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Abstract – One-dimensional patterns generated by the Faraday instability at the surface of a
vertically vibrated fluid are investigated when the reflection symmetry in the direction of the
pattern is broken. For large symmetry breaking, the stationary instability turns into a Hopf
bifurcation at a codimension-2 point. This Hopf bifurcation amounts to a periodic drift of the
pattern. Further above the onset of the instability, this drift transition competes with the Eckhaus
instability as predicted by the study of a model built upon the Swift-Hohenberg equation. In the
presence of noise, the drift becomes random and time series of the pattern amplitude display
random reversals (sign changes). We show that these reversals belong to the same class as those
observed in a variety of contexts such as magnetic fields generated by dynamo action.

Copyright c© EPLA, 2015

Introduction. – There exist several examples of field
reversals in geophysical or astrophysical fluid dynamics.
The most striking one is provided by the Earth magnetic
field that displays random reversals during which the axial
dipole component vanishes and changes sign. Another ex-
ample is the magnetic field of the Sun that changes polar-
ity almost periodically, roughly every 11 years [1]. Besides
these examples from magnetohydrodynamics, there exist
purely hydrodynamic systems in which reversals of a large-
scale velocity occur on a turbulent background. One of
them is the quasi-biennial oscillation: the zonal wind in
the equatorial stratosphere of the Earth flips from east-
ward to westward with a period of roughly two years but
unlocked to any seasonal cycle [2]. Other examples have
been studied in several laboratory experiments or using
numerical simulations: random reversals of the large-scale
circulation in turbulent Rayleigh-Bénard convection [3]
or in Kolmogorov-type flows, i.e. quasi–two-dimensional
turbulent flows driven by a spatially periodic forcing [4].
Reversals of the magnetic field have also been studied in a
laboratory experiment [5] and modeled in the framework
of the low-dimensional dynamical system theory [6].

Field reversals correspond to trajectories that connect
two symmetric states in the phase space of the system. In
the case of the magnetic field, the equations of magneto-
hydrodynamics (MHD) are invariant under the transfor-
mation (v → v,B → −B) where v is the velocity field and
B the magnetic field. This symmetry is broken at the dy-
namo threshold, where the magnetic field is spontaneously

generated by the motion of an electrically conducting fluid.
Convection rolls, and the large-scale circulations involved
in the QBO or in Kolmogorov flows can also be gener-
ated with both signs at their instability threshold. In all
these examples, the broken symmetry at instability thresh-
old is then statistically restored in a regime with peri-
odic or random reversals. It has been commonly believed
that random reversals are generated by turbulent veloc-
ity fluctuations that induce transitions from one state to
the symmetric one as for a particle subjected to noise in a
double-well potential. Obviously, time periodic reversals
cannot be described in this framework. In addition, rever-
sal dynamics never correspond to a homogeneous decay
of the field then growing again with the opposite polarity.
Some components decay first, some others are generated
during the reversal process such that reversals correspond
to complex trajectories in phase space. It is rather un-
likely that turbulent fluctuations act coherently during
this whole process and in the whole flow volume. Then,
there should exist some trajectories in phase space that
are, either constrained by the deterministic part of the
dynamics, or are more likely to occur if induced by fluc-
tuations. The problem is to determine these easiest paths
that are followed during reversals.

When the field is a spatially periodic pattern along
the x-axis, the easy paths for reversals can be found
immediately; they correspond to spatial translations of
the pattern by half a wavelength. For a system of infinite
extent close to the pattern-forming instability threshold,
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Fig. 1: (Color online) Parameter space: vertical vs. horizontal
acceleration (Ah, Av). Symbols indicate the onset of bifurca-
tions betwen different regimes. For Av ≤ Avc � 0.85g, the
flat surface is stable. For Ah ≤ Ah2 � 0.08g, blue asterisks
indicate the onset of the Faraday instability that generates
a stationary pattern of subharmonic instability. For larger
Ah, red circles correspond to the onset of the Hopf bifurca-
tion toward the drifting regime. The full black circle is the
codimension-2 point. At larger Av, black triangles indicate the
saddle-node bifurcation from the stationary to the drift regime.
Above the empty squares, the system is bistable, with two sta-
tionary solutions. For Ah = 0, this bistability corresponds to
the Eckhaus instability. Continuous lines are guides for the
eyes. Several subcritical transitions are indicated with green
losanges. S, D and B stand for stationary, drifting and bistable
regimes.

these paths involve two modes, respectively proportional
to cos kx and sin kx. Changing their relative amplitude
corresponds to a neutral perturbation that shifts the pat-
tern along x. A slight breaking of the x → −x sym-
metry induces a drift of the pattern at constant speed,
i.e., periodic reversals at instability onset instead of a
stationary pattern. In the presence of lateral boundaries
at x = ±L/2, translational invariance is broken and other
easy paths for reversals should be found. When L is such
that patterns with 2n and 2n +1 half-wavelengths become
simultaneously unstable, two modes with different parities
with respect to the transformation x → −x are competing
at the instability threshold [7]. Their interaction can de-
scribe wavelength changing instabilities, i.e. the Eckhaus
instability [8]. When the x → −x symmetry is broken, a
limit cycle involving these two patterns and the two ones
with opposite polarities can be generated, thus describing
periodic reversals. We present an experimental demon-
stration of this mechanism in the second section and a
description of these observations in the framework of am-
plitude equations that govern the two modes with different
parities in the third section. We show that these ampli-
tude equations are similar to the ones that describe the
reversals of the magnetic field in the VKS experiment [6]

Fig. 2: (Color online) Snapshots of the experiment. The wave
pattern contains (top panel) 8 wavelengths or (bottom panel)
8.5 wavelengths. The dotted line indicates the center of the cell.

and emphasize the similarities displayed by the trajecto-
ries of the reversals in both systems.

Experimental set-up and observations. – The ex-
periment consists in parametrically forced subharmonic
waves at the surface of a fluid. For parameters such that
a nearly one-dimensional pattern is formed along, say,
the x-direction, we investigate the effect of breaking the
x → −x reflection symmetry. More precisely, the experi-
ment consists in a rectangular cell of size 20× 4 cm2 filled
with a 10mm deep layer of silicon oil. The oil viscosity
is 100mm2 · s−1 and its density 0.965. We denote as x
the direction parallel to the largest side of the cell and
y the transverse one. The cell is shaken vertically along z
with an acceleration Av

√
2 cos(ωt) and horizontally in the

x-direction with an acceleration Ah

√
2 sin(ωt+φ). The vi-

bration thus breaks the x → −x symmetry. Two capacity
probes located symmetrically 60mm away from the cell
center measure the fluid height as a function of time. The
system temperature is maintained fixed, close to 27.5 ◦C,
up to fluctuations of less than 0.1 ◦C.

Unless otherwise stated, we focus on experiments per-
formed with ω/(2π) = 18Hz and φ = 0◦. As presented in
fig. 1, the parameter space in the plane (Ah, Av) is quite
rich. A first instability is observed for a vertical acceler-
ation Avc � 0.85g, roughly independent of the horizon-
tal vibration. For Av ≥ Avc, the flat surface is unstable
and subharmonic waves form through the Faraday insta-
bility [9]. At onset, the pattern appears as 16 extrema
aligned along the x-direction. Neighbouring peaks oscil-
late in phase opposition and the pattern thus contains
eight wavelengths, as displayed in fig. 2. Note that in the
transverse (y) direction, it contains only half a wavelength,
i.e. only one peak, so that the system is essentially one
dimensional. For small amplitude of the horizontal vibra-
tion, the pattern reaches a fixed position in the cell after
the initial growth. At larger amplitude of the horizontal
vibration, the same spatial structure forms but it is not
steady. A schematic diagram of the pattern is presented
in fig. 3. For simplicity, we consider a small number of
wavelengths, and harmonic waves. Periodically in time,
one peak appears at a side of the cell and the pattern
temporarily contains 17 peaks, i.e., 8.5 wavelengths, as
displayed in fig. 2; this corresponds to A → B and C → D
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Fig. 3: (Color online) Simplified schematic diagram of the wave
pattern. We consider only 2 or 2.5 wavelengths in the cell.
From A to B and C to D, a peak appears on the right-hand
side. Another peak disappears on the left-hand side from B to
C and D to A. From A to C or B to D, the pattern is shifted
by half a wavelength to the left, which corresponds to a sign
change.
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Fig. 4: (Color online) Period T of the unstable mode at the
onset as a function of the horizontal vibration Ah/Ah2. T−2

close to the onset is displayed in the insert.

in the schematic. Later on, one peak disappears on the op-
posite side and the system is back to the 16-peak state but
has shifted by half a wavelength (B → C and D → A).
The exchange between these two spatial structures thus
results in a periodic drift of the pattern in the x-direction.
To determine the period we measure the wave amplitude.
The subharmonic component of the fluid height can be
written h = Re[H(x, t) exp (iωt/2)]. Standard data treat-
ment allows us to remove the oscillation at pulsation ω/2
and extract the period T of the slowly varying wave ampli-
tude. In fig. 4, we display the period T at onset of insta-
bility as a function of Ah. The period is larger than 60 s,
i.e., it is quite long compared to the wave period 4π/ω �
0.11 s. Therefore, for the slow evolution of the pattern, the
drift regime appears as being generated through a Hopf

bifurcation even though the invariance under time trans-
lation is broken by the forcing. This threshold for Hopf bi-
furcation meets the threshold for stationary bifurcation at
a codimension-2 point [10], located at Av2 � Avc � 0.85g
and Ah2 � 0.08g. In agreement with the codimension-2
phenomenology, the period behaves as T−2 ∝ Ah − Ah2

as displayed in the inset of fig. 4 and as discussed below.
We note that a drift transition has been reported for the
pattern formed by the periodic fluidization of a granular
layer. A similar dependence of the period on the distance
to threshold has been measured [11].

Amplitude equations for reversals. – To inves-
tigate theoretically this codimension-2 bifurcation, we
consider the Swift-Hohenberg equation as a model of
pattern-forming instability and study the effect of several
terms that break the x → −x symmetry. This family of
models reads

∂tψ =
(
α − (∂xx + k2

c )2
)
ψ + NL(ψ) + SB(ψ), (1)

where SB stands for symmetry-breaking terms and NL
for standard cubic nonlinear terms built with ψ or its
spatial derivatives. Both terms are assumed to conserve
the ψ → −ψ symmetry. The equation has to be supple-
mented with boundary conditions. A convenient choice
is for the field and its second derivative to vanish at the
boundaries x = ±L/2. To give examples of SB(ψ), one
can consider ε∂xψ or εf(x)ψ where f is an odd function
of x. Analytical progress can be made when two modes are
both close to onset. The two modes are D = sin (2nπx/L)
and Q = cos ((2n + 1)πx/L) and, keeping only these two
nearly neutral modes, the field is ψ = d(t)D(x)+q(t)Q(x)
(see footnote 1). Close to the onset of instability, the nor-
mal form theory enables us to write amplitude equations
for d and q. It is convenient to introduce A = d + iq that
satisfies

Ȧ = μA + νĀ + nl(A), (2)

where nl(A) are nonlinear terms. In the absence of
symmetry-breaking terms, ε = 0, the system is symmetric
under reflection with respect to x = 0. We note that the
two modes have opposite parities under this transforma-
tion: one is odd and the other one is even. Then the sym-
metry enforces the invariance of eq. (2) under A → −Ā. In
other words, when the symmetry is not broken, the imag-
inary parts of μ and ν (say μi and νi) vanish. For small
symmetry breaking and close to the onset of instability,
all the coefficients can be calculated through a perturba-
tive expansion in ε [12]. The coefficients μi and νi are
proportional to the amplitude ε of the symmetry-breaking
terms. In the limit of a large system, n � 1, a further
simplification takes place: to lowest order in 1/n the non-
linear terms are proportional to

nl(A) = η
(
5A2Ā − Ā3

)
, (3)

1From the linear part of eq. (1), the two modes have same growth
rate provided 2(kcL)2 = (2n)2+(2n+1)2. For kc close to this value,
by increasing α, the two modes become nearly marginal while the
other modes remain stable and can be eliminated.
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where η is a coefficient. We conclude from this calculation
that, whatever the form of the symmetry-breaking and
nonlinear terms in eq. (1), it can be reduced to eqs. (2)
and (3) to describe the evolution of a large system subject
to a weak symmetry breaking, in the vicinity of the in-
stability threshold of two spatial modes. Nonlinear effects
saturate the instability if the real part of the coefficient
η is negative. In line with the experimental observations,
we assume that this is the case.

Before using these equations to understand the ex-
perimentally observed regimes, we make some comments
about their generality. As mentioned above, eq. (2) is
valid provided the coefficient kc in eq. (1) is tuned so that
only two modes are simultaneously close to criticality. The
range in α above criticality for which these two modes are
the only unstable ones becomes narrower and narrower as
L → ∞. This approach to the large-domain limit was
originally proposed by Knobloch and Guckenheimer [7],
who considered the Boussinesq equations of thermal con-
vection. Our model is an application of the same method
to the Swift-Hohenberg equation, the additional ingredi-
ent being an external breaking of the reflection symmetry.

Another approach consists in deriving an amplitude
equation for the complex amplitude Z at wave number kc,
using symmetry considerations. In the large-domain limit,
one may assume that the nonlinear terms remain phase in-
variant, which leads to

Ż = μZ + νZ̄ + γZ2Z̄. (4)

ν = 0 corresponds to a layer of infinite horizontal extent,
for which translational invariance imposes the invariance
of eq. (4) to a phase shift of the complex amplitude Z. νZ̄
is the leading-order term that takes into account that, al-
though large, L is finite, so that translational invariance is
broken. There is no constant term because the instability
is subharmonic, which implies the invariance Z → −Z of
eq. (4). Surprisingly, in the case of thermal convection, the
assumption that the nonlinear terms are phase invariant is
satisfied for periodic and for no-slip boundary conditions,
but not for stress-free boundaries [13]. In the former cases,
for large L the two eigenmodes look like pure sinusoidal
patterns at wave number kc in the bulk of the domain, the
two modes being in quadrature: eq. (4) provides a good de-
scription of the system. By contrast, for stress-free bound-
aries the two first eigenmodes have different wavelengths,
one of them having an extra half-wavelength inside the
domain [−L/2;L/2]. Even in the large-domain limit, they
cannot be written in the simple form Z(t)eikcx; instead,
the amplitude equation needs to be written in terms of
a variable similar to A above. This amplitude equation
appears to be invariant to the transformation A → iĀ,
which leads to the two nonlinearities of (3) among the
four possible cubic terms. In the presence of an exter-
nal breaking of the x → −x symmetry, the coefficients of
both amplitude equations are complex. Although A and Z
are different amplitudes related to different descriptions of
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Fig. 5: (Color online) Square of the inverse of the period T−2 as
a function of the square of the horizontal vibration (Ah/Ah2)

2.
Different values of the vertical acceleration are displayed, either
at the onset of instability (blue ∗) Av/Avc = 1, or at least 6%
above the onset (pink �) 1.06, (cyan �) 1.1, (black �) 1.14,
(yellow �) 1.18, (blue �) 1.23, (red ◦) 1.27, (green +) 1.32,
(magenta ∗) 1.36.

the linear problem, amplitude equations (2) and (4) lead
to the same bifurcations of the zero solution if we consider
that the nonlinear terms just saturate the amplitude.

Discussion of the experimental results. – We next
focus on the different solutions of eqs. (2), (3). Transitions
to unsteady regimes are observed when the symmetry is
sufficiently broken: |μi| must be larger than |ν|. At finite
distance above the onset of instability, a time periodic
behavior appears through a saddle-node bifurcation [10].
This is the drift regime. The period is easily calculated at
linear order from eq. (2): (2π/T ) = (μ2

i−ν2
i −ν2

r )1/2, where
νr is the real part of ν. In the first approximation, μi and
νi are linear functions of the externally imposed symmetry
breaking Ah. As can be seen in fig. 5, this prediction is ver-
ified by experimental data: T−2 appears to be linear in A2

h.
Comparing the curve at onset (blue asterisks) to above on-
set, we observe that the nonlinear effects merely amount
to a rescaling of the critical value of appearance of the drift
with little change in the slope of T−2 as a function of A2

h.
Note that in the vicinity of the codimension-2 point, other
bifurcations than the saddle-node one are expected [10].
The domain over which these bifurcations exist is very nar-
row, and could not be clearly identified experimentally.

At zero horizontal vibration, another secondary insta-
bility is observed for a value of the vertical acceleration
Ace larger than Avc. Above this value, the patterns are
steady but bistable: depending on the initial conditions,
two different states corresponding respectively to 16 or 17
peaks are observed. In other words, the state that is tem-
porarily explored in the regime of drifting pattern is now
stable. This bistability disappears for Av ≤ Ace and if
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Fig. 6: (Color online) Square of the inverse of the period T−2

of the unstable mode as a function of the phase difference φ
between the horizontal and vertical accelerations for Av/Avc =
1.12 and Ah/Ah2 = 3.75.

the system is in the 17-peak state, it transitions abruptly
toward the 16-peak state. This bifurcation is the Eck-
haus instability [8]. We observe this phenomenon in the
experiment and the transition line is shown (square sym-
bols) in fig. 1. In eq. (1), the effect of symmetry breaking
on the Eckhaus instability can be investigated theoreti-
cally. Generically, the onset of the Eckhaus instability
is delayed by the symmetry-breaking terms, as observed
experimentally [14].

For even larger values of the vertical acceleration (larger
than 1.2 g), several bifurcations are observed. They in-
volve subcritical transitions between modes that have dif-
ferent spatial structures in the transverse direction. The
thresholds of these bifurcations appear as a complicated
set of boundaries in the parameter space shown in fig. 1.

So far, we have considered only a given phase lag, φ = 0.
We can vary how the symmetry is broken by changing this
phase φ between the two vibrations. The period of the
drift is displayed in fig. 6 starting from parameters values
for which drift occurs at φ = 0. The period of the drift
is strongly dependent on the phase. Saddle-node bifurca-
tions to stationary regimes are observed and the pattern is
steady for φ roughly between π/3 and 2π/3[π] (60 to 120◦).
Close to the threshold of the saddle-node bifurcations, we
observe a linear dependence of T−2 on the phase, as ex-
pected. To conclude on the effect of the variation of the
phase, we note that the phase selects the direction of prop-
agation of the pattern. Expressed in terms of the motion of
the container, the pattern moves horizontally in the same
direction as the container moves when its vertical position
is the lowest.

Finally, close to the saddle-node bifurcation, we expect
the system to be sensitive to fluctuations. We have indeed
observed that even temperature fluctuations can affect the
dynamics. In particular, the period of the drift regime be-
comes random. We have quantified the effect of the fluc-
tuations by adding noise to the horizontal vibration. The
noise is low-pass filtered below a cut-off frequency of 40Hz
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Fig. 7: (Color online) Time series of the pattern amplitude H1,2

measured by the two probes when the horizontal acceleration
is fluctuating. Random reversals are apparent. See text for
details.
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Fig. 8: (Color online) Relative fluctuations of the period
std(T )/〈T 〉 as a function of the noise amplitude An for a ver-
tical acceleration Av/Ac � 1.02 and a horizontal acceleration
(blue ×): Ah/Ah2 � 1.13 (magenta 
): Ah/Ah2 � 1.21.

so that we can efficiently amplify the acceleration. This
colored noise of standard deviation An adds incoherent
fluctuations to the periodic vibration and, with a good
approximation, the variance of the acceleration is the sum
of A2

n and of the variance of the periodic acceleration.
In fig. 7, we plot the signed amplitude of the height H1;2

measured by the capacity probles2. As expected the drift
becomes more and more random as An increases. The
duration T between zeros of the wave amplitude fluctu-
ates. The standard deviation over the mean, std(T )/〈T 〉
is displayed in fig. 8. Values close to 60% are reached,
which correspond to widely distributed values of T .

As described in the discussion of fig. 3, when the pat-
tern drifts over half a wavelength, the field amplitude
changes sign, i.e., the field reverses. The time series
displayed in fig. 7 thus correspond to random reversals
of the wave amplitude. We now understand why they
strongly resemble those of magnetic-field reversals (see [6]

2The pattern being subharmonic, it has two possible phases with
respect to the excitation. Positive values of the signed amplitude
correspond to one of the phases and negative ones to the other phase.
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for a comparison between magnetic-field reversals in sev-
eral systems). Indeed, both systems correspond to field
reversals generated by the coupling between two modes
due to a broken symmetry. As a consequence, the ampli-
tude equation for two coupled magnetic modes is the same
as eq. (2). This explains the similarity between magnetic-
field reversals and drifting patterns time series. In the
VKS dynamo, and possibly for the geodynamo, rever-
sals are induced by a symmetry breaking of the flow: the
magnetic dipole drifts along its axis towards one bound-
ary, while a dipole of the opposite polarity nucleates at
the other boundary. This drift leads transiently to a
quadrupolar magnetic structure, before the newly created
dipole invades the entire fluid volume. As shown in this
experiment, two modes with different parities with respect
to a symmetry transformation thus provide an easy path
for reversals in the phase space of the system when this
symmetry is broken.
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