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Abstract. We investigate several earthquake models in one and two dimen-
sions of space and analyze in these models the stress spatial distribution. We
show that the statistical properties of stress distribution are responsible for the
distribution of earthquake magnitudes, as described by the Gutenberg–Richter
(GR) law. A series of predictions is made based on the analogies between the
stress profile and one-dimensional random curves or two-dimensional random
surfaces. These predictions include the b-value, which determines the ratio of
small to large seismic events and, in two-dimensional models, we predict the
existence of aftershocks and their temporal distribution, known as the Omori–
Utsu law. Both the GR and Omori–Utsu law are properties which have been
extensively validated by earthquake observations in nature.
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Among the statistical properties of earthquakes (EQs) that were first discovered is the
distribution of the energy that they release, a property that was initially described by
Gutenberg and Richter [1]. Using modern definitions, the released energy during an EQ
is characterized by its magnitude m defined as m= 2log10(M)/3 where M is the seismic
moment M =

∑
∆x. The sum is taken over all the spatial extent that has moved during

the EQ, and ∆x is the total displacement during the event. In natural seismic data, the
distribution of m is observed to be an exponential, so-called Gutenberg–Richter (GR)
law [1]. It is written P (m)∝ 10−bm and the value of b usually ranges between 3/4 and
1 [2]. When translated into the distribution of the moment M, the GR law turns into a
power law distribution P (M)∝M−1−B, where B = 2b/3 and thus ranges between 1/2
and 2/3 [3].

Another well-documented property of EQs concerns the number of aftershocks,
which are events that follow a large event, referred to as the mainshock. This prop-
erty is called the Omori–Utsu law [4]. It is presented in general by the formula for the
number n of events per unit of time dn/dt= k/(t+ c)−p where the exponent p is of
order unity, c and k are constants that depend on the mainshock properties, and t is
the time elapsed since the mainshock. This is a generalization of the original formula
proposed by Omori, who considered p=1.
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A variety of EQ models exists, using simplified and idealized dynamical rules to
describe the evolution of faults [5, 6], see [3, 7] for reviews. In general, through appropri-
ate parameter adjustment, these models yield the GR law. The objective of this article
is to investigate the origin of the power-law distribution in several models and to pre-
dict possible values for the exponent B. To achieve this, we consider the size of the EQ,
which refers to its spatial extent. From the distribution of the size and the dependence
of moment on size, we derive the exponent of the GR law. In section 1, we present this
relation, which will be of use all along this article. In section 2, we explore models with
one-dimensional geometries and in section 3, we extend our approach to two-dimensional
situations. In this geometry, we also propose an explanation for Omori–Utsu’s law. A
comparison of our results with existing theoretical results and with natural observations
is presented in section 4. This article presents in detail the results announced in [8].

1. Relation between size and moment distributions

We consider models where space is discretized. The moment of an EQ writes M =∑N
i=1∆xi, where ∆x i measures the total change of position of site i during the event

and i ranges from 1 to N, with N being the number of sites involved in the event, i.e.
the size of the event.

We first assume that the moment M is simply related to the size of the event N as

M ≃Nα , (1)

where ≃ stands for equality up to a multiplicative constant. If the distribution of N is
a power-law,

PN (N)≃N−β, (2)

then the distribution of M is also a power-law

P (M)≃M−1−B, with exponentB =
β− 1

α
. (3)

This argument was previously introduced in [9] and used to constrain the admissible
values of B.

This approach relies on the assumption of a single relation between M and N, such
as equation (1). If we release this assumption and start with the general expression of a
joint probability Pj(M ,N), a less strict condition for equation (3) to apply is that the
joint distribution writes Pj(M ,N) = PN (N)f( M

Nα )N
−α. In other words, this means that

the conditional probability of M given N is self-similar.
This argument relies on the existence of a relation between the moment M and a

quantity N that we described here as the event size. The result remains valid if, instead
of the size of the event, another quantity of the system is related to M as in equation (1)
and is distributed as in equation (2). We shall, for instance, use this version of the result
in the analysis of the standard Burridge–Knopoff (BK) model in section 2.1.
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Figure 1. Schematics of the BK model. The ith block is pushed by its neighbors
and the moving plate of speed V (t).

2. One-dimensional models

2.1. Analysis of the Burridge-Knopoff (BK) model

We first consider the one-dimensional BK model, where a set of Nt sliders are located
on a line at positions xi, as illustrated in figure 1. Each slider is connected to its nearest
neighbors with a spring of stiffness k 2. The first and the last sliders are only connected
to one neighbor. In addition, each slider is connected with a spring of stiffness k 1 to a
plate moving at constant velocity denoted by v 0.

The driving force on the ith slider is

τi =−k2 (2xi−xi+1−xi−1)+ k1 (v0 t−xi) . (4)

When the sliders are all at rest, they experience a linear in time increasing load until
this driving force τ i reaches the static friction force Fs for a given slider i, which starts
to move with velocity vi and is then subject to the dynamic friction force

Fd (vi) = F
1− δ

1+ 2∆
1−δvi

(5)

where δ and ∆ are positive constants. δ corresponds to the instantaneous stress drop
from static friction to dynamic friction. As introduced in [10], the dynamic friction
decreases as the slip velocity vi increases. Such friction is referred to as velocity weaken-
ing friction, and ∆ represents the amplitude of the negative velocity dependence. Then
we are led to the equation of motion governing slider i,

m
d

dt
vi = τi−Fd (vi) . (6)

In addition, a slider is not allowed to move backward and if its velocity vanishes with a
negative acceleration, the velocity is set to zero. We note that during the motion, the
driving force applied to the neighbors of moving sliders increases and additional sliders
can be put into motion.

Without loss of generality, we set to unity the masses of the movers, the stiffness
k 1, and the static friction force Fs. Unless otherwise stated, we use Nt = 800, v0 = 10−6,
∆ = 10−3, α=1, and k 2=9 as is usually considered by former studies. We take for
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Figure 2. Moment M as a function of time of earthquake for the solution of the
BK model with N =800, v0 = 10−6, δ = 10−3, α=1, and k 2=9. Note both the
existence of small events involving only one mass and with identical values of the
moment (slightly smaller than 10−4) together with events of moment that widely
varies.

initial values of xi small and uncorrelated random terms. For these parameters, the
system alternates between a loading period during which the sliders are at rest and the
driving force τ i increases linearly in time and a brief event is initiated once one of the
sliders starts moving and can put into motion a varying number of sliders. These sudden
events are interpreted as the EQ in the BK model. The system has a chaotic behavior
and in particular the size of the EQ fluctuates. The time series of the moment M of the
events is displayed in figure 2. The PDF of the moment P(M ) is displayed in figure 3. As
discussed in the introduction, the GR law corresponds to P(M ) being a power law. In
this study, we focus on the behavior for large enough M, roughly spanning two decades
between M =1 and M = 102. Within this range of M, we measure a power-law exponent
1+B = 1.56± 0.1.

To understand the origin of this behavior, we first discuss how events are formed. A
crucial role is played by the stress field Si, which we define as

Si =−k2 (2xi−xi+1−xi−1)− k1xi . (7)

An EQ initiates at the site where Si is maximum and at time t when Si is equal to
Fs− k1v0t. An example of stress profile just before an event is displayed in figure 4. It
corresponds to an event that involves a large enough number of sliders. Going forward,
we focus on such events with a number of moving masses N ⩾ 30. The general behavior
is the following: the slider with maximum Si value, the epicenter, starts to move and
subsequently puts into motion its neighbor and this phenomenon propagates through a
part of the system. We identified that an EQ can be partitioned into two spatial domains.
An initial domain, that corresponds to stress values nearly equal to the maximum, see
figure 4. For sliders within this domain, the total displacement at the end of the EQ,
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Figure 3. Distribution of the moment M for the BK model, with N =800, vo =
10−6, δ = 10−3. ForM between 0.5 and 113, a best fit leads to a power-law exponent
1 + B = 1.56 ± 0.1, indicated here as a straight line.

Figure 4. For the BK model, example of fields corresponding to an event involving
N =95 sliders. Top: stress profile before the event, i.e. value of Si minus its max-
imum value as a function of i, the index of the 800 masses. The black square
indicates the first moving mass (epicenter of position noted i0). Middle: total slip
as function of the position from the epicenter (i− i0) for the event caused by the
stress profile in the top figure. Bottom: zoom on the stress profile (same data as
top figure) as function of the position from the epicenter (i− i0). Note the initial
phase for i smaller than 20 where Si remains very close to its maximum.

∆x i , scales as the square of the distance from the epicenter. This domain contains sliders
close to the epicenter for which the difference between the stress and its maximum
remains smaller than roughly ∆S = 0.2. In the second domain, the slip depends on

https://doi.org/10.1088/1742-5468/ad2dd6 6
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Figure 5. Distribution of size of earthquakes P(N ) for N ⩾ 30. Blue, total length
N ; red, length of initial domain Ni and black, length of the second part of the
EQ: Nc =N −Ni. The black straight line indicates the power-law with exponent
−β =−1.55± 0.06, obtained by a best fit for 23⩽Nc ⩽ 140, and the red straight
line indicates slope −5.6.

the initial stress. It increases with the distance from the epicenter if max(Si)−Si is
smaller than ∆S. Otherwise, it decreases and a good qualitative description of the slip
variation between neighboring sliders is that ∆xi+1−∆xi ∝ (Si−max(Si)). The event
terminates when the stress is such that ∆x i vanishes. This corresponds to the stress
minus its maximum reaching large enough negative values for a sufficient number of
masses.

A few comments are in order. We have just presented a simplified set of rules that,
at least qualitatively, provide a description of the events. These rules rely on the value
of the stress before the event and translate it into the spatial distribution of the slider
slip once the EQ is over. We can only expect that this is valid in the regime of para-
meters that we are considering here and for specific events, for instance those involving
a large enough number of sliders. Nevertheless, these rules allow us to obtain a stat-
istically representative set of the real solutions of the BK model. In other words, the
predictions derived from this simple set of rules correctly describe the properties of the
BK model. Importantly, we stress that most of the detailed aspects have no influence
for the prediction that we shall obtain.

We now turn to the statistical properties of the spatial extent of the EQ. We invest-
igate both the size of the initial domain Ni, for which the initial stress Si remains larger
than its maximum minus ∆S and the size of the second part of the event, say Nc. The
total size of an event is N =Ni+Nc. The distribution of Ni, Nc, and N are shown
in figure 5. The initial phase has a peaked distribution that decreases at large Ni as
either a power-law with large exponent (larger than 5) or as an exponential. In con-
trast, the distribution of Nc is wider and displays a power-law behavior with exponent

https://doi.org/10.1088/1742-5468/ad2dd6 7
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Figure 6. M versus Nc for events simulated by the BK model. Blue dots are indi-
vidual events. The black curve is the moment M averaged over events at fixed value
of Nc. Note the linear trend for large enough Nc.

β = 1.55± 0.06. The distribution of N does not display a clear scaling domain. In sum-
mary, an event is characterized by two phases: an initial phase in which sizes do not
fluctuate much and a second phase in which length Nc is more widely distributed, fol-
lowing a power-law of exponent β.

To conclude on this analysis of moment and length, we note that a relation between
the moment of an event M and the length Nc exists and is shown in figure 6. For Nc

larger than 10–20, the moment M is linear in Nc. This leads to an exponent α=1 for
the law M ≃Nα

c valid at large Nc.
Using the relation between M and Nc, we can now verify the relation obtained

in equation (3). We found β ≃ 1.55, α≃ 1, thus 1+ (β− 1)/α≃ 1.55± 0.06, that is in
nearly perfect agreement with the exponent 1+B = 1.56± 0.1 obtained from the GR
law.

To understand what controls the B -value, we have to understand what sets the
value of α and β. α=1 implies that the moment is proportional to Nc. This is a simple
consequence of the slip of each slider which is bounded and, more precisely, which
fluctuates around a value roughly independent of Nc. This property is tested in figure 7,
where events involving different numbers of sliders are plotted and no variations with
Nc are observed.

To understand the value of β, we have to consider the condition for an event to stop.
As discussed during the analysis of the stress profile, an event stops when the stress
minus its maximum value reaches sufficiently negative values for a sufficient number of
sliders. If we assume that Si is a random walk, the probability to reach a given value
for the first time after Nc steps is a power law which, if the steps of the random walks

are uncorrelated, satisfies P (Nc)≃N
−3/2
c [11]. We thus obtain from this argument an

explanation for the value β = 1.55± 0.06. The length of the EQ isN =Ni+Nc, where Ni

does not fluctuate much whereas Nc is determined by the random walk behavior of the
stress profile. Consequently, the distribution of Nc is a power-law with exponent −3/2.

https://doi.org/10.1088/1742-5468/ad2dd6 8
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Figure 7. Slip as a function of the mass position normalized by the total number
of masses involved in the event. Colors stand for different numbers of masses: Blue,
between 80 and 100; Green, between 100 and 130; Red, between 130 and 170; and
Black, above 170.

Figure 8. Power spectrum density of the spatial gradient of the stress profile before
an event measured in the second part of the event and for events larger than N =64
(blue) or N =128 (red). The PSD tend to a non-zero value at vanishing wave
vector K.

We can verify that Si behaves as a random walk by calculating the power spectrum
density (PSD) of its spatial gradient, see figure 8. The spectrum tends to a non-zero
constant at small wavevector K, which implies that at large scale, Si is indeed a random
walk with uncorrelated increments.

In summary, our results on the BK model show that large enough events contain a

large domain of size Nc, which is randomly distributed as N
−3/2
c , and reach slip values

independent of Nc. These two properties constrain the B -value to 3/2.
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Figure 9. Probability density function (PDF) of the moment of the events M for
the solution of the Coulomb friction model with Fd = 0, N =800, v0 = 10−6, k 1=1
and varying k 2 (see color code in the legend).

2.2. Coulomb friction model

We now consider a modified version of the BK model in which the friction force can
take only two values: the static friction force Fs or the dynamical friction force Fd. Both
values are constant so that we name this model a Coulomb friction model. This model
had been considered in the past [12] to study the effective friction force of an ensemble
of sliders. Here, we focus on the distribution of magnitude. We consider the case Fd = 0
and choose the same values as in the standard BK model, N =800, v0 = 10−6, k 1=1.

Despite the simplicity of this model, its solutions also display chaotic properties.
We observe a wide distribution of the moment released at each event M =

∑
i ∆xi.

Interestingly, these distributions display a power-law behavior P ∝M−(1+B), and the
exponent B varies with k 2 (figure 9).

We also observe a wide distribution of the number of masses involved in each event
N. As for the distributions of the moment, they display a power-law behavior P ∝N−β,
and the exponent β varies with k 2, see figure 10.

In line with what we did on the standard BK model, we calculate the value of ⟨M⟩N
where the average is taken at fixed value of N. At intermediate value of N, a power-
law behavior ⟨M⟩N ∝Nα emerges (see figure 11) and again the exponent α depends
on the value of k 2. Compared to our analysis of the standard BK model, we consider
here the total length of each event. Indeed, for the events obtained for the Coulomb
friction model, the initial phase observed in the standard BK model is not present. As
a result, our analysis does not require us to remove the length of the initial phase of the
earthquake in order to estimate the length of the critical zone. The argument is thus
simpler for the Coulomb friction model.

This is also confirmed by analyzing the stress profile and its relation with the slip
distribution. Unlike the standard BK model, the stress profile does not display a plateau
near its maximum but rather isolated positions where the stress is close to its maximum.
We observed that for events that involve a sufficient number of masses, there exists a
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Figure 10. Probability density function (PDF) of the event size N for the solution
of the Coulomb friction model and varying k 2, same parameters and color code as
in figure 9.

Figure 11. Moment M averaged over events of same size N for the solution of
the Coulomb friction model and varying k 2, same parameters and color code as in
figure 9.

simple effective linear relation between Si and ∆x i , so that the slip profiles correspond
to excursions above a fixed threshold of the stress field.

Considering values of M and N for which the power-law behavior ⟨M⟩N ∝Nα is
observed, we calculate the values of the exponents α, β, B. They are displayed in
figure 12 together with the prediction for the B−value: B = (β− 1)/α. The prediction
is verified.

To progress in the understanding of the B−value, we need to understand what sets
the value of α and β. As the slip is roughly proportional to the stress profile, we can
equivalenty consider the stress profile. We thus calculate the PSD of the spatial gradient
of the stress profile, which is displayed in figure 13. At small wavevector, K < 0.1,
the spectrum displays a power-law behavior that we write as K1−2H . We associate
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Figure 12. Exponents α, β, 1+B and the prediction 1+ (β− 1)/α as a function
of k 2 for solutions of the Coulomb friction model. Symbols are best fits obtained
for 2⩽M ⩽ 100 and 40⩽N ⩽ 200. Continuous lines are the predictions obtained
from the fBm model (α= 1+H, β = 2−H, 1+B = 1+ (1−H)/(1+H)) with H
obtained by fitting the large scales of the spectrum of the gradient of the stress in
figure 13.

Figure 13. Power Spectrum Density of the spatial gradient of the stress Si before
events with 1⩽M ⩽ 100 and 80⩽N ⩽ 170. Straight lines are power-law fit for
K < 0.1; the obtained exponents are 1− 2H, with H the Hurst exponent associated
with the large scales of the stress profiles. Same parameters and color code as in
figure 9.

this behavior to that of a fractional Brownian motion (fBm) of Hurst exponent H
[13]5. Stated differently, the large scales of the stress profile are not trajectories of a
standard Brownian motion as in the case of the BK model, but are excursions of a fBm.

5 The Hurst exponent is a characteristic of a fractional Brownian motion and it determines its roughness
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Because the slip is proportional to the stress for the solutions of this model, we can use
properties of the fBm to predict those of the earthquake. Return times of a fBm are
distributed as P (N) =NH−2 [14] so that the exponent for the EQ size is β = 2−H.
Typical excursions of a fBm of size N are of size NH so that the area covered by a fBm
excursion scales as N 1+H . This implies that the moment–size relation exponent is α=
1+H. We thus obtain a prediction for the B -value using the results of equation (3) as
1+B = 1+ 1−H

1+H . This prediction, together with α= 1+H and β = 2−H, are displayed
as continuous lines in figure 13, using H fitted from the spectrum of the gradient of
the stress profile. A good agreement is found between the predictions and the results.
This is quite satisfactory having in mind that α, β and B are calculated from the slip
properties whereas H is measured independently from the stress profiles.

Let us sum up on the behavior of the Coulomb friction model. The large scales of the
stress profile behave as a fBm of Hurst exponent H. The EQ slips are proportional to
excursions of this fBm. This analogy between fBm and earthquake properties allows us
to predict the values of the exponents α, β, and B as a function of one single parameter
H, the Hurst exponent of the fBm.

2.3. Discussion

In these earthquake models, the underlying dynamics can be described in a simpler man-
ner by considering the coupled dynamics of two fields. The first field is the stress before
an event and the second field is the total slip during an event. We have identified
that the stress field has scale-invariant properties, at least for a certain regime of EQ
size. This stress field controls the dynamics of the EQ and the value of the slip of each
event. In particular, the distributions of the lengths of the events also display power-law
behaviors that result from the properties of the stress field. Together with the moment
dependence on length, and using the relation between exponents given by equation (3),
a prediction for the B -value is obtained. Essentially, the GR law finds its origin in the
scale invariance of the stress profile.

What else can we learn from this approach?

Result 1 (R1)—It is generic and can be applied to other models of EQ (or of similar
effects such as avalanches) in order to understand the origin of the self-similar behaviors.

R2—It provides a scheme to build other models of EQ. Such models would involve
two steps, as sketched in figure 14:

First, the stress field sets the slip of the following event. In principle the stress field,
together with the dynamical equations of continuum mechanics, allows us to calculate
the slip. Our approach simplifies drastically the calculation of the slip. Other models of
relation from stress to slip can be tested; we have for instance in mind a condition for the
event to stop that would depend on the length of the event. Different conditions may lead
to models with different properties, but we anticipate the existence of universality classes
displaying the same statistical behavior and containing groups of different conditions
for the termination of the EQ.

Second, the slip pattern modifies the value of the stress after the event. In principle,
the slip spatial distribution together with the rules of equilibrium for continuum mech-
anics allow us to calculate the change of stress due to an EQ. In the models here, the
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Figure 14. The two steps of evolution of the stress and slip profile. First: the stress
profile determines what the slip is. Second: the slip profile changes the value of
the stress. The iteration of this dynamic leads to a fixed point characterized by
statistically stationary scale-invariant properties.

change is simply related to the motion of the sliders, through equation (4). Other rules
may also be introduced to describe, for instance, the effect of material heterogeneity
along the fault.

Using this methodology, a variety of models can be built and their properties be
studied and compared to natural data. Again, as discussed for the EQ termination, we
expect a limited number of asymptotic behaviors toward which will converge models
having different rules for the EQ dynamics but belonging to the same universality class.
We note that it is not uncommon in physics that different rules at small scales (here the
scale of a slider) generate the same statistical behavior at large scales and long times.

R3—By analyzing separately these two steps, some understanding of their properties
can be achieved:

The stress to slip problem can be seen as a non-standard application of random
curves. The stress profile, a possibly correlated random trajectory defines through pos-
sibly nonlinear rules the slip distribution, which is also a random curve. This situation
falls into the problem of random polymers: in the models studied here, a Brownian tra-
jectory defines the stress field and we are interested in the excursion of the slip, which
is a trajectory dependent on the Brownian. There exist some results for such problems
which makes this analogy promising for both statistical mechanics and EQ modelling.

Here we reach conclusions using the properties of the return time of a Brownian
or fBm. However, more complicated situations may occur, for instance if the stress is
a Brownian motion while the slip is (case a) the integral of this Brownian motion or
(case b) an integral of a function, f, of this Brownian motion. For case a, we expect that
properties of the random acceleration process will be recovered. For case b, the law of
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the return time of such processes is being studied by Berger et al [15]. For a Brownian
motion, the distribution of the return length is shown to be a power-law as well as
the distribution of the moment (the area below the curve). The value of the exponents
depends only on the behavior of the function f for large values of its argument. In the
case of a fBm, these statistical properties are largely unknown.

The second step in the modeling, from slip to stress field, is obviously crucial here.
We still have little results on it: the stress field is, at least at large scale, self-similar but
we do not know what determines its statistical properties, such as the Hurst exponent.
This part of the problem belongs to the class of the evolution of random interfaces.
The stress field changes at each event because of the EQ that decreases the stress of
the moving sites and increases that of the neighbors. Yet, understanding how and when
such a process lead to a self-similar stress profile remains a challenge. For this question
also, very little is known, and it is possible that new classes of random interfaces will be
identified. Recent work with N. Pétrélis confirms the validity of this scenario and shows
that the random addition of structures of variable size leads to self-affine interfaces.

It is likely that several properties result from the existence of large events with a
power-law size distribution. For instance, in the solutions of the BK model, masses that
participate in large events are more likely to have experienced a large event during
their most recent motion. Large events, even though less likely to occur than smaller
events, thus have a strong effect and affect the stress profile over long durations (i.e. on
many iterations of the process). Whether this remains true in other models is an open
question.

We believe that these two new classes of random trajectories and interfaces can be
of interest for probabilists, and theoretical results are definitely lacking.

3. Two-dimensional geometry

The one-dimensional nature of the models considered so far makes it difficult to compare
them with natural data. With the will to make use of what we learned so far, we now
turn to two-dimensional (2D) systems, and we will follow the approach presented in the
former discussion. First, we build a model (R2) and then analyze it (R3).

We could have considered an extension to 2D of the BK models that we considered
in the former section but did not proceed as such and instead built a simpler model
using the two steps as described in figure 14. Doing so, we will show that this two-step
mechanism is indeed capable of generating an EQ-like series of events. In addition, its
simplicity facilitates both its analysis and the generation of a sufficient quantity of data
to obtain statistical convergence of the fluctuating quantities.

3.1. Description of the model

We consider a 2D geometry with Nt sites located on a square pattern. Between events,
the stress at each site Si increases linearly in time at a rate vo. When the stress at
one site, say i0, reaches a threshold value, Sc, an earthquake is initiated. Let D1 be
a constant stress threshold; we identify sites at which stress is larger than Sc−D1.
All these sites can be classified into clusters made of neighboring sites; see figure 15
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for examples of stress fields. Only the sites which belong to the same cluster as site
i0 participate in the earthquake. Let N be the number of sites in this cluster. In line
with the seismological observations [2], we assume that their total motion during the

earthquake is proportional to
√
N which results in a momentM =N 3/2 and a magnitude

m= log(M) = 3log(N)/2.
The events are considered to be instantaneous compared to the inverse of the loading

rate 1/v0. After an event, the stresses of the moving sites are set to new values equal to
Sc minus a stress drop Dd equal to a constant D2 plus a random term D3. The system
has returned to its initial stage where the sites are at rest and the stress increases
linearly in time.

A well-studied model in 2D, based on simple dynamical rules, is the OFC model [6].
Moving sites share their excess stress to neighbors and this leads to cascading events.
This model has a quite rich behavior. It has now been pointed out that the frontiers of
the system play an important role and in particular control the dynamics. Such systems
are thus strongly inhomogeneous [3].

The model that we consider here uses a random term for the stress drop. We note
D3 as its amplitude and a random field is calculated with values of uniform probability
between 0 and D3. The field is Fourier transformed in space, filtered by multiplication
with a kernel K−sn, with K the wavevector, and then inversed Fourier transformed. This
procedure generates a correlated random surface with Hurst exponent Hn = sn− 1 [16].
The random field is calculated over all Nt sites but only the values corresponding to the
moving sites are used. To save computational time, we perform this procedure only for
events of size larger than 5; otherwise an uncorrelated random field is used with values
uniformly chosen at random between 0 and D3. For sn = 0, this procedure generates
an uncorrelated random field (white noise), whereas for positive sn, correlated fields
are generated. The case sn = 1, corresponding to independent increments, is named
Gaussian free field [17]. In this model, the interaction between sites takes place when
sites which belong to the same cluster move, and the value of the stress of these sites is
reduced by a uniform value and a correlated value for sn ̸= 0.

Let us now sum up the three steps of this model:

(1) Identify the site, say i0, with largest value of stress, say S 0, and add a uniform stress
Sc−S0 to all the sites.

(2) Find the clusters of sites whose stress is larger than the threshold Sc−D1.

(3) Change the value of the stress of the sites that belong to the same cluster as i0.
The new values of the stress of these sites are Sc−Dd, where Dd is the sum of a
constant and uniform stress drop, D2, and of a spatially dependant random term of
amplitude D3.

3.2. Numerical results

Without loss of generality, we set v 0=1, Sc = 1, D1=1. Numerical simulations are
performed for 602 ⩽Nt ⩽ 6002. We considered a constant field as initial condition or a
randomly uncorrelated one. Statistical properties are calculated after a large enough
initial transient so that they do not depend on the initial state. If D2 is large enough
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compared to D1, the system displays earthquake-like behavior with events that occur
randomly in time and of random magnitude. If D3 is small, the distribution of the
moment is a power-law, like the GR law. More precisely, the PDF P(N ) displays a cut-off
for N ⩾Nc and Nc increases either when D3 decreases or Nt increases. We also note that
at fixed Nt, for D3 smaller than a threshold value,D3m, the system shows nearly periodic
behavior and loses the GR-like behavior. Our simulations show that D3m decreases
with Nt. To sum up, for large Nt, a GR law is observed provided D3 ≪D1 ≪D2, i.e.
the stress drop is large and its fluctuations are small compared to the threshold stress
above which EQ are initiated. The inequality D1 ≪D2 implies that a long duration
is necessary before a second event occurs at the same location, and D3 ≪D1 states
that the stress drop after an earthquake displays small spatial variations compared
to the stress threshold, itself smaller than the stress drop. These assumptions appear
reasonable in the context of natural datas.

Nonetheless, our goal here is not to build a model encompassing every process occur-
ring in nature. Rather, we search for simplicity instead and retain only the most essen-
tial effects. We shall see that the few effects that we keep are sufficient to explain both
the GR law and Omori–Utsu’s law. We expect that more sophisticated models would
also display these behaviors but that their origin would be the same as in the model
considered here. Similarly, the ordering in the noise amplitude that is assumed here,
D3 ≪D1 ≪D2, may be released in other, more sophisticated models.

Unless otherwise stated, we will discuss results obtained with D2=10, D3 = 0.1,
Nt = 4002, sn = 0 or sn = 1.5. We display in figure 16 the time series of the size of the
events N (t). Large fluctuations are observed together with a clustering in time of the
events that appears stronger for sn = 1.5 than for sn = 0.

The sizes of the events are distributed as a power-law, P (N)≃N−β, see figure 17
with exponent β that depends on sn. For D3 = 0.1 and sn = 0, a best fit for 3⩽N ⩽ 80
leads to β = 2.046± 0.015. It decreases to β = 1.93± 0.01 for sn = 1 and β = 1.63± 0.01
for sn = 1.5. Results similar to those of sn = 0 are obtained for small positive sn = 0.5
or negative sn =−1. In these models, the relation between size and moment is taken to
be M =N 3/2, so that the B -values predicted by equation (3) are B = 2(β− 1)/3 and
are respectively equal to 0.697, 0.62, and 0.42.

For what concerns the clustering of the events, we perform the following analysis.
We consider events of size larger than 100 that we consider to be mainshocks. We then
calculate the number of events per unit of time as a function of the time before or after
the mainshock; this is displayed in figure 18 for sn = 0 and sn = 1.5. If we consider all
events, an increase of EQ activity close to the mainshock is only visible for sn = 1.5. If
we restrict to events that are located at a distance smaller than 50 grid steps from the
mainshock, then even the sn = 0 case displays an increase of activity.

Measuring the unit of time with ⟨T ⟩, the mean duration between EQ, we observe
that the larger sn, the stronger the increase of activity in the vicinity of the mainshocks,
see figure 19. Both an Omori law (after the mainshock) and an inverse Omori law (before
the mainshock) are visible. Displayed as a power-law in figure 20, different behaviors
are visible depending on the duration of the mainshock. For each value of sn, part of
the data can be fitted using the standard Omori law, dn

dt ∝ (t+ c)−1, see figure 21, but it
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Figure 15. Snapshot of the stress field as a function of position for D1=1, D2=10,
D3 = 0.1, Nt = 4002. Top, sn = 0; bottom, sn = 1.5. Values on the colorbar on the
right.

is valid only on a restricted time interval so that the inverse-time expression provided
by the Omori law is only a fit on part of the data.

3.3. Discussion

3.3.1. The stress as a random surface and results from percolation theory. The
observed behavior can be understood by an analysis of the spatial distribution of the
stress. The stress field is a surface and events involve clusters of sites for which the stress
is above a threshold value. This problem is classical in statistical physics, as it covers a
variety of analogous situations [18]. The stress can be considered as a topography that
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Figure 16. Time series of EQ size N (t) for the 2D model for D1=1, D2=10,
D3 = 0.1, Nt = 4002. Top, sn = 0; bottom, sn = 1.5.

is filled with water until a given altitude, and we are interested in the size of the islands
or continents [19]. If the comparison of the stress with a fixed threshold amounts to
define whether a site is occupied or empty, then the problem of percolation is recovered
[20].

Indeed, random surfaces and the properties of clusters above a cut belong to the
universality class of percolation, possibly over a correlated disorder. More precisely,
provided some mild hypothesis on the random surface, there exists a threshold at which
the system is critical and displays properties alike to those of percolation. In particu-
lar, close to the critical point, cluster sizes are distributed following a power-law with
exponent τF , the so-called Fisher exponent. If the heights h of the surface at different
positions are uncorrelated, standard percolation takes place and τF = 187/91 [20].
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Figure 17. PDF of EQ size P(N ) for the 2D model for D1=1, D2=10, D3 = 0.1,
Nt = 4002. Red, sn = 0; green, sn = 1; blue, sn = 1.5.

If the height is Gaussian and correlated as ⟨(h(x+R)−h(x))2⟩1/2 =RH , then cor-
related percolation takes place. We note that another way to quantify correlations is to
use the the PSD of the field h. In 2D. the PSD behaves as S(K)∝K−2−2H . It has been
shown in [18, 21] that for H ⩽−3/4, correlations do not affect the critical behavior
that remains identical to that of uncorrelated percolation. For −3/4⩽H, the critical
exponents vary with H.

We have calculated the spectrum of the stress field, see figure 22. We observe for
the set of parameters considered here (D1=1, D2=10, D3 = 0.1, Nt= 4002) that the
spectrum behavior depends on sn. For sn = 1.5, i.e. Hn = sn− 1 = 0.5, we have a clear
power-law behavior of the exponent around −1.35. For sn = 1, Hn = 0, a power law of
exponent closer to −1 is observed on a slightly narrower range of K. For sn = 0, any
power-law behavior would be restricted to a quite narrow range, so that it appears more
accurate to describe the behavior of the spectrum as asymptotically constant at small
and large K and gently transitioning between the two values at intermediate K. We
stress that the exponent of the spectrum, equal to −2− 2H with H the Hurst exponent
of the surface, varies with the exponent sn of the noise term, but in a non trivial
manner. For the values reported here, we have H ≃−1, −0.5, and −0.32 respectively
for Hn =−1, 0, and 0.5. Indeed the stress field results from the repeated addition of
noise terms of fluctuating size so that it is not surprising that its behavior differs from
the one of a single stress drop.

3.3.2. The GR law and the b-value. The observed properties can be understood by con-
sidering that the stress field has the same properties as a random field with an Hurst
exponent H that depends on sn. As a consequence, we expect that the distribution of
size of clusters above a threshold follows a power-law of exponent τF . This is in agree-
ment with the exponent of the size distribution of the events for small sn, as we have
measured β = 2.046± 0.015 for sn = 0, very close to Fisher prediction for uncorrelated
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Figure 18. Averaged number of events per unit of time as a function of duration
to a main event of size N ⩾ 100. Red: sn = 0 and blue: sn = 1.5. Top: all events
considered. Bottom: only events with epicenter located from the main shock at a
distance smaller than 50 are considered.

percolation τf = 187/91≃ 2.055. For positive sn, a smaller exponent is measured that
can be ascribed to correlations in the stress field, so that predictions from uncorrelated
random percolation do not apply. If the stress surface has strong correlations, namely
H >−3/4, the analogy with correlated percolation predicts a decrease in the B -value.
This is indeed observed in our model as B =0.697 for H =−1 (sn = 0) and the same
value is obtained within error bars for sn =−1 and sn = 0.5, thus with moderate correl-
ations. Increasing the correlation and for H above H =−3/4, we measure as expected
a decrease in B since B =0.62 for H =−0.5 and B =0.42 for H =−0.32. We also note
that the measured exponent can depend on the noise amplitude. Indeed, at larger noise,
a peak at large N appears which in turn modifies the slope of the PDF of N even at
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Figure 19. Averaged number of events per unit of time as a function of duration to
a main event of size N ⩾ 100. Only events of size larger than 10 and with epicenter
located from the main shock at a distance smaller than 50 are considered. Time is
measured in unit of the mean interevent duration. Red, sn = 0; green, sn = 1; and
blue, sn = 1.5.

smaller value. This, together with finite size effect, may lead to an apparent exponent
different from the true power-law behavior.

Written in term of b-values, this analysis predicts b= 96/91≃ 1.05 and B = 64/91≃
0.70 for weakly correlated stress surfaces. If the stress surface has strong correlation, we
expect a decrease in these values. This is compatible with most reported natural values
[2, 3].

3.3.3. Existence of aftershocks and the Omori–Utsu law. Aftershocks and foreshocks
are also explained by the spatial structure of the stress field. Correlated random surfaces
display level sets that are spatially correlated. More precisely, if a domain has a large
value of stress, other clusters with large stress are likely to be located in its vicinity. This
property of random surface has, to the best of our knowledge, not been described. We
have simulated random surfaces with various exponents H by multiplication in Fourier
space with a well-chosen power-law [16]. Examples are displayed in figure 23 where
the correlated random surface displays clustering in space of its level set. To quantify
this effect, we have simulated a large number of random surfaces. For each surface, we
identify the sites whose value is above a given threshold. The value of the threshold sets
the value of the probability p of occupation of a site in the framework of percolation
theory. We then identify the clusters of connected sites. We next calculate the distance
d between the largest cluster and any other cluster. The distribution of the distance is
a characteristic of the spatial organization of the clusters. It is displayed in figure 24 for
different values of p and H. Compared to uncorrelated surfaces, the correlations induce a
non-homogeneous localization of clusters with respect to the position of a given cluster.
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Figure 20. Log-log plot of the same data as in figure 19, for (top) aftershocks, and
(bottom) foreshocks.

We conclude that clustering in space of individual clusters with large stress is a con-
sequence of the geometrical properties of the stress field that behaves at large scale as a
correlated random surface. This provides an explanation for the existence of aftershocks:
close to a mainshock, there exist clusters where stress is large and close to initiate an
EQ. This mechanism is purely geometrical and does not require additional phenomena
(stress transfer, pore pressure dynamics, viscosity, etc.).

For what concerns the rate of aftershocks, as mentioned in the section analysis of
the results, the Omori law is only a fit on part of the time series. We plan to investigate
further if this can be deduced from the properties of clusters in percolation theory.

We ended section 2 on the 1D models by mentioning the need for additional studies
on these new problems of random curves and interfaces. The same remarks apply for the
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Figure 21. Inverse of the averaged number of events per unit of time as a function
of duration to a main event of size N ⩾ 100. Only events of size larger than 10
and with epicenter located from the main shock at a distance smaller than 50 are
considered. Time is measured in unit of the mean interevent duration. Red, sn = 0;
green, sn = 1; and blue, sn = 1.5. Same data as in figure 19. Straight lines are guide
for the eyes and correspond to the Omori law.

Figure 22. Power spectrum density of the stress field S (K ). Red, sn = 0; green,
sn = 1; blue, sn = 1.5.

2D case. Statistical properties of random surfaces built upon a 2D random stress profile
(the 2D version of the polymer approach) and properties of random 2D dynamically
evolving interfaces are topics that have called for very little attention.
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and sn = 1.5. Left: value of the field as a function of space. Right: sites with value
higher than a fixed threshold so that 0.3 of the sites are above the threshold. Note
that the larger the sn the more localized in space are the clusters.

4. Discussion

4.1. Comparison with theoretical results

We compare the results presented here with some previous publications. While the
relation between exponents equation (3) is mentioned in [9], it has not been validated
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Figure 24. Probability density function of the distance d between the largest
cluster and the other clusters for a random surface with exponent sn = 0 in red,
sn = 1 in green, and sn = 1.5 in blue. The fraction of sites belonging to clusters
increases with the line thickness and is 0.3, 0.5, and 0.55. The total number of sites
is 4002.

against existing data. Similar relations have also been used to assess scaling laws in the
EQ community; see for instance [22]. The generalization to the case of a self-similar
joint distribution of moment and size, and the application to the case where a different
quantity than the size is considered, are both new results.

Relating the GR law to some fault fractal properties has been proposed in [23] and
[24]. In the latter, a field property is assumed to be a fractal, and statistical properties of
their level set are used. Recent tests using data in boreholes are presented in [25], where
the self-similar nature of the elastic properties of the fault material are considered. Our
work, in contrast, identifies the origin of the self-similar property: it is a consequence
of the repeted effects of all former events. Our results also include a prediction for the
values of several exponents, including the b-value. These exponents depend on the field
similarity exponent, as is shown by the analogy with percolation.

It has been proposed that the EQ belong to the class of self-organized critical systems
(SOCs). The idea is that such systems evolve spontaneously towards a critical point [26].
The models presented in this article all require either fine tuning of their parameters
(for the 1D model such as the standard BK model) or a large difference of amplitude
between the parameter values (for the 2D model). If other parameters are selected, the
GR law is not observed. In that sense, these models are not spontaneously evolving
towards a critical point.

We also note that self-similarity of the stress (long-range correlation or, similarly,
power-law behavior of its power spectrum) do not necessarily have to be in the vicinity
of a critical point. Processes based on a random walk or a fractional random walk can
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result in a power-law behavior in 1D. and the appearance of such random walks does not
require a critical phenomenon. This is the case in the 1D models studied in section 2.

In the model in 2D, the percolation critical point plays a role and selects the exponent
of the distribution of the cluster size. This is true for the regime considered here with
negative H (Hurst exponent of the stress field). For positive H, the percolation transition
disappears and yet the cluster sizes also follow a power-law distribution [19]. This is
another example of a system in which a power-law behavior occurs on an extended
domain of parameters and not only at a critical transition.

Based upon the idea of SOC, a model named OFC was studied in [6]. As our model
in 2D, it is a cellular automaton with simple dynamical rules. It has been shown that
the properties of this model are in part controlled by the location of the earthquake
epicenter [3]. They nucleate close to the system boundaries, and changing the control
parameters modifies the extent of their spatial localization. The lack of homogeneity
due to the specific role of the boundaries renders it difficult to analyze in the framework
presented in this article.

Regarding aftershocks, our study shows that the self-affine property of the spatial
distribution of the stress is sufficient to explain the existence of aftershocks. Obviously,
other effects prone to trigger aftershocks could also be involved in nature and contribute
to the aftershock sequences. We note that the simpler version of the BK models in 1D
and 2D do not display aftershock sequences, see discussion in [3]. In a 2D model with
heterogeneous friction properties, a viscoelastic coupling to the asthenosphere would
create aftershocks that verify the Omori law [27]. More recently, a model of fault based
on the coupling between a velocity weakening elastic layer and a viscoelastic velocity
strengthening layer is able to recover statistical properties of aftershocks as observed
in nature [28]. It would be interesting to investigate in these models whether the stress
spatial structure becomes self-affine when the viscous effects play a role which would
provide a simple explanation for the origin of the aftershocks.

4.2. Comparison with natural data

There exists only few studies on the stress distribution in nature. Some studies have
shown that the topography of faults are self-affine with their roughness associated to
an Hurst exponent of order 0.2–0.8 [29]. Interestingly, evidence suggests that the slip
itself scales with a Hurst exponent close to 0.6. Using a 3D fault numerical model it
was predicted that the frictional stress field scales with an Hurst exponent of −0.4 [30].
In line with our description of slip and stress, several fields in nature display large scale
behaviors that are self-similar.

For what concerns the b-value, we predict b= 96/91≃ 1.05 for weakly correlated
stress field and a smaller one for strong correlation, which is compatible with most
reported natural values [2, 3]. Some studies report a variation of b with properties of
the faults, in particular on the nature of the fault and thus on its stress [31, 32]. Our
work provides an explanation for these effects: fault properties influence the self-affine
behavior of the stress field or the moment–size relationship. These properties, in turn,
modify the b-value. We add that in a recent experiment of sheared granular matter, the
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authors report B = 0.71± 0.01 for the released energy during the events [33], which is
in perfect agreement with our prediction B = 64/91≃ 0.70.

We hope that further studies on the stress in the vicinity of a fault will investigate
the possibility of a self-affine behavior. It would also be interesting to analyze natural
data in terms of level sets of random surfaces. In particular, some specific properties of
clusters can be tested (fractal dimension, typical shape, etc). The spatial clustering of
events should also be compared to that of level sets of random surfaces, and indicators
of proximity of a large event might be obtained in this framework.

Acknowledgments

F P gratefully acknowledges the Visiting Research Program in 2019 at the Earthquake
Research Institute, the University of Tokyo, and the IEA action of CNRS. A S gratefully
acknowledges the support of the European Research Council Grant REALISM (2016-
Grant 681346). T H acknowledges grants from the MEXT Program, Data Creation and
Utilization Type Material Research and Development Project No. JPMXP1122684766
and KAKENHI Program Nos. JP21H05201 and 22H01145.

References

[1] Scholz C H 2019 The Mechanism of Earthquakes and Faulting (Cambridge University Press)
[2] Kanamori H and Brodsky E E 2004 Rep. Prog. Phys. 67 1429
[3] Kawamura H, Hatano T, Kato N, Biswas S and Chakrabarti B K 2012 Rev. Mod. Phys. 84 839
[4] Utsu T, Ogata Y and Matsu’ura R S 1995 J. Phys. Earth 43 1–33
[5] Burridge R and Knopoff L 1967 Bull. Seismol. Soc. Am. 57 341
[6] Olami Z, Feder H J S and Christensen K 1992 Phys. Rev. Lett. 68 1244–8
[7] Carlson J M, Langer J S and Shaw B E 1994 Rev. Mod. Phys. 66 657
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