
                          

LETTER

Statistics of phase fluctuations of an acoustic wave
propagating through a turbulent flow
To cite this article: G. Prabhudesai et al 2022 EPL 140 43001

 

View the article online for updates and enhancements.

You may also like
Phase fluctuations in conventional
superconductors
Pratap Raychaudhuri and Surajit Dutta

-

Dynamic phase fluctuations in potential-
driven Bose–Einstein condensate
Decheng Ma, Vladimir Koval and
Chenglong Jia

-

ALMA Long Baseline Campaigns: Phase
Characteristics of Atmosphere at Long
Baselines in the Millimeter and
Submillimeter Wavelengths
Satoki Matsushita, Yoshiharu Asaki,
Edward B. Fomalont et al.

-

This content was downloaded from IP address 129.199.120.32 on 20/01/2023 at 10:45

https://doi.org/10.1209/0295-5075/aca25f
/article/10.1088/1361-648X/ac360b
/article/10.1088/1361-648X/ac360b
/article/10.1088/1367-2630/ab67eb
/article/10.1088/1367-2630/ab67eb
/article/10.1088/1538-3873/aa5787
/article/10.1088/1538-3873/aa5787
/article/10.1088/1538-3873/aa5787
/article/10.1088/1538-3873/aa5787


November 2022

EPL, 140 (2022) 43001 www.epljournal.org
doi: 10.1209/0295-5075/aca25f

Statistics of phase fluctuations of an acoustic wave propagating
through a turbulent flow

G. Prabhudesai
1(a)

, S. Perrard
1,2

, F. Pétrélis
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Abstract – We investigate the statistics of phase fluctuations of an acoustic wave propagat-
ing through a turbulent flow in line of sight (LOS) configuration. Experiments are performed
on a closed von Kármán swirling flow whose boundaries are maintained at a constant temper-
ature. In particular, we analyze the root mean square (RMS) and the power spectrum den-
sity (PSD) of phase fluctuations. A model is developed and analytical predictions obtained for
these quantities using geometrical acoustics are shown to be in agreement with experimental
observations.

Copyright c© 2022 EPLA

Introduction. – Lighthill [1,2] in two seminal arti-
cles first studied the problem of sound generated aero-
dynamically as intrinsic to an unsteady, inviscid and
incompressible flow. This phenomenon of unsteady flow
generating sound can be further extended to study the
scattering of acoustic waves by flows. The earliest
of studies on sound-flow interaction were presented by
Rayleigh [3] who treated the problem of refraction of
sound waves by flows. Subsequent work by Obukhov [4],
Blokhintzev [5], Kraichnan [6] and others led to further
development in this field and the study of sound scatter-
ing due to velocity gradients in the flow. Fabrikant [7,8]
and Lund and Rojas [9] related the scattered acoustic field
to the vorticity field in the flow and gave compact for-
mulae in the far-field limit under the approximations of
Born and low Mach number of the flow. This theory
was validated using experimental studies on both lam-
inar and turbulent flows and used to characterize vor-
ticity filaments (see for example [10–18]). Apart from
studying the scattered acoustic field due to vorticity in-
homogeneities in the flow, there is another effect which is
equally if not more important due to its physical impli-
cations. As Tatarskii [19] notes, the scattering due to
turbulent flow also results in parameter fluctuations of
the incoming sound wave in the particular case of line-
of-sight (LOS) propagation, i.e., when the scattering an-
gle is zero. This effect is not restricted to only acoustic
waves but can also be encountered in electromagnetic wave
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propagation and is a source of noise for optical ground-
based telescopes. To our knowledge, previous studies on
the scattering of acoustic waves have focused on their
spatial characteristics. In this letter, we show that the
temporal characteristics of phase fluctuations of a LOS
acoustic wave travelling through a turbulent flow can
be related to the spatio-temporal characteristics of the
flow. In particular, compact formulae are derived relat-
ing the RMS of phase fluctuations (Φrms) to the charac-
teristics of the turbulent flow, and the frequency PSD of
phase fluctuations (EΦ) to the spatio-temporal coherence
of velocity fluctuations (Cu). Generating a von Kármán
turbulent swirling flow in air between counter-rotating
disks, we experimentally validate the derived analytical
results.

Theory. – We consider an acoustic wave travelling
through a turbulent flow of low Mach number under the
geometrical acoustic limit (kI l0/2π) � 1. We have de-
noted the wave number of the incident acoustic wave by
kI and the integral length scale by l0, which corresponds
to the correlation length of the turbulent velocity fluctu-
ations. The geometrical acoustic limit implies that the
wavelength of the acoustic wave is smaller than the length
scale at which most of the energy in the turbulent flow is
concentrated, the latter being the same as l0. The condi-
tion for geometrical acoustics can also be written in terms
of frequency as (f0/fI) � (urms/c), where urms is the
RMS of turbulent velocity fluctuations, c is the speed of
sound and f0 = urms/l0 is the integral frequency. Using
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Rytov’s method [20], we obtain the equation for fluctua-
tions in its phase denoted by Φ (first Rytov approxima-
tion) [19],

∂Φ(x, t)
∂x

= −kI

(
ux(x, t)

c

)
, (1)

where x is the direction of propagation of the acoustic
wave, and ux is the x-component of turbulent velocity
fluctuations. The above equation can be integrated over
space to give the fluctuations in phase ΦL(t) at a distance
L from the source,

ΦL(t) = −
(

kI

c

) ∫ L

0

ux(x, t)dx, (2)

where ΦL(t) = Φ(L, t). Using eq. (2), we can relate the
statistical properties of ΦL to those of ux. First, 〈ΦL〉 = 0
since 〈ux〉 = 0. The angle brackets denote the operation
of averaging over time. Next, the second moment of ΦL

when the turbulent flow is homogeneous and isotropic is
given by

〈Φ2
L〉 =

4k2
Iu2

rms

c2

∫ L

0

dz

∫ z

0

Γu(r)dr, (3)

where the two-point spatial correlation of velocity fluctu-
ations for a homogeneous and isotropic flow is denoted by
Γu(r) = 〈ux(x)ux(x+r)〉/u2

rms [21]. We consider a turbu-
lent flow of large Reynolds number Re = urmsl0/ν � 1 (ν
is the kinematic viscosity of the fluid). We have measured
in several experimental configurations [22], including the
present one, that the two-point correlation decays expo-
nentially for values of r larger than a fraction of l0 with a
form Γu(r) = exp(−r/l0). Using this functional form for
Γu in eq. (3) and taking the square root, we obtain

Φrms =
(

2kIurms

c

)√
l0L, (4)

where Φrms =
√〈Φ2

L〉. Similarly, evaluating the tem-
poral correlation of ΦL using eq. (2) and taking the
Fourier transform, we obtain an expression for its PSD,
EΦ(f) =

∫ ∞
−∞〈ΦL(t)ΦL(t + τ)〉e2πιfτdτ , which is

EΦ(f) =
(

2k2
I

c2

)
(Eu(f))

∫ L

0

dz

∫ z

−z

dr
√

Cu(r, f), (5)

where Cu is the coherence and Eu(f) =
∫ ∞

−∞〈ux(t)ux(t +
τ)〉e2πιfτdτ is the PSD of ux, respectively. When the tur-
bulent flow is homogeneous and isotropic, the coherence
has the definition

Cu(r, f) =
|Eu(r, f)|2
(Eu(f))2

, (6)

with 0 � Cu � 1. In eq. (6), Eu(r, f) =∫ ∞
−∞〈ux(x, t)ux(x + r, t + τ)〉e2πιfτdτ is the cross PSD

of ux. While Eu(f) is a real quantity, Eu(r, f) is com-
plex and | · | denotes its modulus. Recently, Prabhudesai

et al. [23] experimentally studied coherence of velocity
fluctuations in turbulent flows and reported that it has
the form

Cu(r, f) = exp
[

− c1r

l0

(
1 +

c2l0f

urms

)]
(7)

for r/l0 � 0.27. In this experiment, we measure c1 = 0.9
and c2 = 8 which have the same order of magnitude as the
values reported in [23] for two different experimental con-
figurations. Substituting this functional form in eq. (5),
we obtain

EΦ(f) =
(

8k2
I l20

c2
1c

2

)
ζ(f)Eu(f), (8)

where

ζ(f) =
(

1
1 + c2l0f

urms

)[(
c1L

l0

)
−

(
2

1 + c2l0f
urms

)

×
(

1 − exp
(

− c1L(1 + c2l0f
urms

)

2l0

))]
. (9)

The above analysis shows that when the velocity fluctu-
ations at two points in space are perfectly coherent (i.e.,
when Cu = 1), we have EΦ ∝ Eu. The loss of coherence
of velocity fluctuations results in the energy reduction of
phase fluctuations, captured by the function ζ(f). Note
that eq. (4) (and eq. (8)) also gives a prediction on the
prefactor in the relation of Φrms (and EΦ) apart from its
linear dependence on urms (and Eu). These predictions
are tested experimentally in the next section.

Experimental setup and results. – We generate a
von Kármán swirling flow in air between two counter-
rotating disks in a closed cylinder of diameter 130 mm
made out of copper of 2 mm thickness (see fig. 1(a)). In
order to maintain the temperature at the boundaries fixed,
a copper tubing of outer diameter 10 mm is welded to the
cylindrical part of the container and a water bath circu-
lates water at a given temperature within ±0.01 K.

We use two loop-controlled brushless DC motors rotat-
ing at an angular velocity Ω up to 2000 rotations per
minute (rpm). Each of the motor drives a disk with
four curved blades. The thickness of the disks and the
height of the blades are both 7.5 mm. Holes drilled on
the surface of the cylinder provide access to the probes;
one 1D hot-wire velocity probe and two acoustic trans-
ducers all of which are placed in the midplane, with the
acoustic transducers flushed to the wall (fig. 1(b)). The
power dissipated per unit mass by the turbulent flow 〈ε〉 is
measured from the power required by the motors to main-
tain the flow, ranging from 0 to 500 m2/s3. This gives
the Kolmogorov length scale η =

(
ν3/〈ε〉)1/4 ≥ 50 μm

with ν = 1.5 × 10−5 m2/s the kinematic viscosity of air
at room temperature. We evaluate the Taylor microscale
λ =

(
15νu2

rms/〈ε〉)1/2 ∼ O(1)mm and the Taylor mi-
croscale based Reynolds number Reλ ∼ O(102) using stan-
dard estimates for homogeneous and isotropic turbulent
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Fig. 1: Sketch of the von Kármán flow configuration driven
by two counter-rotating disks. Temperature of the boundaries
is maintained constant using a circulating water bath. The
velocity probe and acoustic transducers are all placed in the
midplane.

flows [21]. The two-point spatial correlation Γu is evalu-
ated using two 1D hot-wire probes moved radially about
the center axis in the midplane. An exponential decay is
observed with the characteristic length scale l0 = 5 mm
which does not vary with Ω.

The acoustic transducers (ITC-9073) have a diameter of
12 mm and emit acoustic waves at frequency fI = 230 kHz
(kI = 4.13 × 103 m−1). The transducers are surrounded
by sound absorbing foam to absorb any reflected acous-
tic waves not in LOS propagation. A sine wave signal is
supplied to the emitting transducer and a lock-in ampli-
fier (Stanford Research Systems) analyzes the signal mea-
sured by the receiving transducer. The lock-in amplifier
directly measures the fluctuations in amplitude and phase

Fig. 2: (a) Time series of phase fluctuations of the inci-
dent acoustic wave for Ω = 2000 rpm. (b) PDFs of phase
fluctuations normalized by their respective RMS values for
Ω = 1200 rpm (�), 1600 rpm (�) and 2000 rpm (�). The dashed
line shows the Gaussian distribution. (c) The RMS of phase
fluctuations Φrms vs. the RMS of velocity fluctuations urms.
Linear dependence is observed as predicted by eq. (4).

of the incident wave as it propagates through the bulk of
the turbulent flow from the emitter to the receiver. Fig-
ures 2(a) and (b) show the time series of phase fluctuations
and its corresponding probability density function (PDF)
denoted by Π, for Ω = 2000 rpm. We observe that the
PDFs are Gaussian for the range of rotation rates studied
in this experiment. This is a consequence of the phase
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Fig. 3: (a) Energy spectrum Eu(f) obtained using 1D hot-wire
probe. Two distinct power laws are observed with Elow

u =
0.1 × f−0.6 at low frequencies (dot-dashed line) and Ehigh

u =
7.3×f−5/3 at high frequencies (dashed line). (b) Function ζ(f)
as given by eq. (9) for L/l0 = 20, urms = 1.2 m/s and l0 =
5mm which correspond to the experimentally obtained values
for Ω = 2000 rpm. (c) Power spectrum of phase fluctuations
EΦ. The dot-dashed line denotes the prediction by eq. (8) at
low frequencies.

fluctuations being the integral of velocity fluctuations (see
eq. (2)) which in turbulent flows are generically observed
to follow a Gaussian distribution [24]. Equation (4) pre-
dicts that the RMS of phase fluctuations Φrms would be

proportional to urms. The constant of proportionality is a
function of kI , c, l0 and L, all of which are independent of
Ω for the current experimental setup. As seen in fig. 2(c),
eq. (4) correctly describes the behaviour of Φrms and does
not involve any fitting parameter.

We now focus on the test of EΦ(f) as predicted by
eq. (8). Figure 3(a) shows an example of PSD of ve-
locity fluctuations obtained from the 1D hot-wire probe
at a location as shown in fig. 1 and for Ω = 2000 rpm.
The frequency is normalized with the forcing frequency
fforc = Ω/60. We observe two power laws, one at low fre-
quency with Elow

u = 0.1×f−0.6 and one at higher frequen-
cies with Ehigh

u = 7.3 × f−5/3. A similar low-frequency
behaviour in PSD was also observed by Ravelet [25] albeit
with a slighltly different exponent who attributed it to co-
herent structures in the shear layer of von Kármán flow
driven by disks with blades. The function ζ(f) is a mono-
tonically decreasing function as seen in fig. 3(b), where
we have taken the experimental values of the physical pa-
rameters. The theory relies on the limit of geometrical
acoustics and is thus expected to be valid for large length
scales of the velocity fluctuations, which corresponds to
small frequencies in the temporal domain. We thus use
Elow

u as measured for small frequencies and from eq. (8)
we obtain the prediction shown by the dot-dashed line in
fig. 3(c). The slope is correctly predicted by the model
and the measured EΦ differs from the prediction only by
a multiplicative factor of 1.3. The agreement is indeed
satisfactory as several hypotheses for the model can be
questioned, such as the homogeneity and isotropy of flow
properties.

Conclusion. – We have investigated the statistics of
phase fluctuations of an acoustic wave travelling through
a turbulent flow in line of sight (LOS) propagation. Build-
ing on the theory by Tatarskii [19] and on our previous
experimental results [23], we obtain predictions for the
RMS of phase fluctuations and for their PSD. The latter
is shown to be related to the spatio-temporal coherence of
the velocity fluctuations. We have experimentally verified
these predictions in a von Kármán swirling flow.

Acoustic measurements thus offer a non-intrusive way
of measuring the integral length scale, and, under some
conditions, the coherence of the turbulent velocity fluc-
tuations. The procedure is as follows: first the power
dissipated per unit mass 〈ε〉 is estimated from the power
consumed by the forcing driving the turbulent flow as
was done for this experiment. The quantity 〈ε〉 has
been demonstrated to follow the large-scale scaling 〈ε〉 =
Cεu

3
rms/l0 with Cε ≈ 0.4 [26,27]. Thus from the measure-

ment of 〈ε〉 and Φrms, and using the above relation along
with eq. (4), one obtains the quantities urms and l0. We
have used this method for the current experiment and ver-
ified that the values of these quantities thus obtained are
in agreement with their measured values.

To evaluate the coherence function amounts to evaluat-
ing the constants c1 and c2 defined in eq. (7). To do so

43001-p4



Statistics of phase fluctuations of an acoustic wave propagating through a turbulent flow

non-intrusively using eq. (8), the functional form of Eu(f)
needs to be known. If we consider that Eu(f) = αf−p,
then from EΦ(f) obtained from acoustic measurements,
the parameters α, p, c1 and c2 can be evaluated using a
fitting procedure. The number of fitting parameters is re-
duced if we have additional information on Eu(f). This
is for instance the case if the random sweeping hypoth-
esis is valid [28,29], which predicts the PSD for inertial
scales in homogeneous, isotropic turbulence as Eu(f) =
C̃〈ε〉2/3u

2/3
rmsf−5/3 with C̃ ≈ 0.8 [30–32]. Then only c1

and c2 need to be evaluated from fitting. Note that the
range of frequencies for which both the random sweeping
hypothesis and geometrical acoustics would be applicable
is given1 by

(
urms

/
l0

) � f � (
urms

/
l0

)(
l0fI

/
c
)2/3.

∗ ∗ ∗

This work has been supported by the Agence nationale
de la recherche (Grant No. ANR-17-CE30-0004), CE-
FIPRA (Project 6104-1), CNES (action 6291) and Labex
ENS-ICFP.

Data availability statement : All data that support the
findings of this study are included within the article (and
any supplementary files).

REFERENCES

[1] Lighthill M. J., Proc. R. Soc. London Ser. A Math.
Phys. Sci., 211 (1952) 564.

[2] Lighthill M. J., Proc. R. Soc. London Ser. A Math.
Phys. Sci., 222 (1954) 1.

[3] Rayleigh J. W. S., The Theory of Sound, Dover Classics
of Science and Mathematics, Vol. 2 (Dover Publications,
New York) 1969, reprint of the second revised and en-
larged 1894 edition.

[4] Obukhov A., Dokl. Akad. Nauk SSSR, 30 (1941) 611.
[5] Blokhintzev D., J. Acoust. Soc. Am., 18 (1946) 322.
[6] Kraichnan R. H., J. Acoust. Soc. Am., 25 (1953) 1096.
[7] Fabrikant A., Sov. Phys. Acoust., 28 (1982) 410.
[8] Fabrikant A., Sov. Phys. Acoust., 29 (1983) 152.
[9] Lund F. and Rojas C., Phys. D: Nonlinear Phenom., 37

(1989) 508.
[10] Gromov P. R., Ezerskii A. B. and Fabrikant A. L.,

Sov. Phys. Acoust., 28 (1982) 452.

1In scale-by-scale analysis of the turbulent flow, the theory of ge-
ometrical acoustics would be applicable for turbulent scales of length
l such that

(
kI l

/
2π

) � 1. In terms of frequency, it gives the con-

dition f � (
urms

/
l0

)(
l0fI

/
c
)2/3

. On the other hand, the random

sweeping effect would be observable for frequencies f � (
urms

/
l0

)
.

[11] Baudet C., Ciliberto S. and Pinton J. F., Phys. Rev.
Lett., 67 (1991) 193.
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