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Mechanisms for magnetic field reversals
BY F. PÉTRÉLIS* AND S. FAUVE

Laboratoire de Physique Statistique, CNRS UMR 8550,
Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

We present a review of the different models that have been proposed to explain reversals
of the magnetic field generated by a turbulent flow of an electrically conducting fluid (fluid
dynamos). We then describe a simple mechanism that explains several features observed
in palaeomagnetic records of the Earth’s magnetic field, in numerical simulations and in
a recent dynamo experiment. A similar model can also be used to understand reversals
of large-scale flows that often develop on a turbulent background.

Keywords: dynamo theory; oscillations; magnetic field reversals

1. Introduction

It has been known since the work of Brunhes (1906) that the Earth’s magnetic
field remains roughly parallel to its rotational axis for long durations, but from
time to time it flips, with the poles reversing sign. Polarity reversals are also
observed for the magnetic field of the Sun, but they occur nearly periodically. It
is strongly believed that the magnetic fields of planets and stars are generated
by the dynamo effect, i.e. the amplification of electric currents by the motion of
an electrically conducting fluid (Moffatt 1978). Flows in the interiors of planets
or stars have huge kinetic Reynolds numbers, Re = VL/n, where V is the typical
velocity, L is the integral length scale and n is the kinematic viscosity. For instance,
Re ∼ 109 in the Earth’s liquid core or Re ∼ 1015 in the convective zone of the Sun.
These flows being strongly turbulent, we would expect them to advect and distort
the magnetic field lines in a very complicated way. Thus, it is puzzling that the
generated magnetic fields display a large-scale coherent component with rather
simple dynamics.

Reversals of the magnetic field generated by a turbulent swirling flow of liquid
sodium (the von Kármán sodium or VKS experiment) have been observed only
recently in laboratory experiments (Berhanu et al. 2007). Although Re ∼ 5 × 106

for these flows, it has been observed that the large-scale dynamics of the magnetic
field result from the interactions of a few modes, and that the low-dimensional
nature of these dynamics is not smeared out by strong turbulent fluctuations of
the flow (Ravelet et al. 2008).
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1596 F. Pétrélis and S. Fauve

This type of behaviour also occurs in purely hydrodynamical turbulent flows,
where the largest scales sometimes seem to be governed by low-dimensional
dynamics. In dynamo experiments or to some extent for the geodynamo, this
can result from the proximity of the dynamo threshold given by a critical
value of the magnetic Reynolds number, Rm = m0sVL, where m0 is the magnetic
permeability of vacuum and s is the electrical conductivity of the fluid. This is
unlikely for the solar magnetic field, for which Rm is huge. However, the magnetic
Prandtl number, Prm = Rm/Re = m0sn, is very small for all planetary and stellar
dynamos as well as in the present experiments (Prm < 10−5), meaning that the
magnetic diffusion time scale is much smaller than the hydrodynamic one. This
scale separation can explain the low-dimensional nature of the dynamics of the
magnetic field despite strong turbulent fluctuations.

2. Phenomenological models and numerical simulations

(a) Disc dynamos and truncations of the magnetohydrodynamic equations

The first simple models of field reversals considered coupled rotor disc dynamos
(Rikitake 1958) or a Bullard disc dynamo when a shunt is added (Robbins 1977).
The equations for the currents are of the same type as for the Lorenz model
(Lorenz 1963). When two solutions related to one another by the B → −B symme-
try are unstable and chaotic regimes occur, these systems stay for a while in the
vicinity of one solution and then flip to the neighbourhood of the other. These
transitions occur in a random fashion and this can be considered as reversal dyna-
mics. However, both the shape of the transitions displayed by direct recordings as
well as their statistical properties differ from the experimental observations of field
reversals and from palaeomagnetic records. In addition, equations governing disc
dynamos strongly differ from full magnetohydrodynamic (MHD) equations and
cannot be obtained from them in any consistent approximation. When truncating
the full MHD equations by keeping two magnetic modes of the diffusion operator
and one velocity mode, Nozières (1978) found equations similar (but not identical)
to those of Rikitake (1958). He then described reversals as a relaxation limit cycle
between two quasi-stationary states related by the B → −B symmetry.

(b) Normal forms

A different class of models, also involving a few coupled differential equations, is
based on the assumption that several magnetic eigenmodes are competing above
the dynamo threshold. These models have mostly been used to describe the solar
cycle. Tobias et al. (1995) take into account two magnetic modes (a poloidal and a
toroidal one) undergoing a Hopf bifurcation. They assume that the velocity field
generating the magnetic field is close to a saddle-node bifurcation and couple
the marginal velocity mode to the magnetic modes in order to obtain a third-
order system that can display periodic, quasi-periodic and chaotic behaviours.
Wilmot-Smith et al. (2005) obtain similar results but with a coupling term that
does not break the B → −B symmetry.

Knobloch & Landsberg (1996) consider a different model that involves not
marginal velocity modes but two magnetic modes, a dipolar and a quadrupolar
one, both generated through a Hopf bifurcation. Taking into account 1 : 1
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resonant coupling terms, they find aperiodic regimes that can also represent
the modulation of the cyclic activity of the solar magnetic field. Finally,
Knobloch et al. (1998) assume the existence of two velocity modes, symmetric
and antisymmetric with respect to the equatorial plane, and couple them
to the dipolar and quadrupolar magnetic modes of the previous model.
They show that two different types of modulation of the cyclic activity can
be described.

In the framework of normal forms, it has been proposed to relate reversals
to trajectories close to heteroclinic cycles that connect unstable fixed points
±B (Armbruster et al. 2001; Chossat & Armbruster 2003). Heteroclinic cycles
provide a simple framework to describe separation of time scales between
rapid reversals that connect quasi-steady states with a given polarity. The
latter is related to saddle points in the vicinity of which the system slows
down. Melbourne et al. (2001) tried to describe the dynamics of the Earth’s
magnetic field by writing amplitude equations for an equatorial dipole coupled
to an axial dipole and quadrupole. This model has heteroclinic cycles but no
connection of states with opposite polarities except when additional coupling
terms that break the symmetries are taken into account. Strictly speaking, a
stable heteroclinic cycle connecting ±B cannot describe reversals because the
period goes to infinity as the trajectory is attracted on the cycle. However,
an arbitrary amount of noise is enough to kick the system away from the
saddle points and to generate random reversals with a finite mean period
(Stone & Holmes 1990).

(c) Metastable states in the presence of external noise

Other models rely on external noise in a stronger way. They start from a
dipolar magnetic mode with amplitude D(t) that bifurcates supercritically and
model the effect of hydrodynamic turbulence through random fluctuations of
the coefficients of the dynamical system governing D and the amplitudes of the
stable modes in the vicinity of the bifurcation threshold. Fluctuations only in
the amplitude equation, Ḋ = mD − D3, i.e. a growth rate m that involves a noisy
component, do not lead to reversals between the two stationary solutions D =
±√

m. However, taking into account that D is coupled with the stable modes,
which are also excited by fluctuations, can lead to reversals (Schmitt et al. 2001).
D behaves as the position of a strongly damped particle driven by random noise
in a two-well potential. The crucial role of damped modes has been emphasized
further by Hoyng & Duistermaat (2004). The reversals are triggered by large
fluctuations of damped modes driven by noise. These modes act on D as an
effective additive noise.

Recent numerical simulations have modelled hydrodynamic fluctuations with a
noisy a-effect (Giesecke et al. 2005; Stefani & Gerbeth 2005; Stefani et al. 2007).
The deterministic part of this model can generate periodic relaxation oscillations
with the system slowing down in the vicinity of two states with opposite polarities
±B. In this respect, it belongs to the class of systems described by Nozières (1978).
The addition of external noise is thus crucial to generate random reversals. It is
likely that the phenomenology of this model is related to the proximity of a
codimension-two point that results from two interacting modes with different
radial structures.
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(d) Hydrodynamic mechanisms and direct numerical simulations

The above descriptions of reversals assume the existence of some large-scale
dominant modes of the magnetic field. The random dynamics of reversals are
either of deterministic nature (low-dimensional chaos) or result from the addition
of external noise that traces back to hydrodynamic fluctuations.

A different approach, initiated by Parker (1969), consists in trying to identify
the nature of the fluctuations of the velocity field that is required to generate
a reversal. In the case of the Earth, it is believed that the magnetic field is
generated through an a–u mechanism, u being related to differential rotation
and a resulting from the existence of cyclonic convective cells in the Earth’s
core, which fluctuate both in number and in position. When strong enough, these
fluctuations can reverse the magnetic field (Parker 1969; Levy 1972).

Another mechanism has also been proposed by Parker (1979). It follows
from the observation by Roberts (1972) that a meridional circulation favours
stationary dipolar a–u dynamos in spherical geometries. Parker (1979) suggested
that, if the meridional circulation is altered for a while, an oscillatory magnetic
mode may become dominant and generates a reversal of the magnetic field. It
was later claimed that this mechanism is suggested from palaeomagnetic data
(McFadden & Merrill 1995). Numerical simulations of the MHD equations in
a rotating sphere have displayed this in a clear-cut way: it has been shown by
Sarson & Jones (1999) and Sarson (2000) that the random emission of poleward
light plumes, or ‘buoyancy surge’, generates fluctuations of the meridional flow
that can trigger a reversal. They also found that this mechanism is not affected
much by the back reaction of the magnetic field on the flow and does result
from the proximity in parameter space of stationary and time-periodic dynamo
modes, depending on the intensity of the meridional flow. A process also related to
convective plumes has been observed by Wicht & Olson (2004). They found that
a magnetic field with an opposite polarity is produced locally in the convective
plumes and that the transport of this reversed flux can generate a reversal. They
also showed that the observed reversals are almost unchanged when the Lorentz
force is removed from their numerical code. Other advection processes of the
magnetic field by the flow have been studied in detail by Aubert et al. (2008). It
should be noted that all these numerical simulations have been performed with
large values of Prm (1 < Prm < 20). Local modifications of the magnetic field by
the flow are likely to play a less important role for small values of Prm because
of strong ohmic diffusion.

Since 1995 (Glatzmaier & Roberts 1995), a lot of three-dimensional numerical
simulations of the MHD equations in a rotating sphere have been able to
simulate a self-consistent magnetic field that displays reversals (see the reviews
by Dormy et al. (2000) and Roberts & Galtzmaier (2000)). However, it has been
emphasized that most relevant dimensionless parameters that can be achieved in
direct simulations are orders of magnitude away from their value in the Earth’s
core or laboratory experiments. Even in the limited range accessible to direct
simulations, it has been shown that the geometry of the generated magnetic
field and the properties of field reversals can strongly depend on the values
of the relevant dimensionless numbers (Kutzner & Christensen 2002; Busse &
Simitev 2006). Thus, one may conclude as in Coe et al. (2000) that ‘each reversal
in the simulations has its own unique character, which can differ greatly in
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Figure 1. Possible eigenmodes of the VKS experiment. The two discs counter-rotate with
frequencies F1 and F2. (a) Magnetic dipolar mode. (b) Magnetic quadrupolar mode. Poloidal,
BP , and toroidal, Bq, components are sketched.

various aspects from others’. However, we emphasize that a lot of these numerical
simulations also display similar properties at a more global level, if one considers
how the symmetries of the flow and the magnetic field evolve during a reversal.

(e) Dipole–quadrupole interaction and equatorial symmetry

A dipole–quadrupole interaction is clearly visible in the first reversals simulated
by Glatzmaier & Roberts (1995). They note that ‘the toroidal field is asymmetric
with respect to the Equator before and after the reversal but is symmetric midway
through the transition’, thus has a quadrupolar symmetry at the transition (see
their fig. 2). This has been confirmed by the simulations of Sarson & Jones (1999),
who find that reversals rely ‘heavily upon the interaction between dipole and
quadrupole symmetries’ and that they are triggered by the random emission of
poleward light plumes, i.e. events that break the equatorial symmetry of the flow.
Similar features have been observed by Wicht & Olson (2004). Li et al. (2002)
also emphasize that ‘the dipole polarity can reverse only . . . where the north–
south symmetry of the convection pattern is broken’ and that ‘the quadrupole
mode grows . . . before the reversal’. It has also been shown that, if the flow or
the magnetic field is forced to remain equatorially symmetric, then reversals do
not occur (Nishikawa & Kusano 2008).

3. Reversals of the magnetic field in laboratory experiments

Reversals of the magnetic field generated by a turbulent swirling flow of liquid
sodium (VKS experiment) have been observed only recently in laboratory
experiments (Berhanu et al. 2007). The VKS experiment involves a turbulent
swirling flow of liquid sodium, generated by two impellers, counter-rotating
at frequency F1 (respectively, F2) in an inner copper cylinder, as sketched in
figure 1. When the discs counter-rotate with the same frequency F , a statistically
stationary magnetic field is generated when F is large enough. Its mean value
involves a dominant poloidal dipolar component BP along the axis of rotation,
together with a related azimuthal component Bq, as displayed in figure 1a. When
the rotation frequencies are different, the magnetic field can display periodic or
random reversals as well as random bursts. Although the kinetic Reynolds number
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is large, Re ∼ 5 × 106, for these flows, it has been observed that the dynamics
of the magnetic field are not smeared out by strong turbulent fluctuations.
In particular, all reversals involve the same transitional field morphology: the
amplitude of the dipolar field first decreases. If it changes polarity, the amplitude
increases on a faster time scale and then displays an overshoot before reaching
its statistically stationary state. Otherwise, the magnetic field grows again with
its direction unchanged. The above features are also observed in recordings of
the Earth’s magnetic field, the aborted reversals often being called excursions
(Valet et al. 2005).

The most striking feature of the VKS experiment is that time-dependent
magnetic fields are generated only when the impellers rotate at different
frequencies (Berhanu et al. 2007; Ravelet et al. 2008). We have shown in Pétrélis &
Fauve (2008) that this is related to the broken invariance under Rp when F1 �= F2
(rotation of an angle p along any axis in the mid-plane). In that case, symmetric
and antisymmetric modes (under Rp) are coupled. Such modes are displayed in
figure 1: a dipolar mode is changed to its opposite by Rp, whereas a quadrupolar
mode is unchanged.

4. A generic mechanism for reversals

Although the flow in the VKS experiment strongly differs from the one in the
Earth’s core, dipolar and quadrupolar modes can be defined in both cases (using
different symmetries). We assume that the magnetic field is the sum of a dipolar
component with an amplitude D and a quadrupolar one, Q. We define A = D + iQ
and we assume that an expansion in powers of A and its complex conjugate Ā
is pertinent close to threshold in order to obtain an evolution equation for both
modes. Taking into account the invariance B → −B, i.e. A → −A, we obtain

Ȧ = mA + nĀ + b1A3 + b2A2Ā + b3AĀ2 + b4Ā3, (4.1)

where we limit the expansion to the lowest-order nonlinearities. In the general
case, the coefficients are complex and depend on the experimental parameters.

Symmetry of the experiment with respect to Rp amounts to constraints on the
coefficients. Applying the transformation Rp changes D and Q in different ways:
D → −D, Q → Q, thus A → −Ā. We conclude that, in the case of exact counter-
rotation, all the coefficients are real. More generally, the real parts are even and
the imaginary parts are odd functions of the frequency difference f = F1 − F2.

The coefficients of equation (4.1) can be chosen such that it has two stable
dipolar solutions ±D and two unstable quadrupolar solutions ±Q when f = 0
(Pétrélis & Fauve 2008). When f is increased, these solutions become more and
more mixed due to the increase of the strength of the coupling terms between
dipolar and quadrupolar modes. Dipolar (respectively, quadrupolar) solutions
get a quadrupolar (respectively, dipolar) component and give rise to the stable
solutions ±Bs (respectively, unstable solutions ±Bu) displayed in figure 2. When
f is increased further, a saddle-node bifurcation can occur, i.e. the stable and
unstable solutions collide by pairs and disappear (Pétrélis & Fauve 2008). This
generates a limit cycle that connects the collision point with its opposite. This
result can be understood as follows. The solution B = 0 is unstable with respect
to the two different fixed points, and their opposite. It is an unstable point,
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Q
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c
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a'

D

Figure 2. A generic saddle-node bifurcation in a system with the B → −B invariance: below
threshold, fluctuations can drive the system against its deterministic dynamics (phase a). If the
effect of fluctuations is large enough, this generates a reversal (phases b and c). Otherwise, an
excursion occurs (phase a′).

whereas one of the two bifurcating solutions is a stable point, a node, and the
other is a saddle. If the saddle and the node collide, say at Bc, what happens
to initial conditions located close to these points? They cannot be attracted by
B = 0, which is unstable, and they cannot reach other fixed points, since they just
disappeared. Therefore, the trajectories describe a cycle. The associated orbit
contains B = 0, since, for a planar problem, in any orbit, there is a fixed point.
Suppose that the orbit created from Bc is different from the one created by −Bc.
These orbits being images by the transformation B → −B, they must intersect at
some point. Of course, this is not possible for a planar system because it would
violate the uniqueness of the solutions. Therefore, there is only one cycle that
connects points close to Bc and −Bc.

This provides an elementary mechanism for field reversals in the vicinity of
a saddle-node bifurcation. First, in the absence of fluctuations, the limit cycle
generated at the saddle-node bifurcation connects ±Bc. This corresponds to
periodic reversals. Slightly above the bifurcation threshold, the system spends
most of the time close to the two states of opposite polarity ±Bc. Second, in
the presence of fluctuations, random reversals can be obtained slightly below the
saddle-node bifurcation. Bu being very close to Bs, even a fluctuation of small
intensity can drive the system to Bu, from which it can be attracted by −Bs, thus
generating a reversal.

The effect of turbulent fluctuations on the dynamics of the two magnetic
modes governed by equation (4.1) can be easily modelled by adding some noisy
component to the coefficients (Pétrélis & Fauve 2008). Random reversals are
displayed in figure 3a. The system spends most of the time close to the stable
fixed points ±Bs. We observe in figure 3b that a reversal consists of two phases.
In the first phase, the system evolves from the stable point Bs to the unstable
point Bu (in the phase space sketched in figure 2). The deterministic part of the
dynamics acts against this evolution and the fluctuations are the motor of the
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Figure 3. Reversals of the magnetic field modelled by equation (4.1) with noisy coefficients: (a) time
recording of the magnetic dipolar mode, and (b) zoom of one of the reversals shown in (a).

dynamics. That phase is thus slow. In the second phase, the system evolves from
Bu to −Bs, the deterministic part of the dynamics drives the system and this
phase is faster.

The behaviour of the system close to Bs depends on the local flow in the phase
space. Close to the saddle-node bifurcation, the positions of Bs and Bu define
the slow direction of the dynamics. If a component of Bu is smaller than the
corresponding one of Bs, that component displays an overshoot at the end of a
reversal. In the opposite case, that component will increase at the beginning of
a reversal. For instance, in the phase space sketched in figure 2, the component
D decreases at the end of a reversal and the signal displays an overshoot. The
component Q increases just before a reversal.

For some fluctuations, the second phase connects Bu not to −Bs but to Bs.
It is an aborted reversal or an excursion in the context of the geodynamo. Note
that, during the initial phase, a reversal and an excursion are identical. In the
second phase, the approaches to the stationary phase differ because the trajectory
that links Bu and Bs is different from the trajectory that links Bu and −Bs. In
particular, if the reversals display an overshoot, this will not be the case for the
excursion (see figure 3b and the sketch of the cycle in figure 2).

5. A simple model for the Earth’s magnetic field reversals

Although the symmetries of the flow in the Earth’s core strongly differ from the
ones of the VKS experiment, dipolar and quadrupolar modes can be defined with
respect to equatorial symmetry such that model (4.1) can be transposed for the
geodynamo. Pétrélis et al. (2009) have shown that this explains many intriguing
features of the reversals of the Earth’s magnetic field. The most significant output
is that the mechanism predicts specific characteristics of the field obtained from
palaeomagnetic records (Valet et al. 2005), in particular their asymmetry: the
Earth’s dipole decays on a slower time scale than it recovers after a reversal. In
addition, it displays an overshoot that immediately follows the reversals. Other
characteristic features such as excursions as well as the existence of superchrons
are understood in the same framework. In addition, we obtain an interesting
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prediction about the liquid core in that case: if reversals involve a coupling
of the Earth’s dipole with a quadrupolar mode (McFadden et al. 1991), then
this requires that the flow in the core has broken mirror symmetry. In contrast,
another scenario has been proposed in which the Earth’s dipole is coupled to an
octupole, i.e. another mode with a dipolar symmetry (Clement 2004). This does
not require an additional constraint on the flow in the core in the framework of
our model with two interacting modes. In any case, the existence of two coupled
modes allows the system to evolve along a path that avoids B = 0. In physical
space, this means that the total magnetic field does not vanish during a reversal
but that its spatial structure changes.

6. Conclusion

We have studied dynamical regimes that can arise when two axisymmetric
magnetic eigenmodes are coupled. Symmetry considerations allow us to identify
properties of the magnetic modes and, in some cases, put constraints on the
coupling between the modes. We have shown that, when a discrete symmetry is
broken by the flow that generates the magnetic field, the coupling between an
odd and an even magnetic mode (with respect to the symmetry) can generate
a bifurcation from a stationary state to a periodic state. This behaviour is
generic when a saddle-node bifurcation occurs in a system that is invariant under
B → −B. Close to the bifurcation threshold, fluctuations drive the system into
a state of random reversals that connect a solution Bs to its opposite −Bs. This
scenario provides a simple explanation for many features of the dynamics of the
magnetic field observed in the VKS experiment: alternation of stationary and
time-dependent regimes when a control parameter is varied, continuous transition
from random reversals to time-periodic ones, characteristic shapes of the time
recordings of reversals versus excursions.

Although the discrete symmetry involved for the flow in the Earth’s core is
different from the one of the VKS experiment, a similar analysis can be performed
for the geodynamo (Pétrélis et al. 2009).

We emphasize that the above scenario is generic and not restricted to the
equation considered here. Limit cycles generated by saddle-node bifurcations that
result from the coupling between two modes occur in Rayleigh–Bénard convection
(Tuckerman & Barkley 1988; Siggers 2003). A similar mechanism can explain
reversals of the large-scale flow generated over a turbulent background in thermal
convection (Krishnamurti & Howard 1981; Liu & Zhang 2008) or in periodically
driven flows (Sommeria 1986). A model analogue to the present one explains how
this large-scale field can reverse without the need for a very energetic turbulent
fluctuation acting coherently in the whole flow volume.
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