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Saturation of the magnetic field above the dynamo threshold
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Abstract. We show that the saturation level of the magnetic field generated by a fluid dynamo just above
threshold, can be estimated using simple dimensional arguments when the flow is turbulent. We then
discuss other scalings by considering the structure of the weakly nonlinear problem above the dynamo
threshold. Finally, we compare these predictions with recent experimental results.

PACS. 47.65.+a Magnetohydrodynamics and electrohydrodynamics – 52.65.Kj Magnetohydrodynamic
and fluid equation – 91.25.Cw Origins and models of the magnetic field; dynamo theories

1 Introduction

The kinematic dynamo problem is rather well understood
in the case of laminar flows [1]. Several simple but clever
examples have been considered in the past [2–5] and have
led to the experimental realization of various types of
homogeneous dynamos: the two rotor-dynamo operated
by Lowes and Wilkinson [6] following the configuration
proposed by Herzenberg [2], the “Riga dynamo” [7] us-
ing a Ponomarenko type flow [5], and the “Karlsruhe dy-
namo” [8] that consists of a constrained flow that mimics
a periodic flow proposed by Roberts [4]. In the last two
experiments, the saturation level of the magnetic field,
due to the back reaction of the Lorentz force on the flow,
has been measured. Our goal is to find how this satura-
tion level scales with the fluid parameters. We first recall
that an experimental dynamo generally bifurcates from
a strongly turbulent flow and operate close to threshold;
then, we show that, rather surprisingly, dimensional anal-
ysis together with reasonable arguments, allow to predict
the scaling of the saturated magnetic field above the dy-
namo threshold. We then understand this scaling, and also
the “laminar one” that would be observed if the fluid mag-
netic Prandtl number were larger that one, by consider-
ing the structure of the perturbative analysis describing
the saturation of the magnetic field above the dynamo
threshold. Finally, we compare our predictions with the
measurements performed in the recent experiments and
also comment on the case of a rapidly rotating fluid.
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2 Gouverning equations and dimensional
arguments

The equations governing the magnetic and velocity fields,
B(r, t), v(r, t), in the MHD approximation are (1)

∇ ·B = 0, (1)
∂B
∂t

= ∇× (v ×B) +
1
µ0σ

∆B, (2)

∇ · v = 0, (3)

∂v
∂t

+ (v · ∇)v = −1
ρ
∇
(
p+

B2

2µ0

)
+ ν∆v

+
1
µ0ρ

(B · ∇)B, (4)

where p(r, t) is the pressure field, µ0 is the magnetic per-
meability of vacuum, σ is the fluid electric conductivity, ν
is its kinematic viscosity and ρ is its density. With a char-
acteristic velocity V of the solid boundaries driving the
fluid motion, and a characteristic integral scale L of the
flow, we can define two independent dimensionless num-
bers, the magnetic Reynolds number, Rm = µ0σLV , and
the magnetic Prandtl number, Pm = µ0σν. We have thus,
Rm = RePm, where Re is the kinetic Reynolds number
of the flow. For most known fluid dynamos, the dynamo
threshold Rmc is roughly in the range 10–100. For liquid
metals, Pm < 10−5, thus the kinetic Reynolds number at
dynamo onset is larger than 106 and, consequently, the
flow is strongly turbulent. The power needed to maintain
this flow thus scales like P ∝ ρL2V 3 and we have

Rm ∝ µ0σ

(
PL

ρ

)1/3

. (5)

This formula has simple consequences: first, taking liquid
sodium (the liquid metal with the highest electric con-
ductivity), µ0σ ≈ 10 m−2s, ρ ≈ 103 kg m−3, and with
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a typical lengthscale L ≈ 1 m, we get P ≈ R3
m; thus a

mechanical power larger than 100 kW is needed to reach
a dynamo threshold of the order of 50. Second, it is un-
likely to be able to operate experimental dynamos at Rm

large compared with Rmc. Indeed, it costs almost 10 times
more power to reach 2Rmc from the dynamo threshold. In
conclusion, most experimental dynamos should have the
following characteristics:

(i) they bifurcate from a strongly turbulent flow regime,
(ii) they operate in the vicinity of their bifurcation thresh-

old.

Although (i) makes almost impossible any realistic an-
alytical calculation or direct numerical simulation, we will
show that the above two characteristics allow an estima-
tion of the nonlinearly saturated magnetic field above Rmc

using dimensional analysis. Our goal is thus to find the ex-
pression of B as a function of ρ, ν, µ0, σ, L and V . We
have three independent parameters, Rm, Pm and for in-
stance the square of the Lundquist number, B2µ0(σL)2/ρ,
thus we have in general

B2µ0(σL)2

ρ
= f(Rm, Pm). (6)

Different scaling laws have been found for B using mean-
field electrodynamics [9–11] or weakly nonlinear pertur-
bations close to the dynamo threshold for laminar flows
[10,12–17]. We will show that the two above assumptions
can be used to find the scaling law for the realistic situa-
tion of a turbulent dynamo close to threshold: (i) implies
that the momentum is mostly transported by turbulent
fluctuations. Consequently, using the basic assumption of
fully developed turbulence, we can neglect the kinematic
viscosity, thus Pm. (ii) implies that the dependence of B2

inRm is proportional toRm−Rmc, as expected for a super-
critical bifurcation close to threshold. In other words, V
is not a free parameter anymore, but should take approxi-
mately the value corresponding to the dynamo threshold.
Thus, (i) and (ii) reduce the number of parameters from 6
to 4, and the saturated value of the magnetic field can be
obtained using dimensional analysis

B2 ∝ ρ

µ0(σL)2
(Rm −Rmc). (7)

There is no paradox in the fact that the saturated mag-
netic field is inversely proportional to the square electric
conductivity and to the square of the typical lengthscale
of the flow. This does not mean that one should have σ
and L small in order to observe large values of B since
Rm = Rmc will be then achieved for a larger flow veloc-
ity. Using the typical velocity Vc at dynamo threshold, we
can write (7) in the form, B2/µ0ρV

2
c ∝ (Rm−Rmc)/R2

mc,
which shows that the system is very far from equipartition
of energy in the vicinity of the dynamo threshold. We em-
phasize also, that the interaction parameter, i.e. the ratio
of the Lorentz force to the pressure force driving the flow,
is much smaller than one.

3 Laminar versus turbulent scalings

We can understand the above scaling together with the
very different one obtained if Pm � 1, by looking at the
structure of the perturbative analysis describing the satu-
ration of the magnetic field above the dynamo threshold.
This calculation is tractable only for Pm � 1 in general
such that the dynamo bifurcates from a laminar flow. For
Pm � 1, a lot of hydrodynamic bifurcations occur first
and the flow becomes turbulent before the dynamo thresh-
old. The structure of the weakly nonlinear analysis above
threshold is as follows: the dynamo bifurcates from a flow
field vc at Rm = Rmc. We write (2) in the form

L ·B0 = 0, (8)

where B0 is the neutral mode at threshold and L is a
linear operator that depends on the bifurcation structure
(stationary or Hopf bifurcation). Slightly above threshold,
we have

v = vf + εv1 + · · · , (9)

where vf = vc+εvp+· · · , with ε = (Rm−Rmc)/Rmc � 1.
εvp is the order ε velocity correction due to the driving of
the fluid slightly above threshold. εv1 is the leading order
flow distortion by the Lorentz force. We have for B

B =
√
ε (B0 + εB1 + · · · ) . (10)

We first compute v1 from (4) at order ε,

∂v1

∂t
+ (vc · ∇)v1 + (v1 · ∇)vc =

− 1
ρ
∇
(
p1 +

B2
0

2µ0

)
+ ν∆v1 +

1
µ0ρ

(B0 · ∇)B0. (11)

If Pm � 1, the flow is laminar at the dynamo threshold,
and the Lorentz force is mostly balanced by the modifica-
tion of the viscous force, thus

v1 ∝
B2

0L

µ0ρν
· (12)

We get from (2) at order ε,

L ·B1 =
∂B0

∂T
−∇× (vp ×B0)−∇× (v1 ×B0), (13)

where T = εt is the slow time scale of B0 slightly above
threshold. The amplitude equation for B0 that governs the
saturation of the magnetic field is obtained by applying
the solvability condition to (13),〈

C|∂B0

∂T

〉
= 〈C|∇ × (vp ×B0)〉+ 〈C|∇ × (v1 ×B0)〉 ,

(14)

where C is the eigenvector of the adjoint problem [17].
The first term on the right hand side of (14) corresponds
to the linear growth rate of the magnetic field whereas

R
a
p
id
e
N
o
te R

a
p
id

N
o
te
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the second describes the nonlinear saturation due to the
modified velocity field v1. For nonlinearly saturated solu-
tions, we thus get vp ∝ v1. In the vicinity of threshold,
µ0σL(vf − vc) ∝ Rm −Rmc, and we obtain

B2 ∝ ρν

σL2
(Rm −Rmc). (15)

We call (15) the “the laminar scaling”, characterized by
the fact that B → 0 if ν → 0 with all the other parameters
fixed. We have derived this formula for a Ponomarenko
type flow in [17]. The main difficulty is that, in general, the
dynamo problem is not self-adjoint and that the adjoint
problem is not a dynamo problem [18].

For Pm � 1, we recover the “turbulent scaling” (7)
if we balance the Lorentz force with the inertial terms
in (11). We have Blaminar ∝ BturbulentP

1/2
m , thus the two

scalings strongly differ for experiments using liquid metals
(Pm < 10−5).

4 Discussion and concluding remarks

The Karlsruhe [8] and Riga [7] experiments have recently
reported values of the saturated magnetic field of order
10 mT roughly 10% above threshold. Both experiments
used liquid sodium (µ0σ ≈ 10 m−2 s, ρ ≈ 103 kg m−3).
The inner diameter of the Riga experiment is L = 0.25 m.
The spatial periodicity of the flow used in the Karlsruhe
experiment is of the same order of magnitude, within a
cylinder of radius 0.85 m and height 0.7 m. The presence
of two lengthscales in the Karlsruhe experiment makes the
comparison with our analysis more difficult, but we can
easily compare the results of the Riga experiment with
our “turbulent” (7) and “laminar” scalings (15), that pre-
dict a saturated field of order 10 mT (respectively 10µT).
Taking into account the qualitative nature of our analysis,
we conclude that the “turbulent scaling” is in agreement
with the experimental observations whereas the “laminar
scaling” predicts a field that is orders of magnitude too
small. The “turbulent scaling” also gives a correct order
of magnitude for the Karlsruhe experiment if its spatial
period is taken as the relevant lengthscale in (7). We thus
note that the above experiments display a very interest-
ing feature: turbulent fluctuations can be neglected when
computing the dynamo threshold; indeed, the observed
thresholds are in rather good agreement with the ones pre-
dicted by solving the kinematic dynamo problem for the
mean flow alone. However, turbulence has a very strong
effect on the value of the saturated magnetic field above
the dynamo threshold.

It is also tempting to apply the above arguments to the
geodynamo. Indeed, contrary to stellar or galactic mag-
netic fields that involve Rm very large compared to Rmc,
it is likely that for the Earth, Rm is at most a few times
Rmc. Several models have been considered in the past, all
involving laminar flows with scale separation, and the sat-
urated magnetic field has been computed using a weakly
nonlinear analysis [12–15]. Although these models involve
more dimensionless parameters than the system of equa-
tions (1–4) because of the convective driving of the flow,

the rotation of the Earth and the different lengthscales of
the basic laminar flow, most of them share the property
of our “laminar scaling”, i.e. B → 0 if ν → 0 with all
the other parameters fixed. The same is also true for dy-
namos generated by a flow driven by a periodic body force
in space [10] or for Ponomarenko type dynamos, in the
limit Re� Rm � 1 [16] or close to the instability thresh-
old [17]. As mentioned above, this occurs in a laminar flow
as soon as the Lorentz force is balanced by the modifica-
tion of the viscous force in (11). On the contrary, if the
flow is turbulent, the momentum is dominantly transfered
by turbulent fluctuations and it is more realistic to bal-
ance the Lorentz force with the inertial terms in (11); the
“turbulent scaling” is then obtained. In the case of rapidly
rotating fluids, the Coriolis term, −2Ω×v should be taken
into account in (11). If we get v1 by balancing the Lorentz
force with the modification of the Coriolis force, we obtain
for the saturated magnetic field in the vicinity of threshold

B2 ∝ ρΩ

σ
(Rm −Rmc). (16)

In the case of the Earth core,
√
ρΩ/σ ≈ 10 gauss,

thus (16) gives a reasonable order of magnitude of the
Earth field if Rm − Rmc is small enough. The other scal-
ings (15) and (7) give too small values of the field even if L
is chosen small compared to the radius of the Earth core.
In the context of the geodynamo, the prefactors in (15)
and (16) are called the “weak field” (respectively “strong
field”) scalings [19]. Note however that the full expres-
sion (16) does not correspond to the “strong field” bal-
ance of the geodynamo σB2 ≈ ρΩ. Our scaling (16) may
be obtained in the vicinity of the dynamo threshold if one
assumes that the Stokes force is negligible in (11) whereas
it is believed that the “strong field” regime of the geody-
namo occurs at finite amplitude via a subcritical bifurca-
tion from the “weak field” one [19].

In conclusion, we emphasize that the correct evalua-
tion of the dominant transport mechanism for momentum
is essential to estimate the order of magnitude of the satu-
rated magnetic field above the dynamo threshold. The rea-
son is that it determines the flow distortion by the Lorentz
force and thus the saturation mechanism of the field. A
mean field laminar model of the flow may thus lead to
a wrong estimate of the magnetic field although it some-
times correctly predicts the dynamo threshold. It would
be interesting to test the validity of the scaling law (7) ex-
perimentally by varying the temperature of liquid sodium
and thus its conductivity σ. Another fundamental experi-
ment in the context of the geodynamo would be to observe
the transition from (7) to (16) for a rapidly rotating flow.
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