉s � 1 + n〈log(B)〉s and
eλnt � 1 + λnt, so that 〈log(B)〉s/t tends to limn→0 λn/n.
This can be checked for eq. (20). We thus say that the
increase or decrease of the log of the field is obtained from
the sign of the growth rate of the moment of order 0+.

The moments display multiscaling: their growth rates
vary nonlinearly with the order n. In the limit of infi-
nite Rm, this has been predicted for random renovating
flows [17,18] and for linear flows [19]. Similar predictions
were also made but restricted to a few first moments of in-
teger order: in the case of a linear shear combined with a
random nonhelically forced flow, it was shown analytically
that the first and second moments have different growth
rates [9]. This was also shown for the first four moments
of a mean-field model, using a random alpha effect [14].

From eq. (20), we observe that the onset defined by
the vanishing value of the growth rate depends on n.
More precisely, the onset of the n-th moment behaves as
k2αc(n)D/|K| � 1+ηk2τ −n(K/k)2(1+3ηk2τ +η2k4τ2),
where we have kept terms of order up to (K/k)2. Mo-
ments for large n, larger than (4DKα)−1, diverge faster
than exponentially. The limit τ → 0 leads to the ve-
locity field being uncorrelated in time (white-noise limit),
which ressembles the Kraichnan-Kazantsev class of veloc-
ity fields. We observe that the difference in the thresh-
old for the growth of different moments |αc(n) − αc(m)|
increases with increasing τ . In addition, anticipating
from the 0+-moment the value of the onset, we calcu-
late the onset of the dynamo instability to be αc(0) �
K(1 + ηk2τ)/(k2D). We conclude that both the dynamo
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Fig. 2: (Colour online) For the flow defined by eq. (21), the
growth rate λn/n is shown as a function of n for different values
of Rm. The parameter K/k = 0.0025.

instability threshold and the multiscaling increase with
increasing correlation time τ . This result is nontrivial and
it is important to note that the considered velocity field
has a zero mean.

To test our analytical predictions, we consider a delta-
correlated in time flow of the Roberts type [20] defined as

v = ζ(t)U(cos(ky), sin(kx), cos(kx) + sin(ky)). (21)

For K/k = 0.0025, we calculate the growth rate λn of the
moments of the magnetic field from the numerical solu-
tion3. Figure 2 shows λn/n as a function of n for different
values of Rm defined as Rm = U/(ηk). The numerical
results and the theoretical solutions agree very well. We
note that λn/n stays constant for different values n hence
the growth rate of the moments λn scales linearly in n.

In order to observe a nonlinear scaling near the thresh-
old we need to reduce the scale separation. Indeed ex-
panding eq. (20) for the flow studied here (with τ = 0),
we obtain

λn = −nηK2 + ηk2
(
n
DU2

η

K

k

(
1 − K

k

)

+ n2D
2U4

η2

K2

k2

(
1 − K

k

)2

+ · · ·
)
. (22)

Anticipating again from the 0+-moment the value of the
onset to be DU2/η = K/k(1 −K/k)−1, we obtain at on-
set λn = ηk2n2K4/k4. Thus, for K/k 	 1 and n ∼ O(1)
the growth rate λn scales linearly with n, but as we in-
crease K/k we start to see contributions from higher or-
ders of n. Using K/k = 0.25, we show λn/n as a function
of n for different values of Rm in fig. 3. The scaling of λn

is nonlinear with respect to n. The theoretical results, not
displayed here, are not valid as they assume large-scale
separation and small Rm. There have been many studies

3The average over realizations can be done by performing several
independent simulations. Another possibility is to use a long time
series of duration say T . By splitting it in N shorter time series
(duration τm = T/N) and rescaling the amplitude to fix its initial
value, we generate N independent realizations provided that τm is
larger than the correlation time of the fields.
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Fig. 3: (Colour online) For the flow defined by eq. (21), the
growth rate λn/n is shown as a function of n for different values
of Rm. The parameter K/k = 0.25.

which have considered the validity of the first-order smoot-
ing approach in the context of the alpha effect [21,22].
It has recently been studied in detail in [23], where it is
shown that for small-scale separation there is a significant
difference from the theoretical growth rate.

The results presented so far show that the moments cal-
culated from the linear induction equation have different
onsets. The reader familiar with usual instabilities should
be worried at that stage. This paradoxical behavior is ac-
tually reminiscent of bifurcating systems in the presence
of multiplicative noise. Consider the canonical model ẋ =
(μ+ ζ(t))x− x3 where μ is the control parameter and ζ a
white noise of autocorrelationDδ(t). Dropping the nonlin-
ear term, the solution reads x(t) = x(0) exp(μt+

∫
t
0 ζ(t′)dt′)

so that 〈xn〉s ∝ exp(nμt+n2Dt/2). The onset of the n-th
moment is given by μc = −nD/2. This traces back to
the intermittent behavior of x: there exists, on rare oc-
casions, coherent occurences of the noise during which x
keeps on growing exponentially for long durations. These
phases provide large contributions for large moments of
the field and are responsible for the decrease of μc as a
function of n [7]. It is important to realize that these
events are suppressed as soon as a nonlinearity is taken
into account. Indeed, the Fokker-Planck equation for the
nonlinear model can be solved analytically. It shows that
for negative μ, x tends to 0 and that this solution is unsta-
ble for positive μ. The onset when taking nonlinearities
into account is thus μc = 0. It is given by the onset of
the n-th moment of the linear problem when n tends to
zero. In other words, the onset corresponds to the onset
of the logarithm of the field, the Lyapunov, when calcu-
lated from the linear equation. This result holds even for
extended systems [24]. In the context of kinematic tur-
bulent dynamo, the onset is thus given by the change of
sign of the variation of the statistical average of the log of
the magnetic field, and not by the behavior of any other
statistical moment, in particular, not by the one of n = 2
associated to the energy of the field.

To test this prediction we have performed numerical
simulations that include nonlinear effects for the magnetic
field. If we solve for the full magnetohydrodynamic system
of equations we need to solve a 3D flow as the nonlinearity
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makes the 2D problem become 3D. In order to remain com-
putationally efficient we have considered several simpler
forms of nonlinearity. For the flow defined by eq. (1), we
have solved

∂tB = ∇ × (u × B − 〈|B|2〉zJ) + ηΔB, (23)

where J = 1
μ0

(∇ × B) is the current. 〈·〉z denotes av-
eraging along the z-direction. We show the amplitude
of the space and time-averaged magnetic energy 〈B2〉 as
a function of Rm = U/(kfη) in fig. 4. The solid dark
line denotes a linear fit through the data points. The x-
intercept of the linear fit is the actual threshold of the
dynamo instability. We have Rmc(NL) = 22.082 ± 0.623.
The error bars of the x-intercept of the linear fit which
gives the error in calculating the threshold of the instabil-
ity are found using a bootstrapping algorithm. Compared
with Rmc(n) as discussed initially, we conclude that the
value for the 0+-moment is equal within the error bar to
Rmc(NL) while the energy (2-order moment) underesti-
mates the threshold.

It is important to realize that the form of the nonlin-
ear term does not change the value of the onset but that
without nonlinear term, different moments have different
onsets. We have checked this by considering two other
nonlinear terms. For the flow defined by eq. (21), we have
solved

∂B
∂t

= ∇ × (v × B − 〈|B|2〉zB) + η∇2B. (24)

Using the same data analysis as for the former flow we
obtain for the kinematic simulation Rmc(n = 0+) =
0.1967±0.0016, Rmc(n = 1) = 0.1895±0.0024, Rmc(n =
2) = 0.1717 ± 0.0035 while with the nonlinear term
Rmc(NL) = 0.1970 ± 0.0011.

We finally solved for a last form of nonlinear term, in-
troduced by considering the full set of Navier-Stokes equa-
tion along with the induction equation. The velocity field
is forced by a forcing which is random in time of the

form f = ζ(t)f0(cos(ky), sin(kx), cos(kx) + sin(ky)) with
〈ζ(t)ζ(0)〉s = δ(t). The governing equations are

∂tv + v · ∇v = −1
ρ
∇p+ νΔv + f − 1

ρ
〈(J × B)〉z , (25)

∂tB = ∇ × (v × B) + ηΔB. (26)

These equations can be obtained from the Navier-Stokes
and the induction equations in the limit of infinite ro-
tation [25]. Only the z-independent component of the
Lorentz force is considered because the z-dependent com-
ponent induces a correction in the velocity field propor-
tional to the inverse of the rotation rate and hence can
be neglected. We define Rm =

√
f0/k/(ηk) to be the

magnetic Reynolds number. For the parameters K/k =
0.25, Re =

√
f0/k/(νk) = 0.05, using the same data anal-

ysis as for the former flow we obtain Rmc(n = 0+) =
4.0272±0.0183, Rmc(n = 1) = 3.9042±0.0501, Rmc(n =
2) = 3.7865 ± 0.0515, Rmc(NL) = 4.0151 ± 0.0102. The
same conclusions as for the other nonlinear models apply.
In particular the threshold is given by the 0+-moment of
the magnetic field and higher moments underestimate the
threshold. We point out that the velocity field is not a
delta-correlated process and has a finite correlation time.
Together with the analytical prediction of eq. (20), these
numerical results show that intermittency and multiscal-
ing of the moments as well as the existence of different on-
sets of instability for different moments, is not a property
restricted to delta correlated velocity fields but is generic
to any fluctuating flows4.

All the models investigated here display strong intermit-
tency with the growth rate of the n-th moment depending
nonlinearly on n. In particular the threshold of insta-
bility calculated from the linear equation depends on n.
When nonlinear effects are considered, the threshold be-
comes uniquely defined and is provided by the vanishing
of the linear growth rate of the log of the field (statistical
moment of order n = 0+). These properties are expected
to hold for all turbulent dynamos. Numerical simulations
of the linear induction equation do not frequently consider
statistical averages but instead measure the evolution of
the log of the magnetic energy (B2 = B2) so that a long
time decay (respectively, growth) of the log amounts to a
decay (respectively, growth) of its statistical average (see
footnote 3 for a relation between times series of the kine-
matic problem and statistical averages). This thus cor-
rectly predicts the onset. If instead a statistical average of
the magnetic energy (or any other moment different from
the log) is made, then the predicted onset would be wrong.
Similarly, we point out that most studies on the Kazant-
sev dynamo focus on the n = 2 moment and are likely to
give at best an approximation of the onset.

Out of the dynamo context, it seems worth investigating
whether similar behaviors play a role in other systems with

4We expect that a sufficient condition for multiscaling is that the
integral of the autocorrelation function of the velocity fluctuations
(i.e., its spectrum at zero frequency) does not vanish [7].
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multiplicative noise, such as the advection of a passive
scalar by a turbulent flow.

Finally, our results draw a link between a highly out-
of-equilibrium system (turbulent dynamo) and a classical
example of stochastic process (Brownian particle). This
has two interesting consequences. First, other tools of
statistical mechanics can be used to study the dynamo in
that context, in particular instanton methods and concen-
tration of measure. Second, a similar approach is expected
to be of interest in a variety of problems when scale sep-
aration can be used, including but not restricted to other
hydrodynamic instability such as the anisotropic kinetic
alpha (aka) effect, for instance [26].
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