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We consider the random deposition of objects of variable width and height over a line. The successive
additions of these structures create a random interface. We focus on the regime of heavy-tailed distributions of the
structure width. When the structure center is chosen at random, the problem is exactly solvable, and the interface
generically tends toward a self-affine random curve. The asymptotic behavior reached after a large number of

iterations is universal in the sense that it depends on only three parameters: the shape of the added structure at its
maximum, the power-law exponent of the width distribution, and the exponent that relates height and width. The
parameter space displays several transitions that separate different asymptotic behaviors. In particular, for a set
of parameters, the interface tends toward a fractional Brownian motion. Our results reveal the existence of a new
class of random interfaces whose properties appear to be robust. The mechanism that generates correlations at
large distances is identified, and it explains the appearance of such correlations in several situations of interest,
such as the physics of earthquakes or the propagation of energy through a diffusive medium.
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The evolution of an interface that is modified by the suc-
cessive addition of objects is an iconic problem in statistical
physics, with applications ranging from the deposit of a gran-
ular [1] to the growth of a stable phase into a metastable one,
or to the propagation of a flame to quote a few [2]. In the past
decades, the competition between randomness and diffusion
was shown to be modeled by the Edwards-Wilkinson (EW)
equation and, when nonlinearity is taken into account, by the
Kardar-Parisi-Zhang (KPZ) equation [3]. The quest for their
understanding drove a variety of efforts both on the theoretical
front [4] and the experimental one [5]. The additive term in
these equations is a Gaussian white noise both in time and
space and is thus uncorrelated. In a one-dimensional (1D)
geometry, the solutions tend at long times toward a Brownian
motion [2]. A Gaussian and correlated noise has also been
considered [6].

Very few studies consider the case of the random addition
of objects of varying size, and they are restricted to either
a binary size distribution [7] or a Poisson one [8]. Here, we
consider objects that have a heavily tailed distribution of size
and show that such a process leads to a new class of random
interfaces displaying various behavior. Notably, spatial cor-
relations at large distances appear even when the individual
steps of the process are uncorrelated.

The initial motivation for this problem comes from the
physics of earthquakes (EQs) [9]. We will thus describe the
models in this context. However, the addition of objects of
variable size is a general situation, and applications in the
context of the interaction of a wave with a diffusive medium
are given at the end of this article.

We have shown in several models that the statistical prop-
erties of the EQ result from the stress field being a self-affine
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random curve [9]. More precisely, in a 1D geometry, the large
scales of the stress field tend toward a Brownian motion or a
fractional Brownian motion (fBm). This property originates in
the stress field evolution that results from the successive stress
changes caused by the EQ. The mechanism is the following
iterative sequence: the stress field at a given time controls the
properties of the next EQ and, in particular, the amount of
slip caused by the event; the slip is in turn responsible for the
modification of the stress. After a large number of iterations,
this process builds up a self-affine stress field. We identified
this process in several models and showed that it is responsible
for the intriguing properties of EQs [9,10], such as the distri-
bution of the released energy (the Gutenberg-Richter law) or
the distribution of aftershocks after a main shock (the Omori
law). It is thus expected that this process is generic, robust, and
can be observed in idealized models of EQs. Nevertheless, the
origin of the large distance correlations, as displayed by the
self-affine stress field, is unclear. The purpose of this article is
to identify why and when such large distance correlations ap-
pear. To achieve this goal, we consider two models, rigorously
solve one of them, and study them numerically.

The simplest model of the evolution of a stress field is to
consider that it is a scalar function of space and that successive
EQs change its value. Between events, the stress increases
due to tectonic loading, which is usually considered to be
spatially uniform and linear in time. When the stress reaches a
threshold, an EQ is initiated. After the event, the stress in the
domain that has moved is decreased.

To deal with positive quantities, we define h(x) as the
opposite of the stress and assume that each event results in the
addition of a value §h(x) to h(x). The linear in time loading
between events is not considered here, as it only amounts to
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a change in the spatial average of 4. The problem is thus
turned into the evolution of an interface i(x) that drifts toward
positive values because of the successive deposition of objects
that change its value by a quantity §a(x).

An EQ affects the fault property over a size that is dis-
tributed as a power law [9,12], and we thus assume that % is
nonzero over a width similarly distributed.

We consider two variations of this process. EQs are usually
initiated at locations at which the stress is maximum, which
corresponds to the minimum value of 4: this is the min-model.
We also consider a simpler situation, the rand-model, in which
the stress drop or equivalently the change in 4 occurs at a
random position, independent of the value of 4.

In a more formal way, we consider positions on a line
x € [0, D]. We use periodic boundary conditions to maintain
homogeneity in the statistical properties of the system. We are
interested in Ay (x) the height after N iterations. An iteration
consists of the addition of §h(x) defined as follows: Let i :
[0, 1] = R™ be a continuous function, such that ¥ (0) =1
and ¥ (1) =0, and let n be the index of its first nonzero
derivative at 0%, For n = 1, ¥ is locally a triangle, and for
n =72 a parabola. Let s be the center of the structure that
is either drawn at random over [0, D] for the rand-model or
is the minimum of A(x) for the min-model. Let U be the
width of the structure. It is a random variable distributed as
a Pareto law with parameter 8 — 1 (8 > 1), that is, with den-
sity 111.00)@)(B — 1)/uP. Let vy(x) = min{|s — x + jD|, j €
Z} be the distance between the center and the position x,
where we use the periodicity of the system. We then define

a—1 vy (x)
Sh(x) =U""" ljour(vs(x)) 1ﬁ< U ) . (1)

In other words, at each iteration, we add a structure of shape
¥, of width 2U, and of amplitude U®~!. The structure is
even with respect to its center, and its width is random and
distributed as a power law of exponent — 8.

These processes can be simulated numerically, and we
display in Fig. 1 profiles of & = hy(x) calculated over a grid
of spacing Ax = 1 when v is linear so that the added structure
is a triangle (n = 1).

For both models, several results can be proven rigorously
using probabilistic methods applied to random curves. Details
are provided in the Appendix but we focus here on the results.
Interestingly, they depend exclusively on n, «, and 8.

The spatial average of & increases with N either linearly

(ballistic) for 8 > o or as N (= (superballistic) for g < «.
More precise estimates are given in Egs. (A4), (A5), and (A6).

For the rand-model, we are able to fully describe the spatial
fluctuations in A. Let fy(x) = hy(x) — hn(0).

(1) Fora >1+4+nand1 < B < B, :=2a —1—2n,

a—l-n
N 7T fy =n 1, (2)

where p is the distribution of a random function, which can
be expressed as the limit of a sum of random functions, see
Egs. (2), (A8), and (A9). In particular, the fluctuations in 4 are
not a Gaussian process.

(2) Fora € [1,1 +n]Jorfora > 1+4+nand 8 > B,

N_%fN =y 7Y, 3)

where Y is a centered Gaussian process.
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FIG. 1. Numerically simulated interface h(x) = hy(x) for a
segment of length D =200, o = 1.5, and g = 1.5. Top: rand-
model after N = 3 iterations starting from a straight line. Middle:
rand-model after 510° iterations. Bottom: min-model after 510°
iterations.

In this case, we are able to derive an analytical expres-
sion for the covariance r(s, t) = Cov (Y (s), Y (¢)). We verified
by estimating the quantities numerically that for 8 > B, :=
200 —2 and for D > s,t > 1, r(s,t) o |s|* + [t]*7 — |s —
t?# with 2H = 20 — 8. When B < By, the covariance is
dominated by quadratic terms in s or .

We draw the parameter space of the rand-model in Fig. 2.
It contains three transitions separating six different behaviors.

A particularly interesting regime concerns 0 < 2o — 8 <
2. Then the process generates a fBm of Hurst exponent H with

H=a-p/2. “)

The value of the Hurst exponent can be understood as follows:
The difference in height (fy(I)?) between two sites distant of /
is due to events of size L larger than /, whose center is within a
neighborhood of one of the two sites over a width proportional
to [. These events provide a height difference of order /%7,
When the integral is dominated by the smaller values of L, we
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FIG. 2. Parameter space describing the behavior of the interface
hy(x) at large N for the rand-model. The red line is 8 =« and
separates between a ballistic (domain 1, 2, and 3) and a superballistic
(4, 5, and 6) behavior of the mean position of the interface. The cyan
line is B, = 2o — 1 — 2n and separates between a Gaussian (1, 2, 4,
5) and a non-Gaussian (3, 6) behavior of the field fluctuations. The
blue line is B; = 2a — 2 and separates between a x**~# behavior (1
and 4) of the correlations of the fluctuations and a x2 one (2, 3, 5, 6).

obtain the estimate

oo
(fn(D?) ~ 117472 / LPaL ~ > P,
!

It is worth noting that this result does not depend on rn, and is
thus independent of the shape of the added structures.

Examples of profiles are presented in Fig. 3. We calcu-
late from these profiles the power spectrum density (PSD)
of fN/Nl/z. The power law of the PSD, K~1"2H for a fBm,
allows for calculation of H, which is displayed in Fig. 4. It
verifies the prediction of Eq. (4).

(h — R)/std(h)
=
=
=
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FIG. 3. For the rand-model and 8 = 2, normalized height profile
as a function of position after N = 107 iterations for a triangular
added structure (n = 1) and (red) « = 1.5, (yellow) o = 2, and (light
blue) o = 3.
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FIG. 4. Hurst exponent H as a function of « for g = 2. The
straight line is the prediction H = o — /2. Full symbols are the
results of the rand-model and empty symbols of the min-model.
Red is for n =1 (triangle), blue for n = 2 (parabola), and green
for n = 2, parabolic at its center with a negative value of 84 at its
border.

Notably, the phenomenology differs from that of the KPZ
solutions in 1D, which tend toward a Brownian motion (with
H = 1/2) when the noise term is uncorrelated [2] or that
transitions between a Brownian motion and a long-range
correlated regime (with H > 1/2) when the noise term is
Gaussian and its correlation at long range is increased [6].
Therefore, the models we present here belong to a different
universality class.

The min-model is a challenging problem for its theoretical
aspects, as the dynamics relies on a nonlocal constraint. The
results for the spatial average of / are the same as for the
rand-model. For the fluctuations, we must rely on numerical
simulations, see Fig. 1 (bottom). We focus here on the regime
0 < 20 — B < 2, for which the rand-model generates a fBm.
In contrast to the rand-model, the moments of fluctuations
do not increase with N but remain bounded. The skewness
is small but nonzero, the flatness is slightly smaller than 3, the
value for a Gaussian. It increases with the size D. It is quite
interesting that the application of the min rule for finding the
location of the next EQ is sufficient to saturate the growth with
the number of iterations of the moments of the fluctuations of
the stress profile.

The value of H obtained from the PSD is displayed in
Fig. 4. As for the rand-model, the results are very close to
the prediction of Eq. (4). The H-exponent is thus independent
of the shape of the added structure and the nature of the model
(rand or min).

In the models considered here, the spatial structure of the
stress change is the same at each event, up to a change in
its width and height. The shape, width, and height are inde-
pendent of A, whereas in a fault, it is the spatial variations
in & that determine the slip, which controls the change in
stress. The independence of stress change on the stress (for
the rand-model) or of only dependence for its center set by the
stress maximum (for the min-model) are simplifications that
allow for theoretical progress. Yet, the observed phenomenol-
ogy is rich and similar to that observed in more realistic
models [9,10]. In particular, our results explain why the
random addition of structures of variable size generically gen-
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FIG. 5. Schematics of the variation of a plane wave that propa-
gates in a straight line from the top to the bottom parallel to the black
arrow. The wave energy is displayed as a green line. It is decreased
at each interaction with an absorbing object D; sketched as a blue
circle and proportionally to the width of the absorber in the direction
of propagation. The energy after the (i)-th encounter is displayed for
i=0to4.

erates self-affine behavior. In the context of EQ physics, this
phenomenon provides a possible explanation for the appear-
ance of large distance correlations of the stress field.

Several observations in natural data are consistent with our
description. It is well known that EQ areas are distributed as a
power law with exponent S, close to 2 [11-14]. This amounts
to a distribution of the length of the EQ with power-law
exponent 8 ~~ 3. In addition, the stress change at each event is
independent of its length so that « is of order 1 [12]. Regard-
ing the existence of large-scale correlations, the topography
of faults is self-affine with their roughness associated with a
Hurst exponent of order 0.2 to 0.8 [15]. In addition, evidence
suggests that the slip itself scales with a Hurst exponent close
to 0.6. Using a three-dimensional fault numerical model, it
was predicted that the two-dimensional frictional stress field
scales with a Hurst exponent of —0.4 [16]. All these fields in
nature thus display correlations at large scale.

This new class of random interfaces is of interest for the
physics of EQs, but also as a new stochastic process, different
from the ones generated by the EW or KPZ equations. It has
possible applications in a variety of domains. For instance,
the deposition of polymers of variable size is expected to
belong to this new class, provided the polymer size has a
wide distribution. Another application of broad interest, which
might at first sight appear quite unrelated, is the propagation
of a wave through a medium containing objects of variable
size. Consider the energy of a plane wave that propagates in
a straight line and study its evolution when it interacts with a
set of objects that absorb partially the wave energy. When the
absorption is proportional to the length of the path of the wave
in the object, the wave energy after the object is decreased by
a quantity proportional to the width of the object along the
path of the wave. This is sketched in Fig. 5. The interaction
of the wave with a set of absorbers amounts to the sum of

the interaction with each one. Therefore the expression for the
variation of the wave energy is given by the same formula
as the variation of the stress profile in Eq. (1). The results
obtained here apply to the wave energy identically.

Several applications come to mind. Fragmentation pro-
cesses often produce collections of objects with size dis-
tributed as a power law [17]. This can be the case for drops
fragmented in a turbulent flow [18]. An experiment using two
fluids matched in index and such that drops of one of the two
phases absorb the light at a given frequency would realize the
situation in Fig. 5 [19]. A second system relies on aerosols
in the atmosphere, which have a size distribution that can be
large [20], and in some situations is modeled by the Junge
law [21], a power-law distribution generated by coagulation
processes [22]. We expect that the absorption of light or of UV
rays through such an aerosol cloud results in energy transmis-
sion that varies in the plane perpendicular to the direction of
propagation. In the idealized limit where we neglect scattering
processes, the energy spatial variation in the perpendicular
plane is exactly obtained by the rand-model. Our results in-
dicate that the pattern of energy should display a self-affine
behavior with properties controlled by the distribution of the
size of the aerosols, and it would be interesting to investigate
how this is affected when scattering cannot be neglected.
Finally, we describe a third example related to the propagation
of electromagnetic energy through the universe. Interstellar
clouds are domains where the density is large. These clouds
are magnetized, and their emission at microwave frequencies
is polarized. The statistical characterization of this interstellar
emission is of prime importance to experiments exploring
the signature of primordial gravitational waves in the cosmic
microwave background polarization. It has been shown that
a source term assumed to be a correlated Gaussian field with
a prescribed Hurst exponent leads to a realistic pattern [23].
Our results for the rand-model provide a possible explanation
for the origin of this spatially correlated source term: It would
result from the addition of randomly distributed interstellar
clouds whose radius are actually known to be distributed as a
power law [24].

The rand-model is thus expected to explain the be-
havior of systems in various contexts ranging from the
absorption of light by two-phase turbulent flows or
by aerosols to the microwave emission by interstellar
clouds. Further work will extend the results presented
here to two-dimensional geometry and obtain quantitative
predictions.

We thank Bernard Legras for discussions related to absorp-
tion by aerosols and Francois Boulanger for discussions and
raising our attention to the problem of emission at microwave
frequency by interstellar clouds.

APPENDIX

In this Appendix, several results presented in the
manuscript are described rigorously and justified at a heuristic
level. We also provide formulas not presented in the article.
In particular, our aim is to prove that, as the number of
random transformations N becomes large, the front 4y and
its fluctuations, both rescaled with an ad-hoc power of N,
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resemble the typical trajectory of a well-identified limiting
random process. Deriving these results requires settling some
notations. This is done in subsection A. We present the results
for the mean position of the front in subsection B and the
fluctuations in subsection C. We combine a rigorous math-
ematical presentation with short descriptions adequate for
physicists.

1. Definition

We first need to define the notion of convergence of a
random process and, in particular, the convergence in distri-
bution. To that aim, we denote by C the set of continuous
real functions on [0, D], by || - ||cc, the norm of the uniform
convergence on [0, D], and by C, the associated Borel o-
algebra. For p, a probability law on (C, C) and for (X,),>1
a sequence of random continuous functions (defined on a
probability space (€2, A, P)), we will set

Xn = (A1)
when X,, converges in distribution in (C, C) toward u as n —
oo. By extension, if X is a random continuous function, we
will set X,, =, X if X, converges to the law of X as n — oo.
This convergence can be understood as follows: Consider
any bounded continuous functional g : (C, || - ||o0) = R. The
latter convergence means that

nlglolofﬂg(xn(w))dP(w)=/Qg(X(w))dP(w)-

This is what mathematicians call convergence in distribution.

Proving rigorously a convergence of type (Al) on (C,C)
requires the use of mathematical tools from [25], Chapter 2
or [26], Theorem 21.42. There are two hypotheses to verify to
conclude that X,, =, X:

(1) The convergence in finite dimensional distributions of
X, toward X. To that aim, for0 <ty <, < --- <t < 1,0ne
has to check that the random vector (X (¢1), ..., X(f;)) is the
limit in distribution of the sequence (X, (t1), ..., Xu(t))n>1-
We note that this is equivalent to the property that the Fourier
transform of the vector (X, (1), ..., X,,(fx)) converges as n —
oo toward the Fourier transform of (X (¢1), ..., X (t)).

(2) The tightness of (X,),>1 in (C, || - ||c), Which pro-
vides, with a probability arbitrarily close to 1, a uniform (in
n) control on the modulus of continuity of X, that is of its
fluctuations (in #). This tightness is, for instance, obtained
with the Kolmogorov criterion (stated in [25], Theorem 12.3)
by proving that there exists a C > 0 such that for every
0<s<tr<1,

sup/ 1X,(t, @) — X, (s, 0)|>dP(w) < C(t — 5)°.
Q

nx1

Qualitatively, the process must have spatial variations that
are not too large (uniformly in the number of iterations).

In summary, if X, satisfies these two properties, then it
converges in distribution toward X .

We also use the well-established equality in law be-
tween the order statistics of N independent Pareto-distributed

random variables of parameter 8 and the random vector

Tygr 7! Ty 7!
T1 9 TN 9

where Ty = 0 and (7;+1 — T;)i>0 is a sequence of independent
and identically distributed (i.i.d.) random variables following
an exponential law of parameter 1. This, among other prop-
erties useful for physicists, implies that the largest values of

(A2)

N independent Pareto random variables are of order N 1. We
will use this property to justify the behavior at large N of the
front as given by Eq. (A4).

2. Mean position of the front

Let us be more specific by defining the process hy. Let
(Zi)i>1 be a sequence of independent random variables fol-
lowing a Pareto distribution of parameter 8 — 1. Then, for the
rand-model, we let (¥;);>; be an i.i.d. sequence of random
variables following a uniform law on [0, D], whereas for
the min-model, ¥; is the leftmost point on [0, D] where the
minimum of A;_; is attained. Thus, we set for N > 1,

fw(x)—ZZ“ 1[02)(UY(X))1/f<UY( )>, x € [0, D].
i=1
(A3)

We now present the results for the mean position of the front.
In the case of B < «, for both the random and the minimum
processes,

N™51 hy =y R, (Ad)

where R is a real random variable, which by abuse of notation
is considered here as a random function in C that is constant
on [0, D]. Moreover, R follows a 5 . L stable law of character-
istic function

-1 =1\ s
q)(t) = m exXp [F(—m) |t|

ﬂ(ﬂ—l)}
2(a— 1)

In the case of 8 > «, we obtain

. ,B _ 1 1 D/2 «p
N hN =N 22— w(u)du Z dz
D 0 1

0 D/2 y
+/ z"“l‘ﬁ/ W(—)dydz} (A6)
D/2 0 Z

that is to say, the limit is a nonrandom constant function on
[0, D]. The critical case B = « can also be analyzed rigor-
ously, and for both the rand- and the min-model, the following
convergence holds true:

(N logN)™" hy =y 1,

(A5)

where, as in the latter case, the convergence takes place toward
a nonrandom constant function that equals 1 on [0, D]. Let us
give a heuristic for the growth rate of the front (as a function
of N) that becomes ballistic for 8 larger than «. Recall Eq. (1)
of the article and observe that when 8 > «, the increments
are integrable since Z*~! has a finite first moment. For this
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reason, the law of large numbers can be applied to the spatial
average of both the rand- and the min-models, which equal a
sum of independent identically distributed random variables
(the integrals of the increments). As a consequence the spatial
average of hy grows linearly in N. In the case of o > B, we
note that Z*~! is a nonintegrable heavy-tailed random vari-
able, and so are the increments of the front. As a consequence,
the law of large numbers is not applicable anymore. However,
the characterization of the order statistics of (Zi,...,Zy)
displayed in Eq. (A2) allows us to assert that the sum in Eq.
(A3) is dominated by its k largest increments, provided k is
chosen large enough (but finite and not dependent on N). This
explains the convergence in Eq. (A4) and in particular, the

superballistic rescalling in N =8

3. Fluctuations

For the rand-model, we are able to fully describe the fluc-

tuations in h. We set fy(x) = hy(x) — An(0).
(1) Fora >1+4+nand1 < B < B, :=2a —1—2n,
N™FT [ = 1, (A7)

where p is the limiting law on (C, C) of the sequence of
continuous processes (¥y)yeN defined as

N

G;
W= G cop, @)
i=1 T, "'
where for x € [0, D],
(O}
Gi(x) :== 4 n,( )(UY,-(x)n — vy, (0)"), (A9)

where (Y;);cN is a sequence of i.i.d. random variables follow-
ing a uniform law on [0, D]. Observe that we used the results
of Eq. (A2) to obtain Eq. (A8). Note also that the convergence
of (yy)n>1 occurs almost surely if« — 1 —n > B — 1, that s,
B < o — n. The interest of this result is that Egs. (2), (A8), and
(A9) provide an explicit formula for calculating or simulating
the asymptotic behavior of the front.
(2) Fora e [1,1 +n]Jora >1+nand g > B,

N7if =n Y, (A10)
where Y is a centered Gaussian process with covariance func-
tion r(s, 1) = Cov (X (s), X;(¢)). In the case of a triangle (n =
1), there exists a C > 0 such that

r(t, 1) == Var(X,(t)) < Cmax{r?, 1**7 P}, 1 e[0,D].

(Al1)

For the rand-model, the regime change for the growth
rate of the fluctuations of the front occurs at 8., because for
B > B., we enter the domain of application of the central limit
theorem. Again, with Eq. (1) of the article, we observe that,
since 7 is the index of the first nonzero derivative of ¥ at 0, the
fluctuations of a single increment § (k(x) — h(0)) are bounded
above and below by a constant time to Z*~'~", which is square
integrable for 8 > B, only.

Finally, let us give a short explanation of the fact that
when 8 > By = 2a — 2, the covariance r(s,t) has an expo-
nent 2e — B > 2. Let s < t. For both s and ¢ to be affected by
the transformation, it is necessary that t — s < 2Z. Moreover,
B > By implies B > B, so that Z*~'~" is square integrable
and E[Z*@~17" 157, )] behaves as (f — 5)**~#, which ex-
plains our result.
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