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Abstract. We investigate theoretically the effects of periodic-in-time mod-
ulations on the properties of earthquakes. To wit, we consider successively
the one dimensional Burridge–Knopoff (BK) model and the two dimensional
Olami–Feder–Christensen (OFC) model. Each model is modified to take into
account either a modulation of normal stress or of shear stress acting on a fault.
Despite the differences between the BK and the OFC model, several results are
observed in both models. In particular, we observe that earthquake occurrences
correlate with stress modulation. The correlation is strongly dependent on param-
eters such as the type of modulation, its frequency and amplitude, and in some
cases on the magnitude of the considered earthquakes.
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In the Earth’s crust, at seismogenic depths, transient changes in stress can be caused
by various sources. As such, the possibility that tides have an influence on earthquakes
(EQ) has been debated for more than a century among seismologists [1]. Even though
tidal stress modulations are small compared to those of fault dynamics, they occur on
a short timescale so that properties sensitive to variation rates could be affected by
tides. Models based on rate and state (R & S) friction laws [2] proposed that short-
period stress transients are not effective at triggering EQ if they occur faster than the
characteristic earthquake nucleation duration. Similar R & S models were used, later
on, to explain the poor correlation between tidal loading and EQ [3].

However, several robust studies showed a statistically significant correlation between
EQ and oceanic or solid Earth tides [4–7], and even at higher frequencies between
dynamic triggering from seismic waves and EQ [8]. Recent studies have also shown that
the fraction of large EQ increases when the tidal stress increases [9]. This effect depends
on the faulting geometry and correlation with the shear stress was only observed for
reverse faulting [10]. The correlation with tides has also been reported to have increased
prior to several large EQ and to have disappeared afterwards [11, 12].
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Figure 1. Schematics of the model. The ith block is pushed by its neighbors and
the moving plate of speed V (t).

Similarly, seasonal effects such as snow or water loadings are also possible sources of
modulation on faults. It has been reported that deep-focus EQ (magnitude larger than
7, depth larger than 500 km) are two to three times more likely in summer [13]. It has
been reported that the annual variation of terrestrial water mass is a possible source of
modulation of seismicity on faults in different tectonic settings such as the Himalayas
of Nepal [14, 15], California [16, 17], in the New Madrid region [18] or in the Southwest
of Japan [19].

Despite these numerous observations, only a few theoretical studies have considered
this problem. Considering one degree of freedom subject to periodic shear stress modu-
lation (SSM), it was shown that the earthquake rate is proportional to the frequency of
the modulation [20]. Here we consider two discrete models of fault with many degrees of
freedom so that the size-dependent properties [including the Gutenberg–Richter (GR)
law] are investigated. A different approach would have been to adopt a continuum model,
but it generally fails to reproduce the GR law [21] and therefore does not fit our purpose.
For each of the two models, we investigate the properties of the EQ when either normal
stress or shear stress on a fault is modulated periodically in time. Our results provide a
quantitative explanation of the sensitivity to periodic loading of earthquake statistical
properties including the size distribution.

1. One dimensional Burridge–Knopoff model

1.1. Description of the models

Our first analysis on the effect of stress modulation on EQ is based on the one-
dimensional Burridge–Knopoff (BK) model shown in figure 1, where a set of N sliders
are located on a line at positions x̂i. Each slider is connected to its nearest neighbors
with a spring of stiffness k̂2. The first and the last sliders are only connected to one
neighbor. In addition, each slider is connected with a spring of stiffness k̂1 to a plate
that moves at constant velocity denoted by v̂0. To make contact between this model and
a continuum, these sliders should be interpreted as the elements of unit surface that
constitute the fault. Thus, forces and stresses have the same dimension in our model.

The driving force on the ith slider is

τ̂ i = −k̂2(2x̂i − x̂i+1 − x̂i−1) + k̂1(v̂0 t̂− x̂i). (1)

https://doi.org/10.1088/1742-5468/abda29 3
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If this driving force τ̂ i reaches the static friction force F̂ s at slider i, it starts to move
with velocity v̂i and is subject to the dynamic friction force

F̂ d(v̂i) = F̂
1− δ

1 + 2α̂
1−δ

v̂i
(2)

where δ and α̂ are positive constants. δ corresponds to the instantaneous stress drop
from static friction to dynamic friction. Note also that the dynamic friction decreases
as the slip velocity v̂i increases. Such friction is referred to as the velocity weakening
friction, and α̂ represents the amplitude of the negative velocity dependence. Then we
are led to the equation of motion for slider i [22]:

d

dt
v̂i = τ̂ i − F̂ d(v̂i). (3)

In addition, each slider is not allowed to move backward and if its velocity vanishes with
a negative acceleration, it is set to zero.

Using the BK model described above, we analyze the effect of stress modulation on
earthquake occurrence. In natural earthquake faults, the stress modulation may affect
both normal and shear stresses, the amplitude of which depends on the faulting orien-
tation. For instance, on strike-slip faults, which dip vertically, normal stress is not much
modulated, whereas reverse faults, with lower dip angle, may be subject to relatively
large modulation in normal stress. Taking these geometrical effects into account, here
we consider two extreme models: the normal stress modulation (NSM) model and the
SSM model.

In the NSM model, the normal stress is modulated while the shear stress is constant.
In the equation, the NSM results in a modulated friction force. Thus, the static friction
reads

F̂ s = F̂ (1 + ε cos Ω̂t̂), (4)

where ε is the amplitude of modulation and Ω̂ is the frequency. Similarly, the dynamic
friction is obtained by replacing F̂ with F̂ (1 + ε cos Ω̂t̂) in equation (2).

The second (SSM) model consists in a modulation of the shear stress. More precisely,

we assume the additional driving force −F̂ ε cos Ω̂t̂ in equation (1). This may result
either from the periodic stressing or from the modulation of plate velocity. As the normal
stress is kept constant here, the static and dynamic friction forces are also constants: i.e.,
we set ε = 0 in equations (2) and (4). With these definitions, the condition to initiate
an EQ is the same as for the NSM model, whereas the dynamical equation is different.
Importantly, the dynamic friction is independent of the modulation phase (the value of

Ω̂t̂) in the SSM model.
For the parameters that we consider here, the events during which sliders are mov-

ing occur on a very short time scale compared to F̂ /(k̂1v̂0) and 1/Ω̂ so that the time

dependent term of the dynamic friction (ε cos Ω̂t̂) and the position of the moving plate
are set fixed to their values at the beginning of the motion.

In both models, using 1/
√
k̂1 as unit of time and F̂ /k̂1 as unit of length, we can set

k̂1 and F̂ to unity. In other words, we write k̂2 = k̂1K, v̂0 = v0F̂ /
√
k̂1, α̂ = α

√
k̂1/F̂ and
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Figure 2. Probability density function (PDF) of magnitudeM , for ε = 0; Ω = 10−7,
ε = 0.03 and Ω = 10−3, ε = 5× 10−6. The three curves are nearly superimposed.

change variables using x̂ = xF̂/k̂1 and t̂ = t/
√

k̂1. Then the equations for x(t) involve

only K = k̂2/k̂1, v0 = v̂0
√

k̂1/F̂ and α = α̂F̂ /
√
k̂1. There are thus seven dimensionless

control parameters: N , δ, K, v0, α, ε, and Ω = Ω̂/
√
k̂1.

1.2. Results

1.2.1. No modulation. Unless otherwise stated, we use δ = 0.01, N = 800, α = 1,
v0 = 10−8, and K = 9 [23]. For these parameters, the system alternates between a load-
ing period in which the sliders are at rest and the driving force τ i increases linearly
in time and a brief event initiated once one of the sliders starts moving and can put
into motion a varying number of sliders. These sudden events are interpreted as the EQ
in the BK model. The system has a chaotic behavior and in particular the size of the
EQ fluctuates. The released energy during an EQ is characterized by the magnitude M
defined asM = log(

∑
i Δxi), where Δxi is the distance over which each slider has moved

during an event. For the parameters chosen here and in absence of modulation, the dis-
tribution of M is an exponential, reminiscent of the GR law. Writing P (M) = 10−bMs

where Ms =
2
3
log(

∑
iΔxi)/ log(10), the value of b ranges between 3/4 and 1 and its

exact value depends on the range of magnitude over which is it estimated.
Natural EQ display the GR law. To observe this law in the BK model, most of the

parameters have to be either large or small. In particular N is large to consider a large
system, v0 is very small to have separated time scales between loading and events, and
the stress drop δ is small. The results will not be drastically changed if we increase
further N or decrease v0 or δ. In other words, we are in the limit of large N and small
v0 and δ and no qualitative change will occur if we modify their values.

1.2.2. Modulated normal stress (NSM) model. We start with a description of the
results obtained with the NSM model. We have varied Ω between 10−8 and 10−3. Com-
pared to the mean interevent time T � 3.3× 104 in absence of modulation, or to the
mean duration between motion of a given block which we estimate of orderNT � 2× 107

https://doi.org/10.1088/1742-5468/abda29 5
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Figure 3. (Top) Magnitude (restricted to M > −4) of EQ as a function of time for
ε = 0.03 and Ω = 10−7 (blue dots), the red curve is proportional to the modulated
force. (Bottom) Occurence rate dn/dt of the EQ as a function of time (blue curve)
for ε = 0.03 and Ω = 10−7, the red curve is proportional to the stress modulation.
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or smaller, we span both regimes of fast and slow force modulation 3.3× 10−4 � ΩT � 33
and 0.2 � ΩT � 2× 104.

Amongst the most important properties of the solutions of the BK model are the
statistical distributions of the inter-event time T between two consecutive EQ and
of the earthquake magnitudes. As will be discussed later, the behavior of the system
drastically changes for large values of the modulation amplitude [24]. Otherwise, we
observe that the mean inter-event time T , its rms fluctuations and its distribution are
independent of ε. Similarly, the magnitude distribution remains unchanged, as can be
seen in figure 2. Stated differently, the modulation of the friction force has no effect on
these properties. Nevertheless, the system is affected by the modulation. As displayed
in figure 3, the event rate dn

dt
varies with time with a period equal to that of the force

modulation.
To quantify this effect, we calculate for each event, its phase Φ defined as Ωte modulo

2π where te is the time at which an event occurs. We then calculate the PDF of the
phase P [Φ], which is displayed in figure 4.

We observe that the PDF is an harmonic function and is well fitted by 1
2π

+ a sin(Φ−
ΔΦ) (black curves in the figures). The amplitude a and the phase shift ΔΦ of the PDF’s
harmonic response characterize the sensitivity of the system to the force modulation.
The amplitude a is an increasing function of ε and Ω as shown in figure 5.

We calculate the value εc(Ω) at which a reaches an arbitrary small value taken
to be ac =

√
2× 10−2 (figure 6) and observe two behaviors: at large Ω it satisfies

εc � 8.2× 10−10/Ω, and at smaller Ω it crossovers to a constant value or to less steep
behavior at least. The crossover frequency is of the order of Ωc = 10−6. The results for
a are collapsed if displayed as a function of ε/εc (figure 7). For moderate values of ε/εc,
a linear behavior is observed of the form a � 1.36× 10−2ε/εc.

We note that for ε larger than roughly 10εc, P [Φ] vanishes for a given range of
Φ, meaning moments of quiescence in the system. More precisely, for very large ε,
events occur only when the friction force is the smallest. In that situation, some prop-
erties of the system change. In particular, the distribution of the inter-event time
displays peaks for values equal to multiples of the force period. As a consequence,
the mean and the standard deviation of the interevent time start to depend on ε. In
this regime, the effect of the modulation is very strong. In particular, it leads to the
absence of events for certain values of the phase. Because such properties have not been
observed (yet) by observational seismology, we focus on smaller values of the modulation,
ε � 10εc.

For large enough Ω and small ε, using the expression for εc, we obtain a � 1.6× 107εΩ
which can be written as av0/(εΩ) � 0.16. Using the dimensionless parameters, we expect
a relation of the form

a = Π(N , δ,K, v0,α, ε, Ω) (5)

where Π is an unknown function. Having observed that a is linear in ε, we write this
expression as

a = εΩ/v0 h(N , δ,K, v0,α, Ω). (6)

https://doi.org/10.1088/1742-5468/abda29 7

https://doi.org/10.1088/1742-5468/abda29


J.S
tat.

M
ech.

(2021)
023404

Earthquake sensitivity to tides and seasons: theoretical studies

Figure 4. PDF P [Φ] for different ε and top: Ω = 10−3, dark blue ε = 10−5,
red 5× 10−6, light blue 3× 10−6, green 10−6, magenta 5× 10−7, other curves are
smaller ε. Bottom: Ω = 10−7, red: ε = 0.05, blue: ε = 0.01, other curves are smaller
ε. Colored curves are the data and the black curves are the sin fits: a sin(Φ−ΔΦ).

For large Ω, the unknown function h = av0/(εΩ) is thus independent of Ω and takes the
value 0.16. We have checked that the same value is obtained for Ω = 10−2 and v0 = 10−7,
so that for this range of parameters, h depends neither on v0 nor on Ω.

We have investigated the dependence of h = av0/(εΩ) on some of the other parame-
ters by changing Ω, α and N . The effects of the frequency and of the number of sliders
are displayed in figure 8. As mentioned, for large Ω, h is a constant. It increases when
Ω becomes smaller. The variation with Ω is reduced when the number of sliders is
decreased. In addition for large Ω, reducing the number of sliders by a factor up to 4
leaves the value of h nearly unchanged.

The effect of the proximity to criticality is investigated by changing α. Indeed α = 1
corresponds to the regime in which the GR law is observed for the widest range of
magnitudes. When α is large, a peak of events appears for large magnitudes which

https://doi.org/10.1088/1742-5468/abda29 8
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Figure 5. Amplitude of the modulation of the phase distribution a as a function of
ε for different frequencies, � red: Ω = 10−3; ◦ blue: Ω = 10−4; � magenta: Ω = 10−5;
� black: Ω = 10−6; � green: Ω = 10−7; × cyan: Ω = 10−8.

Figure 6. εc as a function of Ω. Insert: Ωεc as a function of Ω.

is reminiscent of characteristic EQ. As for small α, the largest events are less fre-
quent which corresponds to an increase in the b-value [25]. For 1/2 � α � 1, our results
show that h is constant (figure 8), and thus independent of the b-value within this
range. In contrast, h is decreased at larger α, i.e. by the existence of characteristic
events.

Having discussed the properties of a, we now discuss those of the phase-shift ΔΦ
between −dFr

dt
and P [Φ] as a function of Ω (figure 9). Its value is roughly independent

of ε in the vicinity of εc. We note that ΔΦ is close to 0 apart for the small values of Ω
where it increases. This corresponds to frequency Ω smaller than Ωc � 10−6.

The large Ω regime corresponds to ΔΦ � 0, so that events are more frequent when
the decay rate of the friction force is larger. Equivalently there are less events when the
increase rate of the friction force is larger. For smaller Ω, the behavior is changed. It
appears that ΔΦ evolves towards π/2. Events are then more frequent when the friction
force is the smallest.

https://doi.org/10.1088/1742-5468/abda29 9
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Figure 7. Amplitude of the modulation of the phase distribution a as a function
of ε/εc for different frequencies, � red: Ω = 10−3; ◦ blue: Ω = 10−4; � magenta:
Ω = 10−5; � black: Ω = 10−6; � green: Ω = 10−7; × cyan: Ω = 10−8. Bottom: zoom
on the origin in lin–lin scale.
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Figure 8. av0/(εΩ) for small ε. (Top) As a function of Ω. The value for Ω = 10−8

is 0.55, not displayed to focus on the smaller variations with N and at larger Ω. In
blue N = 800, in cyan N = 400, in red N = 100. (Bottom) As a function of α and
for Ω = 10−3 and N = 800.

The analysis of the phase of the events presented so far has been made taking into
account all the events, independently of their magnitudes. To investigate how the trig-
gering depends on the magnitude, we focus on two parameter values: large frequency
Ω = 10−3 and small frequency Ω = 10−7. For values of ε slightly above εc, we have com-
puted numerically very large set of events and calculated the distribution of the phase
PMs(Φ) obtained when only events of magnitude larger than Ms are considered. For
large Ω, the distribution of the phase PMs(Φ) is unchanged when we change Ms. In
constrast for smaller Ω, we observe a change in the distribution of the phase of the
events when Ms is changed (figure 10).

Let us now detail properties observed at the small Ω. Considering all magnitudes,
the events are more likely to occur for ΔΦ between 0 (largest decay rate) and π/2 (force
is the smallest). Increasing Ms, for intermediate magnitude, the modulation of the phase
decreases so that the triggering is less visible. In contrast, if we consider only the very
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Figure 9. Phase shift ΔΦ as a function of Ω.

Figure 10. PDF of the phase Φ for Ω = 10−7 and ε = 10−2 and for events of
magnitude larger than Ms, see legend for the value of Ms.

large magnitudes, we observe a clear modulation of the phase of the events: they are
more frequent when the friction force is the largest. For Ms = 5.75 which corresponds to
2875 events over a total number of events of 1.15 billions of events, there are 1.3 times
more events when the force is maximum than when it is minimum. Considering all the
magnitudes, we observe the opposite: 1.22 times more events at the force minimum.
This effect is also present at smaller values of ε, the amplitude of the modulations of
the phase distribution being reduced.

A different way to analyze this property is to study the GR law as a function of
the phase. The b-value calculated over intermediate values of M (0.5 < M < 3) varies
with the phase (figure 11). Finally, we calculated the cumulative moment (here equal
to the cumulative displacement

∑
ΔXi), where the sum is taken over events of given

phase (figure 12). We note that the phase dependence of the cumulative moment is
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Figure 11. b-value calculated by a fit for 0.5 � M � 3 for events with phase Φ
restricted to [k, k + 1 [π/3. Same data as in figure 10.

Figure 12. Distribution of the cumulated moment for events with phase Φ restricted
to [k, k + 1 [π/3, for Ω = 10−7 and ε = 10−2. Blue: all events, red M > 4.

similar to the one of the PDF of the phase of the large events. This is expected for
b-values lower than 3/2. Indeed the GR law corresponds to a moment distributed as a
power law with exponent 2b/3. Considering such a distribution cutted off at low and
large values, the average of the moment is dominated by the largest events if b < 3/2.
In other words, when the b-value is smaller than 3/2, large EQ dominate the moment
release. In such way, here, the moment release depends on the phase of the modulation
Φ, this property being true whether we consider all the events, or only those with
M � 0 or M � 4.

We conclude the presentation of the results in this model by noting the non trivial
differences in the behavior when limits are taken. For the large Ω limit, the behavior
depends on how the limit is taken but does not depend on the magnitude of the con-
sidered events. At fixed ε, moments of quiescence are observed and events only occur
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when the normal stress is the smallest. At fixed and not too large εΩ, the response
remains linear in εΩ and events are more likely to occur when the stress decay rate
is the largest. In the small Ω limit, event distributions depend on their magnitude.
Largest events occur when the stress is the largest, smallest event occur when the
stress is the smallest. The amplitude of the response is increasing with ε and linear for
small ε.

1.2.3. Shear stress model. The results presented so far are obtained with a model that
describes a modulated normal stress (NSM). We now turn to the case of a modulation
of the shear stress (SSM). The results in both models are similar: EQ occur more often
for given values of the phase. For moderate values of ε, the phase modulation is well
fitted by a sin-function which amplitude is linear in ε. In this regime and for the range
of parameters that we consider, we obtain nearly the same values of h = av0/(εΩ) for
both models [30]. We observe a phase-shift close to Δφ = 0 for all values of Ω. However,
we do not observe for the SSM a variation of the PDF of the phase PMs

(Φ) when
we change Ms. Even considering the largest possible values of Ms, the modulation
of PMs

(Φ) remains the same as the one obtained when considering all events. This
means that the sensitivity on magnitude of the phase-distribution of the EQ is strongly
dependent on the nature of the modulation. It is not present when the shear stress is
modulated, whereas it is clearly visible when the normal stress is modulated with a small
frequency Ω.

2. The two dimensional Olami–Feder–Christensen model

2.1. Description of the models

The second system that we consider is the Olami–Feder–Christensen (OFC) model [27].
The OFC model is a two-dimensional cellular automaton describing the evolution of N 2

degrees of freedom located on a square network. The dynamical variable F i is called the
stress.

Starting from an initial condition where all F i are smaller than the maximum static
friction force F 0, the system is at rest and a load increases the value of all the F i until
one of the degrees of freedom, say j reaches F 0. Then the value of F for all the neighbors
of j is increased by the value of F j multiplied by a coefficient α. Subsequently F j is set
to zero. If for one of the neighbors, F is larger than F 0, the process continues. It stops
when all values of F i are smaller than F 0.

These events are considered to be the EQ of the model. The magnitude of the event
is the number of degrees of freedom that have have reached F 0. As the same degree of
freedom can reach F 0 several times during the same event, the magnitude of the event
can be larger than the number of degrees of freedom involved in the event.

Boundary conditions play a very important role for the OFC model. Here, sites at
the border of the system follow the same dynamical rule as the ones in the bulk: they
transfer α/4 of their stress to their neighbors. Stress transferred outside of the system
is lost. These standard boundary conditions are called open boundary conditions.

In general, temporal aspects of the OFC system are not considered, but see [28] for a
study of foreshocks and aftershocks. Here we first assume that the loading of the system
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Figure 13. Amplitude of the modulation of the phase distribution a as a function of
ε for top: α = 0.15 and Ω: (◦ blue) 10−8, (� red) 10−7, (� green) 10−6, (� magenta)
10−4, (� black) 10−2, (� marron) 10−1; bottom: α = 0.225 and Ω: (� red) 10−7,
(� green) 10−6, (� magenta) 10−4, (� black) 10−2.

is performed at fixed velocity, i.e. the loading rate is constant so that during the load,
all F i are increased by a term v0t. In addition we consider that the events are very brief
compared to 1/v0 so that the time does not evolve during the event. With these two
assumptions, we can define a time of occurence to each event, say T .

Periodic modulation of the system is first introduced by assuming that F 0 is changed.
This corresponds to the modulation of the normal stress (NSM model) as described for
the BK model. Without loss of generality we thus consider that F 0 = 1 + ε cos(Ωt).
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Figure 14. (Top) εc as a function of Ω. (Bottom) Ωεc as a function of Ω. Symbols
stand for the values of α. (•): α = 0.15, (�): α = 0.225.

We have considered a second model in which F 0 is fixed to 1 but the stress is
modulated. In line with the studies on the BK model, this corresponds to a modulated
shear stress model (SSM). We thus add a term −ε cos(Ωt) to the stress Fi during the
loading phases. In other words the stress increases as v0t− ε cos(Ωt) when the degrees
of freedom are at rest. The negative sign is chosen so that the condition for initiation of
an EQ is the same as when the friction force is modulated.

2.2. Results

2.2.1. No modulation. Numerical simulations of the model have shown that for α
smaller than 1/4, the dynamics generates events of magnitude that is widely distributed.
More precisely a GR law is observed with a b-value that varies with α [25, 27].
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Figure 15. Amplitude of the modulation of the phase distribution a as a function
of ε/εc for different frequencies and α = 0.225 (full symbols) and α = 0.15 (empty
symbols). The values of Ω are the same as in figure 14.

We have focused on two values of α, 0.15 and 0.225. We consider a system of size
302 close to the N = 800 masses that we studied in the BK model. We set v0 = 10−6

and vary ε and Ω.

2.2.2. Modulated normal stress model (NSM). Most results are similar to the ones
observed in the BK model. For moderate ε, the GR law is not modified but events occur
preferentially for certain values of the phase, Φ = ΩT modulo 2π. Then, the distribution
of the phase, PDF(Φ) is a harmonic function that we fit to obtain the amplitude of the
response a and the phase-lag with respect to the forcing.

We display in figure 13 the value of the response a as a function of ε.
We define εc, the value of ε at which a reaches 10−2

√
2. It is displayed in figure 14.

Two regimes are observed: at large Ω, εc is proportional to Ω−1 and it saturates at
small Ω.

At moderate ε, smaller than a few times εc, the response of the system is linear
in ε. The results for a as a function of ε/εc are collapsed on a master curve displayed in
figure 15.

The phase-lag between the modulation and the response is displayed in figure 16. At
large Ω, events occur preferentially when the decay rate of F 0 is the largest. Decreasing
Ω, the system has a tendency to generate more events when the friction force is the
smallest.

We have also studied how the phase distribution is dependent on magnitude M . We
consider ε close to εc and have varied Ω and α. We have observed that for large enough
Ω the distribution of the phase is not dependent on M . In contrast, for smaller Ω the
distribution changes with M .
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Figure 16. Phase shift ΔΦ as a function of Ω for (•): α = 0.15, (�): α = 0.225.

Figure 17. PDF of the phase Φ for v0 = 10−8, for α = 0.225, ε = 10−2 and Ω = 10−7

and for events of magnitude larger than Ms, see legend for the value of Ms.

The global behavior is similar to the one of the BK model, larger magnitudes have a
distribution peaked at a phase for which the friction force is the largest, while smallest
events are more likely when the friction force is the smallest. In terms of the magnitude
distribution, this amounts to a variation of the b-value as a function of phase, see
figure 18.

2.2.3. Modulated shear stress model (SSM). We observe behaviors similar to the case
of modulated normal stress with the only exception being that the distribution of the
phase does not depend on magnitude.
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Figure 18. b-value calculated by a fit for 2.3 � M � 4.5 for events with phase Φ
restricted to [k, k + 1 [π/4. Same data as in figure 17.

3. Discussion

3.1. Mechanisms responsible for the observed behaviors

Several properties due to a modulation of the normal stress or of the shear stress are
observed in both the one dimensional BK and the two dimensional OFC model. These
properties are thus likely to be generic and we now discuss their possible origin.

We first analyze the origin of the modulation of P [φ], in the case of a modulation of
the normal stress unless otherwise stated.

For Ω larger than Ωc, the modulation favors the occurrence of EQ when the decreas-
ing rate of the normal stress is the largest. This results from the criterion to initiate
an EQ: an event starts when the loading force reaches the static friction. If the latter
increases with time, it is more difficult for the driving force to initiate an EQ, see illus-
tration in figure 19. This behavior does not depend on the EQ magnitude. For the case
of a modulated shear stress, we observe a similar behavior, in which events occur when
the increasing rate of the shear stress is the largest.

We can understand this regime quantitatively as follows. Driving of the upper plate
leads to the constant stressing rate of v0 for each block. An event occurs at the moment
when the shear stress exceeds the static friction stress. In the case of NSM, the static
friction depends on time as 1 + ε cos(Ωt). Let Σi−1 be the difference between the residual
stress and the friction force after the i− 1-th event that took place at time ti−1. The
time ti at which the total stress reaches the static friction again is given by the solution
of

v0(ti − ti−1) + Σi−1 = 1 + ε cos(Ωti). (7)

We note that this equation allows for multiple solutions if ε is large. Hereafter we assume
sufficiently small ε so that there exists a single solution for ti. Let us define the phase
Φi = Ωti, we have

Φi −
εΩ

v0
cos(Φi) = Φi−1 + Ω

1− Σi−1

v0
. (8)
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Figure 19. Sketch of a loading phase. For a modulated friction force (NSM): the
maximum load, max(τ i), increases linearly in time. The static friction force, F s,
is periodically modulated. An EQ starts when the two forces are equal. (Left) The
modulation rate is comparable to the linear loading rate. The condition for EQ
occurence is more easily satisfied when the friction force decay rate is the largest. In
the case of a modulated shear stress (SSM), the same discussion is valid taking into
account that the linear-in-time increasing load contains only the term of constant
shear rate whereas the oscillating term is equal to the static friction force minus the
modulated part of the shear stress. (Right) In the case of a very large modulation
rate, the linear load appears nearly horizontal. Events occur only at the minimum
of the oscillating curve, thus when the friction force is the smallest.

We note θ0 the right-hand side and observe that it contains the term Σi−1 which value
is set by the dynamics during the preceding EQ and varies with the event number i. We
can express the probability of Φi from the one of θ0 as

P [Φ] = P [θ0]
dθ0
dΦ

, (9)

and use from equation (8) that dΦ(1 + εΩ
v0

sin(Φ)) = dθ0, so that

P [Φ] = P [θ0] (1 +
εΩ

v0
sin(Φ)). (10)

When the variations of P [θ0] are small so that it can be considered as a constant, this
equation predicts the form of P [Φ] observed at large Ω: ΔΦ = 0 and a coefficient a
proportional to ε. Using the normalization of the PDF, we even obtain h = av0/(εΩ) =
(2π)−1 � 0.159 in perfect agreement with the values measured at large Ω and α � 1.

For Ω smaller than Ωc, events are more frequent when the friction force is the small-
est. This can also be understood from the criterion that controls the initiation of an
event, see figure 19. We note that at small Ω, the amplitude of force modulation ε
required to observe a modulation of the phase of the event is large. This is the not the
case in the large Ω regime because then the modulation of the phase takes place for
very small values of ε as it results from a competition between the load speed v0 and
the speed of change of the friction force εΩ.

The behavior for small Ω is due to events of small magnitude that dominate the
statistics if we consider all events. If we consider only events above a magnitude Ms,

https://doi.org/10.1088/1742-5468/abda29 20

https://doi.org/10.1088/1742-5468/abda29


J.S
tat.

M
ech.

(2021)
023404

Earthquake sensitivity to tides and seasons: theoretical studies

the behavior changes with Ms. In particular, for the largest magnitudes, events occur
preferentially when the normal force is the largest. For such rare events, the largest the
friction force, the strongest is the load when the event is initiated so that more energy
is available to be transferred to the motion of the blocks.

For the case of a modulation of the shear stress, the regime of small Ω is different and
in particular does not depend on the magnitude of the events. This indicates that the
sensitivity of the effects of the modulation on the frequency or on the event magnitude
is controlled by the dynamics during the phases where the blocks are moving. More
precisely, in the SSM for the BK model, if we write the dynamical equations with xi,
xi−1, xi+1 and their values at the beginning of the event, the modulated term (ε cosΩt)
does not appear in the equation and thus has no effect on the dynamics. Similarly, for
the OFC model, the modulation only affects the loading phase. In contrast, in the NSM
model, the modulation favors the motion for phase φ � 0 and inhibits it for phases close
to π. This results in an increase in the number of small events for φ � π when the normal
stress is minimum, and an increase in the number of large events for φ � 0 when the
normal stress is maximum.

In the case where both the normal and the shear stress are modulated, a sensitivity to
magnitude is expected. The larger the NSM, the larger the sensitivity. More precisely, the
effect is large provided the modulated term has a noticeable effect during the dynamical
phases: reducing the acceleration for some values of the phase and enhancing it for other
values.

3.2. Orders of magnitude for real earthquakes

To connect with observations performed on natural EQ, we need to use dimensional
quantities. The amplitude of the triggering effect for the moderate stress modulation
can be written

a ∝ F̂ εΩ̂

v̂0k̂1

. (11)

We can then define the susceptibility of EQs to stress modulation as

χ ≡ ∂a

∂(εF̂ )
∝ Ω̂

v̂0k̂1

. (12)

The dimension of χ is the inverse of stress, and 1/χ is regarded as the characteristic
stress, at which the response of the phase distribution to stress modulation is of the
order of unity. A stress perturbation of 0.1/χ is thus sufficient to cause a significant

correlation of EQs with stress modulation. The denominator v̂0k̂1 in equation (12) is the
stressing rate to the sliders, and therefore the ratio of the modulation frequency to the
stressing rate controls the sensitivity of EQs to stress modulation.

Then we can compare our model with the natural EQs based on equation (12).
The stressing rates in natural earthquake faults and tectonic plate boundaries may
be γ̇G, where γ̇ is the strain rate and G is the shear modulus of the Earth’s crust.
While G � 30 GPa [29], the strain rate at tectonic plate boundaries may vary by
orders of magnitude. Here we adopt γ̇ � 10−15 to 10−12 s−1 [26]. These values give the

https://doi.org/10.1088/1742-5468/abda29 21

https://doi.org/10.1088/1742-5468/abda29


J.S
tat.

M
ech.

(2021)
023404

Earthquake sensitivity to tides and seasons: theoretical studies

stressing rate of 3× 10−5 to 3× 10−2 [Pa s−1]. The period of stress modulation 2π/Ω̂

ranges from half a day (Ω̂ � 1.5× 10−4 s−1) to nearly one month (Ω̂ � 2.5× 10−6 s−1)

for tides, while it may be half a year for seasonal loading (Ω̂ � 2× 10−7 s−1). Then the
susceptibility may range from 6.7× 10−6 to 5.0 [1/Pa], which corresponds to the charac-
teristic stress of 0.2 to 1.5× 105 [Pa]. The range is too broad to allow any quantitative
comparison with the observation data, but at least does not contradict to the typi-
cal stress modulation observed on the Earth: 103 to 104 [Pa] for tidal [3] and seasonal
loading [33].

Magnitude sensitivity occurs in the case of low frequency modulation. Then, the
crossover frequency Ωc is of the order of 10

−6, which can be expressed as Ω̂c � 100v̂0k̂1/F̂ .

We note that F̂ /v̂0k̂1 may be regarded as the recurrence time of EQ at a given location,
i.e. the time interval between two sufficiently large events at a given place. With this
definition, the crossover time Tc = 2π/Ω̂c is roughly ten times smaller than the recurrence
time of EQ. Namely, if the period of NSM is comparable to the recurrence time of
earthquake, it can affect the b-value and the magnitude of EQs. This is the case of EQ
with recurrence time of the order of a few years subject to seasonal loading. In some
sense, this mechanism also provides a possible explanation for the change in the b-value
observed during the evolution of a fault between two very large events throughout the
earthquake cycle [34]. Long term evolution of the normal stress would then be due to
tectonic motion and not to tidal or seasonal modulations.

3.3. Possible limitations

In the two models, it appears clearly that a large modulation of the stress rate results
in strong correlations between stress rate and phase of the events. Yet, such correlations
are not always reported.

A possible explanation for this disagreement lies in the absence of nucleation process
in both models. As pointed out in [2], stress variations that would occur on time scales
shorter than the nucleation time are expected to be inefficient at triggering EQ.

The absence of nucleation process in our models plays also a role for comparing
with other models. The (R & S) model of [31], see also [32], predict behaviors that
depend on whether the modulation period is large or small compared to the nucle-
ation time. At small period, an increased activity is predicted when the stress is large,
whereas at large period, activity is large when the stress rate is large. The behavior
in our models also depend on the modulation frequency. For instance for the NSM
model, by increasing the modulation time, the response changes from a correlation with
stress rate to a correlation with stress amplitude. The crossover period is a fraction
of the recurrence time of the fault. We note that nucleation processes are absent in
our models so that this can explain the absence of a sensitivity to stress amplitude
at smallest modulation period as predicted in the rate and stress models. A possi-
ble scenario that would reconcile these models is that at period shorter than then
nucleation time, a sensitivity (probably small) to stress amplitude takes place, at inter-
mediate period, a stronger sensitivity to stress rate occurs, and at period larger than
a fraction of the recurrence time of the fault a correlation with stress amplitude is
recovered.
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Another effect that is not taken into account in our model is the perturbation due
to distant EQ. Such EQ act on a given fault as a source of noise due to the random
emission of seismic waves. These waves can trigger EQ even at distance, and may thus
mask the effect of tides.

An important result of this study is the possibility for a magnitude dependence
of the properties. Magnitude dependence of seasonality of deep EQ have been dis-
cussed in [9]. For what concerns tidal effects, [13] reports that very large EQ occur
near the time of maximal tidal stress whereas this tendency is not obvious for small
EQ. In the model that displays magnitude sensitivity (NSM model for a small mod-
ulation frequency), we stress that the observed behaviors are not straightforward: for
the parameters of figure 10, events with largest amplitude occur more often when the
normal force is the largest, very small events are more likely to occur when the normal
force is the smallest and events of intermediate amplitude have a smaller sensitivity to
the modulation. We note that in natural data, the latter could easily be considered as
not statistically significant and would thus correspond to the small EQ reported in [9].
The smallest events of the model would then either be undetected in natural data or
inexistant.

Again, it is important to discuss why variations of the behavior with magnitude might
be absent in natural datas. The limitations mentioned earlier and due to the absence
of nucleation process and of dynamical triggering by distant EQ could be the cause. In
addition, for the models considered here, only a modulation of the normal stress results
in magnitude dependence of the correlation between modulation and EQ occurrences. In
more general settings, both the normal and the shear stresses are modulated. Then the
larger the NSM, the larger the sensitivity to magnitude. One of such tectonic settings is
the subduction zone with a low dip angle. In contrast for faults subject predominantly
to SSM, no magnitude dependence is expected.

Finally, considering a single harmonic component to model tidal forcing is obvi-
ously oversimplified. More realistic models are needed but it is satisfying that with such
a simple hypothesis, a variety of predictions can be made and compared to natural
observations.

3.4. Prospects

From the point of view of statistical physics, this work is a study of the suscepti-
bility of out-of-equilibrium systems in the vicinity of a scale invariant regime. More
precisely, the susceptibility may be written as χ(k, Ω) with k being the wavenumber.
Then equation (12) corresponds to this susceptibility at zero wavenumber k = 0 and we
have studied its dependence on Ω here. Investigating the effect of a finite wavenumber
would be of interest and might define characteristic lengths of the system. At k = 0, we
identified a crossover frequency Ωc below which the linear susceptibility changes behav-
ior. In particular for a modulated normal stress, the susceptibility becomes magnitude
dependent. It would be of interest to investigate similar properties in other scale invari-
ant systems, even at equilibrium. Here, the fact that the magnitude dependence is not
observed with a modulated shear stress indicates that the two models do not belong to
the same universality class, even though the differences between them are apparently
minor.
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Following theoretical works could consider different friction laws (such as the R &
S friction law) and more realistic modulations. In particular, a modulation made of two
frequencies would be a better model of tidal forcing when the different tidal components
are of comparable amplitudes. For large modulation frequencies and as in the present
study, we expect an increase of the number of events during the phases where the decay
rate of the friction force is the largest. The behavior at small modulation frequency and
its possible magnitude dependence is also likely to lead to interesting effects.

We did not identify clear change in the susceptibility in the vicinity of a large earth-
quake. In the BKmodel without modulation, there already exists a clear decay in activity
between before and after a large EQ. This (unrealistic) property dominates the changes
of behavior. More realistic models would be useful to reveal possibly small variations in
the susceptibility as an indicator of mainschock.

From the point of view of data analysis, our results show that the behavior of the
system depends on several parameters. First, whether the normal or the shear stress
are modulated, thus on the type of fault and of loading. Second, on the ratio between
the modulation time and the inter-event time. Catalogs should be analyzed taking into
account these parameters. It would also be interesting to investigate whether some faults
display quiescence, i.e. total absence of events during some phases of the modulation,
which is the most extreme regime identified in this study.
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