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PACS 47.27.De – Coherent structures

Abstract – We report the experimental observation of 1/fα noise in quasi-bidimensional turbu-
lence of an electromagnetically forced flow. The large-scale velocity UL exhibits this power-law
spectrum with α � 0.7 over a range of frequencies smaller than both the characteristic turnover
frequency and the damping rate of the flow. By studying the statistical properties of sojourn time
in each polarity of UL, we demonstrate that the 1/fα noise is generated by a renewal process,
defined by a two-state model given by the polarities of the large-scale circulation. The statistical
properties of this renewal process are shown to control the value of the exponent α.

Copyright c© EPLA, 2015

Introduction. – Fluctuations which have spectral den-
sities varying approximately as 1/f (or more generally as
1/fα with 0 < α < 2) over a large range of frequen-
cies, or 1/f noise, have been studied for a long time in
physics, first in the context of low-frequency voltage fluc-
tuations in electrical conductors [1]. An early motivation
has been the divergence problem related to a spectrum
with a 1/f power law without any observed low-frequency
cut-off. Other questions concerned the non-stationary or
non-Gaussian character of the 1/f noise. The 1/f behav-
ior has been first related to the existence of a broad-band
distribution of relaxation times in the system [2,3]. Other
stochastic models include fractal Brownian motion [4] or
power-law shot noise [5]. Dynamical system theory pro-
vided another type of approach relying on deterministic
low-dimensional systems displaying a transition to chaos
via intermittency [6,7]. These studies were useful to ex-
plain both the wide (power-law) distribution of relaxation
times as well as the related 1/fα spectrum. This corre-
spondence has been emphasized using purely stochastic
models that involve random bursts or random switching
between two states. It has been shown that if the in-
terevent time probability distribution function (PDF) de-
cays as a power law, P (τ) ∝ τ−β , a 1/fα spectrum is
obtained with α related to β [8,9]. Most of the early
experimental observations of the 1/fα noise do not dis-
play such discrete events. However, switching events have
been observed in small electronic systems (submicrometer

MOSFETs) [10] and more recently in blinking quantum
dots [11].

We present here the observation of a similar behavior
on a macroscopic system, two-dimensional (2D) turbu-
lence, where we show that switching events between the
two polarities of the large-scale circulation (LSC) account
for the observed 1/fα noise. 1/fα spectra have been re-
ported in various turbulent flows: in wall turbulence, they
are observed in an intermediate-frequency range and are
ascribed to the 1/k spatial spectrum related to hairpin
vortices [12]. They have been observed for all frequencies
below the integral scale in von Karman swirling flows, both
for the pressure [13] and the velocity [14]. 1/fα spectra
have been also observed in these flows for the fluctuations
of the magnetic field, either when an external field is ap-
plied to a liquid metal [15] or when the magnetic field is
generated through the dynamo process [16]. Similar re-
sults have been found in numerical simulations of hydro-
dynamic or magnetohydrodynamic turbulence [17].

The experiment under study consists in a quasi-
bidimensional flow of a thin layer of liquid metal driven by
a spatially periodic electromagnetic force. It has been pre-
dicted [18] and experimentally checked [19,20] that in 2D
turbulence, an inverse cascade of energy can drive a LSC
superimposed on turbulent fluctuations. Whereas many
studies have focused on the relation between coherent
structures and spatial spectra, less attention has been paid
to the frequency spectrum of 2D turbulent flows and to
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Fig. 1: (Color online) Left: experimental set-up. The cur-
rent injected through the electrodes and the vertically applied
magnetic field induce an azimuthal Lorentz force close to each
electrode. A pair of probes measure a potential difference ΔV ,
proportional to the flow rate between the probes. The velocity
component along the dashed line is measured using ultrasonic
Doppler velocimetry. Right: particle tracking of oxide trac-
ers are used to compute the large-scale vorticity levels in s−1.
Arrows represent the velocity field (Rh = 23.5).

the possible signature of the dynamics of coherent struc-
tures. We study the temporal and spectral properties of
the LSC and report the first experimental study of the
1/fα noise in 2D turbulence. A striking feature of these
fluctuations is their frequency range, which is well below
the LSC turnover frequency and damping rate and ex-
tends to the lowest measured frequency without any low-
frequency cut-off. We explain how this 1/fα spectrum
results from the dynamics of the LSC and we show that α
is related to the power-law exponent β of the PDF of the
waiting time between two successive changes of sign of the
LSC.

Experimental set-up and techniques. – A thin
layer of liquid metal (Galinstan) of thickness h = 2 cm,
is contained in a square cell of length L = 12 cm submit-
ted to a uniform vertical magnetic field up to B0 � 0.1 T.
A DC current I (0–200 A) is injected at the bottom of the
cell through an array of 8 electrodes of diameter d = 8 mm
flush with the bottom of the fluid layer (see fig. 1). In the
vicinity of each electrode, the current density j is radial
so that the associated Lorentz force fL = j × B0 creates a
local torque. For low injected current, this forcing drives
a laminar flow made of an array of 8 counterrotating vor-
tices. Great care has been paid to inject the same current
through each electrode, in order to avoid the injection of
net angular momentum in the flow. To prevent the oxida-
tion of the upper surface, a thin layer of hydrochloric acid
is placed on top of the liquid metal. Balancing the Lorentz
force and the inertia gives the typical velocity of the forced
vortices, Uc =

√|fL|L. Its order of magnitude is 10−1 m/s
for 25 < I < 100 A. The bidimensionality of the flow
is achieved by a low magnetic Reynolds number, typically
Rm = σμUcL ∼ 10−2, a relatively high interaction param-
eter N = σB2

0L/(ρUc) ∼ 10 and a high Hartmann number
Ha = hB0[σ/(ρν)]1/2 ∼ 102, where μ0, σ, ν are the mag-
netic permeability, electrical conductivity and kinematic
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Fig. 2: Frequency power spectra E(f) of one component of
the velocity field for Rh = 26: local velocity (grey), velocity
averaged on the length of the cell (black).

viscosity, respectively. In this parameter range, the ve-
locity does not depend on the vertical coordinate except
in a thin Hartman layer of size δh = h/Ha along the
bottom boundary. This provides an additional dissipa-
tion to the 2D depth-averaged velocity field v(x, y, t) that
takes the form of a linear friction term in the 2D Navier-
Stokes equation, namely −v/τH [21], with a time scale
τH = hδH/ν of the order of 10 s. We have checked that
τH is in good agreement with the experimentally measured
damping rate of the large-scale flow [22], confirming the
bidimensionality of the flow as explained in [21,23].

For the 2D flow, we define two non-dimensional param-
eters from the two sources of dissipation, viscosity and
friction: the usual Reynolds number Re = UcL/ν and
Rh = UcτH/L which is the ratio of inertia to linear fric-
tion. The ratio Re/Rh, independent of the injected cur-
rent, is equal to Ha(L/h)2 ∼ 104. By changing I we vary
Rh between 1 and 50 so that we reach relatively large
Reynolds numbers. Since viscous dissipation becomes ef-
ficient at scales smaller than l = L

√
Rh/Re ∼ 10−3 m,

dissipation at large scale is mainly due to friction. It fol-
lows from these order of magnitude estimates that Rh is
the pertinent control parameter for the dynamics of the
large scales, which is well verified experimentally [22].

Velocity measurements are performed using three dif-
ferent methods [22]: particle tracking (particles on the
Galinstan surface) shows the large-scale velocity and the
corresponding vorticity levels as displayed in fig. 1. An
ultrasound transducer emits 4 MHz wave trains along the
dashed line in fig. 1. They are reflected back by oxide
particles in the flow and analyzed using a DOP3010 ve-
locimeter (Signal Processing). The longitudinal velocity
component is thus measured throughout the cell. The
power spectra of the local velocity in the bulk of the
cell and of the averaged velocity along the dashed line in
fig. 1, are shown in fig. 2. They both display a power-law
behavior close to 1/f on a decade 0.01 < f < 0.1 Hz.
However, this measurement method is not well suited
in the low-frequency limit because measurements of long
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Fig. 3: (Color online) Time series of UL(t) for Rh = 17. The
velocity strongly fluctuates around zero, but events of constant
polarity of duration τ > L/〈|UL|〉 occur.

duration (> 5 hours) are difficult due to the large mem-
ory required to save and to process the data. It has been
known for a long time that a large-scale velocity com-
ponent can be directly determined by measurement the
potential difference between a pair of electrodes in an ex-
ternal magnetic field [24]. As sketched in fig. 1, one of
the electrodes is located in the middle of the cell and
the other one close to the lateral wall, 5 mm away from
it. The potential difference between the electrodes ΔV is
ΔV � φLB0, with φL the flow rate between the center and
the wall of the cell. In the following we use the spatially
averaged velocity UL, defined by UL = 2φL/L, which is
thus the large-scale velocity coarse-grained on size L/2.

The different flow regimes and the low-frequency
spectrum. – Increasing Rh from small values, coherent
structures, with scales larger than the one of the forc-
ing, are generated due to the non-linear energy transfers
from small to large scales. For Rh > 5, the flow is tur-
bulent and several spatial structures concentrate vorticity
as displayed in fig. 1 (right). The dynamics of the LSC is
chaotic. Its probability density function (PDF) is Gaus-
sian for intermediate values of Rh but becomes bimodal
for Rh > 12. The LSC then reverses between two val-
ues ±UL of maximum probability. When Rh is larger
(Rh ∼ 30–40), reversals of the LSC are less frequent and
more visible on the direct recording of the velocity. They
are no longer observed for Rh > 50, for which the LSC
has a constant sign. All these flow regimes have been ob-
served by numerical simulations of the 2D Navier-Stokes
equation with damping [25]. The amplitude of the LSC
given by the time series of UL, is displayed in fig. 3 for
Rh = 17. High-frequency turbulent fluctuations are su-
perimposed to low-frequency fluctuations. In particular
we observe long events of constant sign (see for instance
307 < t < 340 s).

To investigate the properties of the LSC, we calculate
the temporal power spectrum E(f) of UL (see fig. 4). Two
distinct behaviors are observed (for f larger or smaller
than a crossover frequency ft). The spectrum is steep for
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Fig. 4: Frequency power spectra E(f) of UL(t) for Rh =
16, 19, 24, from bottom to top. Spectra have been shifted for
clarity. The dashed lines are the best fits of the low-frequency
part of the spectra. Inset: frequency power spectra of UL

(black), of the sign of UL (grey).
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Fig. 5: (Color online) Exponents α (◦) and αS (+) of the
power law of the spectra E(f) and ES(f). Exponent β (�) of
the power law P (τ ). α + β (�) is nearly equal to 3.

f > ft. For f < ft, the spectrum displays a power-law
behavior f−α with α = 0.7. For Rh < 30, the large-scale
flow thus exhibits 1/f noise over roughly two decades. For
Rh > 30, we observe a departure from the f−0.7 scaling.
This phenomenon is related to the transition of the flow
to the condensed regime where the statistical properties
of the flow suddenly change [18,19]. For small values of
Rh (between 5 and 10), the fluctuations of the LSC have
a flat temporal power spectrum at small frequency. We
thus restrict our study to 12 < Rh < 30. We report the
values of the exponent α (blue circles) as a function of Rh
in fig. 5. The exponent is calculated on the interval [fc, ft]
where fc/(2π) is the inverse of the experiment duration
which is set by the thermal stability of the set-up, of the
order of a few hours.

For frequencies larger than fc, there is no sign of a fre-
quency cut-off below which the spectrum would become
flat. The maximum frequency ft is 0.3 ± 0.1 Hz which
is of the order of the inverse of the turnover times of
the LSC L/〈|UL|〉, with 〈|UL|〉 ∼ 2 · 10−2 m/s. Most of
the low-frequency range thus corresponds to frequencies
smaller than the inertial range. Obviously there is no hope
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Fig. 6: (Color online) Probability density function P (τ ) of
duration τ between two consecutive sign changes for Rh =
16 (◦), 19 (�), 24 (�). Dashed line: τ−β with β = 2.25.

that a Taylor hypothesis could explain the spectrum by an
equivalence between frequency and wave number k. In ad-
dition, the 1/f range extends to frequencies much smaller
than the damping rate 1/τH ∼ 0.1 Hz. In other words,
the 1/f spectrum is the frequency signature of large-scale
coherent structures, with life time larger than both their
turnover time and the dissipation time τH .

Relation between the low-frequency spectrum
and reversals of the large-scale velocity. – As no-
ticed in fig. 3, the LSC can maintain a constant direction
for very long durations and a natural question is the re-
lation between these events of constant polarity and the
1/f noise. To what extent do these events control the low-
frequency part of the spectrum? To answer this ques-
tion, we compute ES , the power spectrum of the sign of
UL, thus keeping only the information of the direction
of rotation of the LSC. ES is displayed in the inset of
fig. 4. It exhibits strong similarities with the spectrum
of UL for f < ft. These observations are confirmed by
the calculation of the exponent αS (see fig. 5), defined by
ES(f) ∝ f−αS for f < ft. For all Rh, α and αS are
almost equal, which implies that ES and E contain the
same spectral information for the low-frequency range.

To further investigate the information contained in the
sign of UL, we calculate the statistical properties of the
time between sign changes. The PDF P (τ) of duration τ
between two consecutive sign changes is shown in fig. 6.
P (τ) exhibits a power law, P (τ) ∝ τ−β for τ > 4 s, which
corresponds to durations larger than f−1

t . Such heavy-
tailed distributions indicate that long durations have a
high probability of occurrence. Then these events control
the behavior of the autocorrelation function of the signal
and thus are responsible for the form of the spectrum at
low-frequency.

We give a simple argument to show how the exponent
β of the distribution P (τ) controls the value of the ex-
ponent α of the spectrum. The detailed calculation has
been given by Lowen and Teich [8]. Let x(t) be the re-
newal process defined by the sign of UL. We model it
as a stochastic process defined by a sequence of N events

Fig. 7: (Color online) Top: renewal process defined by random
transitions between two states, associated to the values x = ±1.
Bottom: time series x(T ) and shifted time series x(T − t). The
autocorrelation function C(t) is given by the integration of the
product x(T )x(T − t), which is mostly made of long phases of
constant polarity and phases of fast oscillations. The former
phases contribute to the long-range correlation.

(transitions between ±1) associated to a series of durations
(τi)N , with τ random, positive and independent identi-
cally distributed variables. Figure 7 (top) illustrates such
a symmetric renewal process.

We first obtain the autocorrelation C(t) = 〈x(0)x(t)〉 of
x and then we calculate the power spectrum of x using the
Wiener-Khinchin theorem which states that the Fourier
transform of C(t) converges to E(f) for Tf → ∞ (Tf =∑N

i=1 τi is the duration of the process). We assume β > 2
so that 〈τ〉 < ∞. For an ergodic process and Tf 	 〈τ〉,
the autocorrelation C(t) is obtained by

C(t) =
1
Tf

∫ Tf

0
x(T − t)x(T )dT. (1)

We observe that the product x(T )x(T − t) is composed of
fast oscillations and long periods of constant polarity, due
to long phases of duration τ in x(T ) (fig. 7, bottom). We
assume that only the phases with τ > t contribute to the
autocorrelation with a contribution τ − t. In addition, the
average contributions of short phases with τ < t vanish.
It follows that the autocorrelation is approximated by

C(t)� 1
Tf

∫ Tf

t

(τ − t)n(τ)dτ for 〈τ〉 
 t 
 Tf , (2)

with n(τ) the number of phases of duration τ , which is
equal to P (τ)Tf/〈τ〉, with Tf/〈τ〉 the total number of
events. Then, eq. (2) becomes

C(t) � 1
〈τ〉

∫ Tf

t

(τ − t)P (τ)dτ. (3)

For P (τ) ∼ τ−β and β > 2, the autocorrelation scales as
C(t) ∼ t−β+2. Finally, the power spectrum E(f) is given
by the Fourier transform of C(t):

E(f) ∼ fβ−3
∫

u−β+2e−2πuidu (4)
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with the change of variable u = ft and for Tf → ∞. We
thus obtain α = 3 − β.

To test this prediction, we compute for different Rh the
exponent β from P (τ) on the time interval f−1

t < τ < f−1
c

corresponding to the frequency interval used to calculate
the slope of the spectra. The exponents β are displayed in
fig. 5 together with α + β. We observe that α + β is close
to 3. Our experimental measurements are thus in good
agreement with the theoretical prediction. We also stress
that for 2 < β < 3, the relation α = 3−β still holds, even if
the PDF of the waiting time is asymmetric between up and
down states [8]. This implies that the relation is robust to
possible imperfections of the experimental set-up, which
could break the symmetry between the two directions of
rotation.

Conclusions. – We conclude that the 1/fα spectrum
is related to the power-law scaling of the PDF of the so-
journ time in each polarity of the large-scale flow. This
observation raises two questions: first, are the 1/fα spec-
tra observed in other turbulent flows also related to the
statistical properties of coherent structures? Second, what
is the origin of the power-law distributions of lifetimes of
large-scale structures in 2D turbulence or other turbulent
flows?

Motivated by our observations on 2D turbulence, we
considered data for the pressure fluctuations in 3D tur-
bulence [13]. We confirmed that the 1/fα spectrum of
pressure is related to the power-law scaling of the waiting
time between successive pressure drops due to intermittent
vorticity filaments. We made a similar observation for the
1/fα spectrum of the magnetic field generated by a dy-
namo process [16] that results from the statistics of bursts
of magnetic field. We also believe that the 1/f spectrum
of the velocity in the von Karman flow [14] results from
the power-law scaling of the switching dynamics of the
shear layer. The analysis of all these data will be reported
elsewhere [26]. The second question related to the origin
of the long lifetimes of the LSC and the power-law scal-
ing of the sojourn time in each polarity is still open. We
have observed that the switching dynamics between LSC
of opposite polarities is rather complex and involve several
intermediate states with different vorticity distributions.
Thus, we can assume that the whole switching process
requires the successful completion of several independent

transitions, a mechanism that is known to generate power-
law distributions [27].
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