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Abstract – We show that a simple flow of an electrically conducting fluid along a boundary with
variable magnetic permeability can generate a magnetic field. An analytic study in the limit of
weak permeability modulation allows to understand the mechanism of this dynamo and predicts
scaling laws for the threshold. We discuss the possible contribution of this mechanism to the
dynamo observed in the von Karman sodium experiment and we propose two flow configurations
that could lead to the experimental observation of this new type of dynamo.

Copyright c© EPLA, 2012

The magnetic field of many planets and stars is
generated by the motion of an electrically conducting
fluid through the dynamo process, an instability that
converts flow kinetic energy into magnetic energy [1].
Several attempts of displaying this effect in laboratory
experiments have only led to three successful results so
far. In the Karlsruhe [2] and Riga [3] experiments, the
flow lines have been strongly constrained by the bound-
aries in order to mimic laminar flows known for their
dynamo efficiency. The kinetic Reynolds number of these
liquid-sodium flows being large (in the range 105–106),
small-scale turbulent fluctuations could not be avoided
but were much smaller than the mean flow. The geometry
of the magnetic field observed in the Karlsruhe and Riga
experiments, as well as the nature of the bifurcation to
the dynamo regime, were in excellent agreement with
predictions made using the mean-flow component alone,
thus discarding turbulent fluctuations. By contrast, the
von Karman sodium (VKS) experiment was designed
with the aim of studying the dynamo process in a strongly
turbulent flow [4]. To wit, a liquid-sodium flow driven
by two counterrotating impellers in a cylinder has been
chosen (see fig. 1). These von Karman swirling flows
involve strong turbulent fluctuations, in particular when
the impellers are in counterrotation, which generates
a strong shear in the mid-plane. Although the kinetic
Reynolds number achieved in the VKS experiment is
only slightly larger than in the Karlsruhe and Riga
experiments, turbulent fluctuations are as large as the
mean flow and the geometry of the generated mean
magnetic field (an axial dipole) [5] cannot be explained
taking into account the mean flow alone. It has been

F1 
F2 

Fig. 1: Sketch of the VKS experiment. Two counterrotating
disks drive a turbulent flow in around 160 L of liquid sodium.
The disks are fitted with blades. Dynamo action is observed
when a propeller is made of soft iron. A spatial modulation of
the magnetic permeability is due to the blades.

proposed that non-axisymmetric velocity fluctuations in
the form of vortices along the blades of the propellers
induce an alpha effect, that together with differential
rotation generates an alpha-omega dynamo [6]. Numerical
simulations taking into account this non-axisymmetric
velocity component in addition to the mean flow [7] or
using a mean-field induction equation including an alpha
effect [8] have strengthened this picture. Indeed, the axial
dipolar magnetic field generated with counterrotating
impellers, as well as the field reversals observed when the
impellers are counterrotated at different frequencies [9],
have been numerically simulated in ref. [7]. However,
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ferromagnetic impellers have been modeled as boundaries
of infinite magnetic permeability and the ferromagnetic
blades of the impellers have not been taken into account.
Although we expect the VKS flow to generate a

magnetic field also when non-magnetic impellers are used,
a dynamo has been observed so far in the accessible range
of rotation frequency only when both the disk and the
blades of an impeller are made of iron [10]. It is thus
clear that the dynamo threshold is lower in the presence
of ferromagnetic blades. It has been proposed that the
azimuthal modulation of the magnetic permeability
related to the blades (see fig. 1) contributes to dynamo
action [11] in a way similar to the one described by Busse
and Wicht, who showed that a uniform flow over an
infinite plate with spatially varying electrical conductivity
is able to generate magnetic field [12].
The aim of this letter is twofold: first, we show how

a spatial modulation of a solid boundary’s magnetic
permeability can turn a non-dynamo flow into a flow
capable of dynamo action. Solving the equivalent of
the Busse and Wicht model analytically in the case
of a weak modulation of magnetic permeability allows
to understand the mechanism of this class of dynamos
and to predict scaling laws for the threshold, including
the case of time-dependent dynamos that was previously
discarded. Second, we want to determine whether this
type of dynamo mechanism can operate in the range
of magnetic Reynolds number accessible in the VKS
experiment. This issue remaining questionable, we propose
simple experimental configurations to test this mechanism.
We consider the simplest configuration that involves

shear and spatial modulation of magnetic permeability,
as presented in fig. 2. A fluid of electrical conductivity
σ and magnetic permeability µ0 flows uniformly with
a velocity Uex in the semi-infinite space z > 0. A rigid
boundary is located under the fluid. It has the same
electrical conductivity as the fluid, and its magnetic
permeability is µ0 µr(x̃), with µr(x̃) =m0+m1 sin (x̃/L).
This modulated boundary extends down to z̃ =−DL,
under which is a medium of infinite magnetic permeability.
The boundary is not moving so that a shear is localized at
z = 0. Numerical computations have been performed in a
similar configuration where the magnetic permeability of
the boundary is constant while the electrical conductivity
is modulated in space [12].
We use L and µ0σL

2 as length and time scales, and
define the magnetic Reynolds number as Rm= µ0σUL.
Denoting without a tilde the dimensionless coordinates,
the induction equation inside the fluid reads

∂tB+Rm∂xB=∇2B . (1)

Inside the modulated boundary, the Maxwell-Faraday
equation together with Ohm’s law yields:

µr∂tH=−∇× (∇×H) , (2)

with B= µ0 µrH. Everywhere the magnetic field B is
divergence free. This set of equations is supplemented with
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Fig. 2: Sketch of the flow and of the boundary of modulated
magnetic permeability. Two flows are considered: (1) a uniform
flow for z > 0 with a shear localized at z = 0; (2) a uniform
shear.

matching conditions that relate the fields between the
different domains. At the boundary z =−D, the perfect
ferromagnetic medium imposes Hx=Hy=0 and ∂zHz=0.
At z = 0, the normal component of B, the tangential ones
of H and of the electric field E= (∇×H)/σ−v×B are
all continuous.
Using translational invariance in the y-direction, we

search for modes proportional to exp (st+ iky). A dynamo
mode is linearly unstable when the real part of the
eigenvalue s becomes positive. To determine the value of
s as a function of the problem’s parameters Rm, k, m0,
m1, we Fourier transform the fields in the x-direction.
In the fluid the different Fourier components are not
coupled. The matching conditions at z = 0 can then be
written as two boundary conditions that constrain the field
inside the boundary (i.e., for −D� z � 0). We then have
to solve eq. (2) together with the boundary conditions
at z = 0 and z =−D. The problem is discretized in the
z-direction using P uniformly spaced grid points. The
generalized linear eigenvalue problem is thus written as
a square matrix of dimension (2N +1)2(2P +1)2 where
we truncate the Fourier expansion in x at order N . For
sufficiently large N and P (depending on the intensity of
the magnetic permeability gradients), the eigenvalue s is
converged.
The first result is that this configuration leads to

dynamo instability: provided Rm is large enough, the
magnetic permeability modulation together with the flow
destabilizes a magnetic mode. We plot in fig. 3 the critical
magnetic Reynolds number as a function of the relative
permeability modulation mr =m1/(m0− 1). We assume
that the boundary is nowhere diamagnetic, so that µr
has to be everywhere higher than unity and the quantity
mr varies between 0 and 1: no permeability modulation
gives mr = 0, while a maximum permeability modulation
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Fig. 3: (Colour on-line) Critical magnetic Reynolds number
as a function of mr for the onset of dynamo action for D= 1.
Empty symbols are for the uniform flow (1) and full symbols for
the shear flow (2); (◦): m0 = 10; (�): m0 = 100, (�): m0 = 100.
The wave number kc at onset ranges between 0.5 and 3: the
eigenmode inside the boundary then has a typical lengthscale
of order L in all 3 directions.

µr =m0+(m0− 1) sin (x) corresponds to mr = 1. We
observe that the stronger the permeability modulation,
the lower the dynamo onset. As this modulation goes
to zero, the critical Rm diverges as m−4r , in agreement
with an antidynamo theorem that holds for 2D flows with
uniform magnetic permeability. For a fixed value mr, the
dynamo onset decreases toward a finite limit when m0
increases. We notice that the first unstable eigenmode is
oscillatory for high values of m0 and low values of mr,
whereas it is stationary when mr gets close to 1. The
parameter space is thus quite rich as will be revealed by
the small mr asymptotic expansion.
To discuss the effect of the width of the boundary,

we show in fig. 4 the onset of stationary dynamo action
as a function of D for mr = 1. Rmc is a decreasing
function of D. For large enough D the onset tends to
a constant. Indeed, inside the boundary the magnetic
field then extends on a dimensionless vertical lengthscale
of about 1 and is thus not affected by the idealized
ferromagnetic boundary at z =−D�−1. In line with this
observation, note also that qualitatively similar results
have been obtained if vacuum is considered at z <−D
instead of ideal ferromagnetic material.
The problem simplifies in the limit of weak magnetic

permeability modulation. We write µr =m0(1+ ε sin (x)),
so that mr = εm0/(m0− 1), and consider ε� 1. In this
limit the eigenmode is dominated by a large-scale field
(meaning independent of x) and a harmonic component
(cosx and sinx dependence). The latter is much weaker
than the large-scale component: it comes from the effect of
the magnetic permeability modulation on the large-scale
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Fig. 4: (Colour on-line) Critical magnetic Reynolds number
as a function of the width of the boundary D for m0 = 100
and mr = 1. The dashed line joins results for flow (1) and the
continuous line for flow (2).

field, and is thus ε times smaller. The eigenmode has a
scale separation in the x-direction that makes possible an
asymptotic expansion. We decompose the fields into two
components: Hx =Hx(z)+hx(x, z) and Hz =Hz(z)+
hz(x, z) where Hx and Hz are the large-scale components
and hx and hz are the harmonic components. The field in
the y-direction can be obtained using the divergence-free
condition for B. The problem involves six unknowns: the
amplitudes of the large-scale fields Hx and Hz and the
amplitudes of the two quadratures of hx and hz. Boundary
conditions result in a linear system of six equations, the
determinant of which vanishes when s is an eigenvalue.
At the dynamo onset, the real part of s vanishes and its
imaginary part is the pulsation at onset. This asymptotic
approach confirms the numerical results presented in fig. 3:
for a weak modulation of magnetic permeability, we find
the same magnetic Reynolds numbers, wave numbers and
pulsations at criticality. More generally, three modes are
in competition. One is oscillatory and two are stationary.
The stationary or oscillatory nature of the first unstable
mode depends on the position in the (D,m0)-plane.
The parameter space contains three domains separated
by several boundaries corresponding to codimension-2
bifurcations where the modes exchange stability.
The neutral mode for mr = 1 is drawn in fig. 5. This

drawing, together with the asymptotic expansion allows
to understand the physical mechanism of this dynamo.
This mechanism can be described in four steps that
are sketched in fig. 6. Let us assume that there is a
large-scale field Hx(z) in the vicinity of the bound-
ary. Without magnetic permeability modulation such a
field can verify the equations and matching conditions
at the boundary. However, if the magnetic permeability
of the boundary has variations in x, the divergence-free
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Fig. 5: (Colour on-line) Magnetic-field lines projected in the
(x, z)-plane for m0 = 10, mr = 1, D= 1 and at the onset of
instability for the uniform flow (1). Top: in the flow; bottom: in
the boundary. Note the very different z-scales of the two panels:
the skin effect inside the fluid concentrates the x-dependent
field very close to the boundary.

constraint for B requires a non-zero small-scale field in
the vertical direction, of order h1 � εHx. The permeability
modulation thus induces a small-scale vertical magnetic
field which originates from canalization of the magnetic
field by the regions of large magnetic permeability. At
step (2), the shear flow localized close to the solid bound-
ary converts this component into a component in the
x-direction, say h2. At z = 0, the boundary condition gives
approximately

√
Rmh2 � h1. This balance traces back to

the usual skin effect: in a frame moving with the fluid at
velocity Uex, the field that comes out of the boundary is
an oscillatory field that penetrates into the fluid only in a
skin layer, the depth of which is of order Rm−1/2.
At the third step, the tangential component h2 interacts

once again with the permeability modulation to produce a
large-scale field: Hz � εh2. Finally, this field Hz is sheared,
which generates a large-scale field along x through the
ω-effect: Hx �RmHz. To sum up, this mechanism can
be written as a cycle: Hx �RmHz �Rmεh2 �

√
Rmεh1 �√

Rmε2Hx. At onset, the gain of this cycle is of order unity,
which gives Rm� ε−4.
We think that a similar mechanism is involved when a

modulation of electrical conductivity is considered instead
of a modulation of magnetic permeability. Then, the
concentration of currents in the domains of large conduc-
tivity converts the tangential field into a normal one. We
point out that the critical Reynolds number extracted
from the results of [12] diverges as ε−4 in agreement with
the scaling presented here.
At this stage, the dynamo mechanisms do not seem to be

very efficient. The critical Reynolds number remains larger
than a few hundreds, which corresponds to unachievable
velocities for a liquid-metal experiment. This high critical

Fig. 6: (Colour on-line) Sketch of the effects involved in
the dynamo process. At steps (1) and (3), the tangential
component (thick blue line) is converted into a normal one
(thin black line) by the modulation of magnetic permeability
in the boundary. At steps (2) and (4), the normal component
(thick blue line) created at the former step is converted into a
tangential one (thin black line) by the shear. In the boundary,
white colour stands for large permeability.

Rm results from the expulsion by the skin effect of the
modulated field generated in the boundary. To moderate
this effect, we have slightly modified the system and
have studied a linear shear (see fig. 1 (2)). We consider
the velocity field u= (Sz, 0, 0) and define the magnetic
Reynolds number as Rm= µ0σSL

2. Both the numerical
and the asymptotic calculations can be modified to tackle
this geometry.
A dynamo magnetic field is generated above a critical

magnetic Reynolds number Rmc displayed as a function
of D in fig. 4. Values of the order of 15 are reached. It is
of course not straightforward to compare the numerical
values of Rmc in both geometries since the definitions
are different. However, the linear shear is more efficient
in the following sense. Because the fluid velocity is small
close to the boundary, the skin effect is reduced compared
to the case of a localized shear. Thus, the resulting field
expulsion is not as intense and the induction cycle is more
efficient. The low modulation asymptotic expansion and
the numerical computations displayed in fig. 3 show that
Rmc ∝ ε−3 for ε� 1. The change of exponent from −4 to
−3 directly results from the weaker skin effect. Indeed, for
a linear shear, the skin depth scales as Rm−1/3, so that the
second step of the mechanism results in h2 ∝Rm−1/3h1
from which the exponent −3 is obtained for Rmc [13].
From the point of view of the large-scale field, the

mechanisms of instability at work in these dynamos
can be described as the two following effects. A usual
ω-effect due to the shear converts the poloidal field
(normal to the boundary) into a toroidal one (tangential).
The second step is completely different from the one at
work in usual dynamos (ω-effect in the Lowes and Wilkin-
son dynamo [14], α-effect in traditional geophysical and
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astrophysical models). Indeed, it is the interplay between
the shear and the ferromagnetic modulation that converts
the toroidal component back into a poloidal one. This
effect is sufficient to release the constraint of antidynamo
theorems. Here the flow is a very simple two-dimensional
field and yet a dynamo is observed. As expected, when the
modulation vanishes the dynamo onset diverges.
This effect is possibly involved in the VKS dynamo. It

may either be the dominant mechanism that converts the
toroidal field into a poloidal field, or it may cooperate with
the α-effect generated by the vortices along the blades [6].
The results of the present letter can be compared to the
VKS experiment only under the very crude assumptions
that the turbulent von Karman flow can be replaced by
a solid disk of modulated magnetic permeability close to
which is the time-averaged shear in azimuthal velocity.
The VKS impellers have radius R= 15.45 cm with 8 blades
of height 4.0 cm, which yields a characteristic length
L=R/8∼ 2 cm. Because of the blades, we consider that
the mean azimuthal velocity drops on a typical axial
length comparable to the blades’ height as we move away
from the disk. This gives S ∼ 500 s−1 and a magnetic
Reynolds number µ0σSL

2 ∼ 2. This value is lower than
the threshold of order 10 reported form0 = 100 andmr = 1
that are values expected for the VKS disks. A better
description of the geometry of the flow and impellers, as
well as a precise knowledge of the magnetic permeability of
the VKS disks would be necessary for further comparison.
A clear experimental demonstration of this new kind

of dynamos thus remains necessary, and we now describe
experiments specifically designed to isolate and measure
the amplitude of the conversion of toroidal to poloidal
magnetic field induced by a spatial variation of magnetic
permeability. The disks in the VKS experiment are fitted
with iron blades which are responsible for the azimuthal
modulation of magnetic permeability. When the disk
rotates, the blades increase the driving of the fluid in
comparison with a flat disk. Turbulent fluctuations are
more intense and the power required to drive the disk
at a given angular velocity is thus strongly increased.
A simple way to reduce the power required to drive
the flow is to insert the ferromagnetic blades inside the
disk. This suppresses the vortices along the blades but
maintains the modulation of magnetic permeability. In
other words, starting from the usual disks, we fill the
space between the blades with a solid metal such as
copper. The system is adjusted so that the disk’s surface
is flat, see fig. 7 (left). Therefore, for a given available
mechanical power, the achievable rotation rate will be
strongly increased. Close to the disk’s surface both the
modulation of magnetic permeability and the shear will
be strong.
Another geometry that can be considered is inspired

by the Taylor-Couette flow and is presented in fig. 7
(right). We consider two coaxial cylinders that can rotate
independently. One or both of the cylinders’ surfaces are
machined to insert axial pieces of ferromagnetic material.

Fig. 7: (Colour on-line) Schematics of experiments designed to
test the amplification mechanism caused by the modulation
of magnetic permeability. In each drawing the pale-green outer
cylinder can be made of stainless steel or copper, and the liquid
metal is not represented. Left: a rotating disk is made of several
sectors of alternating ferromagnetic and non-ferromagnetic
materials. Liquid metal fills the space between this spinning
disk and a bottom copper layer. Right: a thin layer of liquid
metal is contained between two coaxial cylinders. The internal
cylinder rotates and is made of alternating ferromagnetic and
non-ferromagnetic materials.

Again the system is adjusted so that the surface is smooth,
in order to reduce the drag exerted on the cylinders.
A shear is localized in the gap between the cylinders when
they rotate at different angular velocities.
In both setups, the shear is strong close to the perme-

ability modulation and the conversion mechanism is likely
to be efficient. Its efficiency will strongly depend on the
structure of the boundary layers close to the rotating
parts. Some tuning of the experiment may be required
to achieve the optimal boundary layer thickness: it should
be small, for the shear to be strong, but larger than the
skin depth, for the small-scale magnetic field to penetrate
deeply enough inside the fluid. By applying an azimuthal
magnetic field and measuring the induced field normal to
the modulated surface, it will be possible to quantify the
conversion intensity. We expect to observe a large-scale
field together with a component at the scale of the modu-
lation. Their relative amplitudes will then be an indica-
tion of how effective the different steps of the conversion
process described in figs. 5 and 6 are.
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