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Earthquake magnitude distribution and aftershocks: A statistical geometry explanation
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The emergence of a power-law distribution for the energy released during an earthquake is investigated in
several models. Generic features are identified which are based on the self-affine behavior of the stress field
prior to an event. This field behaves at large scale as a random trajectory in one dimension of space and a
random surface in two dimensions. Using concepts of statistical mechanics and results on the properties of these
random objects, several predictions are obtained and verified, in particular the value of the power-law exponent
of the earthquake energy distribution (the Gutenberg-Richter law) as well as a mechanism for the existence of

aftershocks after a large earthquake (the Omori law).
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I. INTRODUCTION

Two of the most widely observed and intriguing proper-
ties of earthquakes (EQs) are the distribution of energy that
they release and the variation with time of the number of
aftershocks following a mainshock. Using modern definitions,
the released energy during an EQ is characterized by the
magnitude m, m = 2log,,(M)/3 where M is the moment
M ) Ax. The sum is taken over all the spatial extent that
has moved during the EQ and Ax is the total displacement
during the event.

In natural data, the distribution of m is observed to be
an exponential, so-called Gutenberg-Richter (GR) law [1]. It
is written P(m) oc 107" and the value of b usually ranges
between 3/4 and 1 [2]. Translated into the distribution of
the moment M, the GR law turns into a power law P(M) «
M~'=B_ where B = 2b/3 and ranges between 1/2 and 2/3 [3].
For what concerns the number of aftershocks per unit time,
Omori’s law [4] states that dn/dt o (t + t)~% where a is of
order unity, T is a constant, and ¢ is the duration since the
mainshock.

There exists a variety of EQ models that use simplified
dynamical rules to describe the evolution of faults (see, for
instance, [3,5-7]). Here, from the study of several of such
models, we identify an analogy between the nonlinear dy-
namics of the solutions of EQ models and some statistical
properties of random curves or surfaces. Using methods and
tools of statistical mechanics, we are able to explain the origin
of the GR law and the value of its exponent. In addition, in
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two dimensions this approach provides an explanation for the
existence of aftershocks after a large earthquake.

II. ONE-DIMENSIONAL GEOMETRY

A. Description of the model and numerical results

We start with one-dimensional (1D) geometry and consider
N, sliders on a line at positions x;. Each slider is connected to
its nearest neighbors with a spring of stiffness k, and with a
spring of stiffness & to a plate that moves at constant velocity
vo. The driving force on the ith slider is

Si = —ko(2x; — X1 — xi—1) + ki(uot — x;). (D

When the sliders are all at rest, they experience a linear in time
increasing load until S; reaches the static friction force F; for a
given slider i, which starts to move with velocity v; and is then
subject to the dynamic friction force Fy. First, we consider
the case of a constant, Coulomb-like, friction F;, a model
that has received little attention compared to the standard
Burridge-Knopoftf (BK) model [5] that considers a velocity
weakening behavior for F;. The dynamical equation is then
mv; = S; — Fy. In addition, a slider is not allowed to move
backward. We set m =k; = F, = 1, N, = 800, vy = 1079,
F; =0 and k; is varied between 5 and 13. The system alter-
nates between a loading period with sliders at rest followed
by a brief event initiated once one of the sliders starts moving
and can put into motion a varying number of sliders. These
sudden events are the EQ of the model. The system has a

©2023 American Physical Society
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FIG. 1. For the solution of the Coulomb BK model in one dimension with F; = 0, N = 800, vy = 107°, k; = 1, and varying k, [see color
code in the legend of Fig. 1(a); same color code in Fig. 1(b) and Fig. 1(c)]: (a) Probability density function (PDF) of the moment of the events
M. (b) PDF of the event size N. (c) Power spectrum density (PSD) of the spatial gradient of the stress S; before events with 1 < M < 100 and
80 < N < 170. Straight lines are power-law fits for K < 0.1; the obtained exponents are 1 — 2H with H the Hurst exponent associated to the
large scales of the stress profiles. (d) Exponents «, 8, 1 + B, and the prediction 1 4 (8 — 1)/« as a function of K,. Symbols are best fits of
the power-law exponents of Figs. 1(a) and 1(b). Continuous lines are the predictions obtained from the fBm analogy [« =1+ H, =2 —H,
1+B=1+(1—-H)/(1+ H)] with H obtained from the large scales of the gradient of the stress, as in Fig 1(c).

chaotic behavior with large fluctuations of the EQ moment
M =" Ax; where Ax; is the total slip of the ith slider during
the EQ. The probability density function (PDF) P(M) displays
a power-law behavior P oc M~'~8 with exponent B that varies
with k, [see Fig. 1(a)].

We also observe a wide distribution of the spatial extent of
the event, i.e., the number of masses involved in each event N.
As for the distributions of the moment, they display a power
law P o« N~# [see Fig. 1(b)]. In addition, the moment and
the spatial extent are related. We calculate the value of (M)y
where the average is taken at a fixed value of N. At an inter-
mediate value of N a power law (M)y o« N* is observed (not
displayed here). @ and 8 both vary with k, and are displayed
in Fig. 1(d).

B. Explanation for the Gutenberg-Richter law

Using the rule of change of variable for a probability,
together with P(N) «x N~ and M o N%, we obtain that
the distribution of M is a power law, P(M) oc M~'~B, and

predict

B—1

o

B =

2

This prediction is verified [see Fig. 1(d)].

The exponent for the distribution of the moment is thus
related to that of the spatial extent and to that of the moment vs
spatial extent relation. To progress in the understanding of the
B value, we need to understand what sets the value of o and
B. It appears that the stress field S;, as defined in Eq. (1), plays
a particularly important role. Indeed, S; determines the slip of
the event: its size and moment. More precisely, we observe
that for events that involve a sufficient number of masses,
there exists a simple effective linear relation between S; and
Ax;. The slip profiles thus correspond to excursions above
a fixed threshold of the stress field. In particular, the length
of the event is the length at which the stress profile returns
to its initial value (the return time for a random walk) and
the moment of the earthquake is the surface below the stress
excursion.
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Predictions on the EQ properties can thus be obtained
from the properties of the stress profile. We show the power
spectrum density of the spatial gradient of the stress profile
in Fig. 1(c). At small wave vector, K < 0.1, the spectrum
displays a power law K'~2#. We associate this behavior to
a fractional Brownian motion (fBm) of Hurst exponent H
[8]. More precisely, the large scales of the stress profile have
properties similar to those of the excursions of a fBm. As the
slip is proportional to the stress, we can use properties of the
fBm to predict those of the EQ. Return times of a fBm are
distributed as P(N) = N¥~2 [9] so that the exponent for the
EQ size is § = 2 — H. Typical excursions of a fBm of size
N are of size N” so that the area covered by a fBm excursion
scales as N'™#  This implies that the exponent of the moment-
size relation is « = 1 + H. We thus obtain a prediction for the
B value using Eq. 2)as 1+B =1+ i;—g This prediction,
together with « = 1 + H and B = 2 — H are verified and are
displayed as continuous lines in Fig. 1(d), using H fitted from
the spectrum of the gradient of the stress profile.

Let us sum up on the behavior of the Coulomb BK model.
The large scales of the stress behave as a fBm of Hurst ex-
ponent H. The EQ slips are proportional to excursions of this
fBm. This analogy between fBm and earthquake properties
allows us to predict the values of the exponents «, 8, and B as
a function of one single parameter H, the Hurst exponent of
the large scales of the stress.

We have successfully performed a similar investigation on
other 1D models such as a BK model with a slip-weakening
friction force or the standard BK model [5] and could un-
derstand for each of these models the value of B. As for the
Coulomb friction model, all these systems can be described in
a more simple manner by considering the coupled dynamics of
two fields: the stress before an event and the total slip during
an event. In all these systems, the stress is scale invariant at
large scale. This scale invariance is spontaneously built up
during the evolution of the stress caused by the successive
action of EQs of varying size. This mechanism, simple and
robust, provides an explanation for the properties of EQs in
models, and might also be at work in experiments and nature.

III. TWO-DIMENSIONAL GEOMETRY

A. Description of the model and numerical results

In the following, inspired by this mechanism, we introduce
a two-dimensional (2D) model based on such evolution rules
for the stress field. This model is made as simple as possi-
ble and thus omits several features of real EQs. Yet we will
observe that the stress field displays scale invariance and we
will obtain additional predictions for the EQ properties in two
dimensions.

We consider N, sites on a square lattice. Between events,
the stress at each site S; increases linearly in time at a rate vy.
When the stress at one site, say ip, reaches a threshold value,
S, an earthquake is initiated. Letting D, be a constant, we
identify sites where stress is larger than S, — D;. All these
sites can be classified into clusters made of neighboring sites
(see Fig. 2 for an example of stress field). Only the sites which
belong to the same cluster as iy participate in the earthquake.
Let N be the number of sites in this cluster. As in nature

FIG. 2. For the 2D model with D, = 1,D, = 10,D; = 0.1, N, =
400%: (a) Snapshot of the stress field as a function of position for
s = 0. Values on the color bar on the right. (b) PDF of EQ size P(N)
for red s = 0, green s = 1, and blue s = 1.5. (c) Averaged number
of events per unit of time as a function of duration to a main event
of size N > 100. Only events with hypocenter located at a distance
smaller than 50 from the main shock are considered. Red: s = 0;
blue: s = 1.5.

[2], we assume that their motion during the earthquake is
proportional to the length of the earthquake, i.e., /N, which
results in a moment M = N3/2.
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After an event, the stresses of the moving sites are set to
new values equal to S, minus a stress drop D, equal to a
constant D, plus a random term. The system is then back into
the initial stage for which the sites are at rest and the stress
increases linearly in time. We consider a random term that
can be spatially correlated. Its amplitude is Ds. It is self-affine
with Hurst exponent H,, = s — 1 where s is a parameter and is
obtained as follows. A random field is calculated with values
of uniform probability between 0 and Ds. The field is Fourier
transformed in space, filtered by multiplication with a kernel
K~* with K the wave vector and then inverse Fourier trans-
formed. This procedure generates a correlated random surface
with Hurst exponent H,, = s — 1 [10,11]. The random field is
calculated over the whole N, sites but only the values corre-
sponding to the moving sites are used. To gain computational
time, we perform this procedure only for events of size larger
than 5, otherwise an uncorrelated random field is taken with
value uniformally sorted between 0 and D3. For s = 0, the ran-
dom stress drop is an uncorrelated field (white noise), whereas
it is correlated for positive s [11]. In this model, the interaction
between sites takes place when sites which belong to the
same cluster move and the value of the stress of these sites
is reduced by a uniform value and a correlated one for s # 0.

Numerical simulations are performed for vy =1, S, =1,
D; =1 and D, = 10, D; = 0.1, N, = 4002. The distribution
of size of the EQ is a power law (see Fig. 2), with exponent
B that depends on s. For s =0, a best fit for 3 <N < 80
leads to B = 2.046 £ 0.015. It decreases to § = 1.93 £ 0.01
for s=1 and B = 1.63 £0.01 for s = 1.5. Results similar
to those of s = 0 are obtained for small positive s = 0.5 or
negative s = —1. In these models, the relation between size
and moment is taken to be M = N3/2, so that the B values
[B=2(B — 1)/3] are equal to 0.697, 0.62, and 0.42 for s = 0,
1, and 1.5, respectively.

In addition to these wide distributions of moments, after-
shocks are observed [see Fig. 2(c)]. Both an Omori’s law
after the mainshock and an inverse Omori’s law of smaller
amplitude before the mainshock are visible. The larger s,
the stronger is the increase of activity in the vicinity of the
mainshocks. The data can be fitted using the standard Omori’s
law, Z—;‘ o« (t 4+ a)~!, at least for T not too small. We add that
the distribution of intervent time [12] also shows the existence
of clustering when s > 0, a property that is related to Omori’s
law [13-15].

B. Explanation for the Gutenberg-Richter law

As for 1D geometry, the observed behavior can be under-
stood by an analysis of the spatial distribution of the stress.
The stress field is a surface and events involve clusters of
sites for which the stress is larger than a threshold value. This
problem is classical in statistical physics as it covers a variety
of analogous situations [16]. If the comparison of the stress
with a threshold defines whether a site is occupied or empty,
then the problem of percolation is recovered [17]. From this
analogy, we expect the existence of a critical point close to
which the cluster sizes are distributed following a power law
with exponent 7, the so-called Fisher exponent. If the heights
of the surface at different positions are uncorrelated, standard
percolation takes place and T = 187/91 [17]. If the heights

are correlated as ([i(x + R) — h(x)]>)'/> = R, then corre-
lated percolation takes place. For H < —3/4, correlations
do not affect the critical behavior that remains identical to
that of uncorrelated percolation. For correlated surfaces with
H > —3/4, the critical exponents vary with H [16,18].

We have calculated the Hurst exponent of the stress field.
At large scales, we measure H ~ —0.32 for s = 1.5, H ~
—0.5for s = 1, and H ~ —1 for s = 0. We point out that the
Hurst exponent of the stress field varies with that of the noise
term (H, = s — 1) but they are different. Indeed, the stress
field results from the successive addition of many random
terms with varying size, so that the stress drop and the total
stress have different properties.

Considering that the stress field has the same properties as
a random field with Hurst exponent H that depends on s, and
assuming that the system is in the vicinity of the percolation
critical point, we expect that the distribution of size of clusters
above a cut follows a power law of exponent 7g. This is in
agreement with the exponent of the distribution of the size of
the event for small s as we have measured 8 = 2.046 4+ 0.015
for s =0, very close to the Fisher prediction for uncorre-
lated percolation Ty = 187/91 ~ 2.055. Written in terms of b
values, we predict b = 96/91 ~ 1.05 and B = 64/91 ~ 0.70
for weakly correlated stress surfaces. If the stress has strong
correlations, namely, H > —3/4, the analogy with correlated
percolation predicts a decrease in the b value. This is indeed
observed in our model as B = 0.697 for H = —1 (s = 0) and
similar values are obtained for moderate correlations (s = —1
and s = 0.5). Increasing the correlation and for H > —3/4,
we measure as expected a decrease in B since B = 0.62 for
H = —-0.5and B =0.42 for H = —0.32.

C. A mechanism for foreshocks and aftershocks

Aftershocks and foreshocks also find a simple explanation
based on the spatial structure of the stress field. We have
simulated random surfaces with various Hurst exponents H
by multiplication in Fourier space with a well-chosen power
law using the method of [10]. For each surface, we identify
the sites whose value is above a given threshold. These sites
are said to be occupied using the terminology of percolation.
We calculate p the fraction of occupied sites. We then identify
the clusters of connected sites and calculate the distance d
between the largest cluster and the other clusters. The distri-
bution of d, P(d), is a characteristic of the spatial organization
of the clusters. It is displayed in Fig. 3 for different values
of p and H. A clear divergence of P(d) for small d is vis-
ible when H gets larger. In other words, increasing H leads
to a localization of the clusters close to the largest cluster.
Correlated random surfaces, with H > 0, thus display level
sets whose positions are correlated. This property of random
surface has never been described so far. It can be translated in
terms of the spatial distribution of large values of stress in a
fault: for a correlated stress field, if a domain has a large value
of stress, other clusters with large stress are likely to be located
in its vicinity. Clustering in space of individual clusters with
large stress is thus a consequence of the geometrical properties
of the stress field that behaves at large scale as a correlated
random surface. This provides an explanation for Omori’s
law: in the vicinity of a mainshock, there exist clusters whose
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FIG. 3. PDF of the distance d between the largest cluster of
occupied sites and the other clusters for a random surface with Hurst
exponent H = —1 inred, H = 0 in green, and H = 0.5 in blue. The
fraction of occupied sites increases with the line thickness and is 0.3,
0.5, and 0.55. The total number of sites is 4002.

stress is large enough and are thus nearly ready to initiate
an EQ. This mechanism is purely geometrical and does not
require additional phenomena (stress transfer, pore pressure
dynamics, viscosity...).

IV. DISCUSSION AND CONCLUSION

In nature, it has been reported that slip profiles, stress,
or friction fields have self-affine properties [19,20], in line
with our description. In addition, the b values that we predict,
b =96/91 ~ 1.05 for a weakly correlated stress field and a
smaller one for strong correlation, are compatible with most
reported natural values [2,3]. We also note that the predic-
tion B = 64/91 is in perfect agreement with the measured
exponent in an experiment of sheared granular matter that
measures B = 0.71 &£ 0.01 for the released energy during the
events [14]. To finish on this brief comparison with datas, we
add that [21,22] describe a variation of b with properties of
the faults. Our work provides an explanation for these effects:
the fault properties affect the self-affine behavior of the stress
field or the moment vs size relation. These properties in turn
modify the b value.

Essentially, the GR law and Omori’s law result from the
scale invariance of the stress. This scale invariance builds up
during the iterative coupled evolution of the stress and the
slip. Power-law distributions of the moment are then a conse-
quence of this scale invariance and their exponents are related
to the statistical properties of random curves or surfaces.

This approach is promising. First, it can be applied to other
models of EQs or of similar effects such as avalanches in order
to understand the emergence of power-law distributions.

Second, the analysis of the two steps of evolution sheds
light on new problems in statistical mechanics. The stress to
slip problem is a nonstandard application of random curves:
the stress profile, a random trajectory, defines through pos-
sibly nonlinear rules the slip distribution, which is also a
random curve. In probability theory, this situation belongs to
the problem of random polymers and our results open the way
to the study of new classes of such models.

Third, the second step in the modeling, from slip to stress
field, is obviously crucial here. The stress field evolves at each
event because the slip decreases the stress of the moving sites
but both the stress and the slip fields are coupled as the slip
is determined by the stress profile before the event. As a con-
sequence, EQ properties result from the nontrivial dynamical
evolution of a random interface instead of resulting from the
self-organization close to an equilibrium critical point [23].
It remains to be understood how and when such evolving
interfaces tend towards a self-affine geometrical structure. For
these questions also, very little is known and we expect that
new classes of random interfaces will be identified in this
context. The robustness of EQ-like behavior in models and
nature pushes toward the existence of generic mechanisms
able to generate these self-affine surfaces.
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