
Journal of Statistical Mechanics:
Theory and Experiment

     

SPECIAL ISSUE ON STATPHYS 26

Instabilities on a turbulent background
To cite this article: Stéphan Fauve et al J. Stat. Mech. (2017) 064001

 

View the article online for updates and enhancements.

Related content
Chaotic dynamics of the magnetic field
generated by dynamo action in a
turbulentflow
F Pétrélis and S Fauve

-

Bifurcations of a large-scale circulation in a
quasi-bidimensional turbulent flow
G. Michel, J. Herault, F. Pétrélis et al.

-

On the genesis of the Earth's magnetism
Paul H Roberts and Eric M King

-

This content was downloaded from IP address 129.199.120.32 on 18/12/2017 at 15:38

https://doi.org/10.1088/1742-5468/aa6f3d
http://iopscience.iop.org/article/10.1088/0953-8984/20/49/494203
http://iopscience.iop.org/article/10.1088/0953-8984/20/49/494203
http://iopscience.iop.org/article/10.1088/0953-8984/20/49/494203
http://iopscience.iop.org/article/10.1209/0295-5075/115/64004
http://iopscience.iop.org/article/10.1209/0295-5075/115/64004
http://iopscience.iop.org/article/10.1088/0034-4885/76/9/096801


J. S
tat. M

ech. (2017) 064001

Instabilities on a turbulent background

Stéphan Fauve, Johann Herault1, Guillaume Michel 
and François Pétrélis

Laboratoire de physique statistique, Ecole normale supérieure, UPMC, PSL 
Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne 
Universités, UPMC Univ. Paris 6, CNRS, 75005 Paris, France
1  Present address: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 

UMR 7342, 49 rue F. Joliot-Curie, 13013 Marseille, France
E-mail: fauve@lps.ens.fr

Received 3 January 2017
Accepted for publication 20 April 2017  
Published 1 June 2017

Online at stacks.iop.org/JSTAT/2017/064001
https://doi.org/10.1088/1742-5468/aa6f3d

Abstract.  We present a review of several experimental results that concern 
the problem of hydrodynamic instabilities occurring in turbulent flows. The 
first experiment is related to the generation of a magnetic field by a turbulent 
flow of liquid sodium, i.e. the dynamo eect. We show how the bifurcation to 
the dynamo regime is aected by turbulent fluctuations. Above the dynamo 
threshold, we study the reversal dynamics of the magnetic field and present 
a model showing the respective contributions of deterministic and stochastic 
aspects. The second experiment is a nearly two-dimensional turbulent flow 
forced in a confined domain. We study a sequence of bifurcations that involve a 
large scale flow that develops over a turbulent background and displays random 
reversals. We emphasize both the similarities and dierences with the magnetic 
reversal problem.
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Hydrodynamic instabilities have been studied for more than a century and are well doc-
umented experimentally as well as theoretically. During the past decades, the emphasis 
has been put on nonlinear aspects related to pattern formation, transition to chaos and 
turbulence. Bifurcation theory has been developed and provides a useful tool to study 
the stability of stationary and time or spatially periodic flows. Much less studies exist 
on instabilities that occur when a control parameter is varied within the turbulent 
regime and theoretical tools are lacking to handle these problems. However, we know 
several examples of transitions displayed by turbulent flows. The oldest example is 
provided by the drag crisis [1]. The mean drag of a sphere or a cylinder in a turbulent 
flow suddenly drops for a critical value of the Reynolds number Re of order 105. This 
corresponds to a transition where the mean flow pattern changes, the wake becoming 
narrower. More recent experiments have been conducted on instabilities of turbulent 
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wakes. It has been found that two dierent configurations for the mean flow can coex-
ist and the wake can display random switches between them [2]. Another example is 
related to Rayleigh–Bénard convection, i.e. the flow generated by heating from below a 
horizontal layer of fluid. It has been observed that for a Rayleigh number of order 106, 
i.e. roughly 1000 times larger than the critical Rayleigh number for the onset of convec-
tion, a large scale flow is generated with a horizontal extension equal to the length of 
the container [3]. A more recent example concerns the eect of rotation on turbulent 
convection: for a large enough Rayleigh number, it has been found that increasing the 
rotation rate does not aect the heat flux up to a critical rotation rate above which it 
starts increasing as if a supercritical bifurcation has occured [4]. Von Kármán swirling 
flows, i.e. flows generated in a cylindrical volume by the rotation of two co-axial disks, 
also display transitions within the turbulent regime. In the case of co-rotating disks, 
an axisymmetric mean flow with a strong axial vortex is observed. When the rotation 
rates are varied, this flow breaks axisymmetry, thus generating a roughly periodic 
modulation of the turbulent velocity field superimposed to turbulent fluctuations with 
Re ∼ 105 [5]. In the case of disks counter-rotating at the same frequency, the forcing is 
symmetric with respect to a rotation of angle π about any radial axis in the mid-plane 
between the two disks (see section 3.5). It has been found that this symmetry can be 
broken through a bifurcation that occurs for Reynolds numbers in the range 105 to 106 
[6, 7].

It is often believed that a strongly turbulent flow has the symmetries of the flow 
domain and forcing. This should be of course understood with a statistical meaning, 
i.e. for all the moments of the velocity field. The argument to justify this claim is that 
the system is likely to explore all the available phase space if the turbulent fluctuations 
are strong enough. The above examples show that this is not always true. When some 
control parameter is changed, for instance the Reynolds number, a strongly turbulent 
flow with the symmetries of the flow domain and forcing, can bifurcate to another 
turbulent regime and spontaneously break some of the symmetries. This transition 
sometimes occurs through the generation of a large scale mean flow, 〈V〉 �= 0, as in 
the turbulent convection example quoted above (〈·〉 stands for the spatial average). Of 
course both signs of the large scale velocity are possible if the forcing does not impose 
a particular direction. If the two turbulent attractors related to  ±〈V〉 are disconnected 
in phase space, one solution is selected at the bifurcation and the symmetries are bro-
ken. Another bifurcation can occur when the control parameter is changed further and 
reconnect the two attractors related by the symmetry transformation. The mean flow 
then jumps, generally randomly in time, between the opposite values of 〈V〉. These 
reversals of the large scale flow on a turbulent background statistically restore the sym-
metries of the flow domain and forcing.

The dynamo eect, i.e. the generation of a magnetic field by the flow of an elec-
trically conducting fluid, provides a nice example in this context. The magnetic field 
is generated by an instability process related to electromagnetic induction. For any 
liquid metal, the instability threshold is reached when the flow is strongly turbu-
lent (see section  3). We thus have an instability on a fully turbulent background. 
The broken symmetry at instability threshold is the B → −B symmetry of the equa-
tions  of magnetohydrodynamics. This symmetry can be restored statistically if the 
system undergoes a secondary bifurcation to a regime that involves periodic or random 

https://doi.org/10.1088/1742-5468/aa6f3d
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reversals of the magnetic field. Although dynamo experiments involve technical prob-
lems such that the dynamo threshold is dicult to reach in the laboratory, this exam-
ple is conceptually simpler than the purely hydrodynamic ones quoted above. Once it 
bifurcates, the magnetic field is easy to measure and, in the vicinity of threshold, it 
evolves on a slow time scale compared to the ones of the flow. In contrast, in purely 
hydrodynamical systems, it is very dicult to disentangle the bifurcating modes from 
the turbulent background.

Another class of transitions between dierent turbulent regimes concern shear flows. 
The laminar flow often becomes unstable through a subcritical bifurcation giving rise 
to localized patches of turbulence within the laminar flow. A homogeneous turbulent 
flow is observed only at higher Reynolds number after a sequence of bifurcations that 
depends on the geometry of the walls that confine the flow [8]. Although these trans
itions involve the dynamics of fronts between dierent states as usually observed in 
the vicinity of subcritical bifurcations in extended systems, a common feature with the 
transitions mentioned above is that the turbulent regimes either possess the symme-
tries of the experimental device or break some of them. For instance, in planar Couette 
flows, the turbulent regime occurs within periodic stripes at intermediate Reynolds 
numbers, i.e. breaks translational symmetry [9]. A similar phenomenon involving a 
transition between two dierent turbulent regimes, has been observed earlier in Taylor-
Couette flow [10]. We will not consider this type of transitions here.

This paper is organized as follows: in section 2, we will start by reviewing a simple 
model of a bifurcation in the presence of noise. This model mimics a bifurcation that 
occurs on a turbulent regime. We will consider a pitchfork bifurcation with a noisy 
bifurcation parameter and show that the qualitative behavior of the system close to 
threshold strongly diers from the one further from threshold: in particular, anomalous 
scaling of the dierent moments and 1/f-type noise are observed close to threshold. We 
will review some experimental results of the VKS dynamo in section 3 and consider 
similarities and dierences of the dynamo bifurcation with the pitchfork bifurcation 
with multiplicative noise. We will then consider reversals of the magnetic field and 
show that a model with a low dimensional dynamical system can describe most of 
the experimental observations. A purely hydrodynamical examples will be considered 
in section 4: a nearly two-dimensional flow generated by a spatially periodic forcing 
in a confined domain. We will study transitions between dierent turbulent regimes. 
Finally, concluding remarks will be given in section 5.

2. Bifurcation in the presence of multiplicative noise: a canonical model

We consider a canonical model of bifurcation subject to multiplicative noise. It consists 
in the evolution equation of a scalar x, which is a function only of time t and satisfies 
the Langevin equation

ẋ = µ0x− x3, µ0 = µ+ ξ(t).� (1)

where μ is the parameter that controls the instability and ξ, the noise term, represents 
random fluctuations with zero mean.

https://doi.org/10.1088/1742-5468/aa6f3d
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The magnetic field generated by the dynamo instability and certain chemical reac-
tions are systems for which such multiplicative noises are involved. More generally, 
close to the onset of any instability that breaks an existing x → −x symmetry, equa-
tion (1) is the evolution equation of the unstable mode amplitude if the departure from 
onset fluctuates for instance because of loose experimental control.

In the absence of noise, the solution x  =  0 becomes unstable for µ > 0 and at long 
time x tends towards  ±√µ.

To model the noise term, we assume that ξ is a Gaussian delta-correlated noise, i.e. 
〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). Because the noise acts multiplicatively in the evolution equa-
tion, one needs to define precisely the meaning of the equation. From now on, in the 
case that ξ is white noise, we use the Stratanovich interpretation [11]. Had we used 
the Ito interpretation, we should replace in the following μ by µ−D. Note that x   (t) 
cannot cross 0 and never changes sign. Without loss of generality, we consider x      (0)  >  0 
and therefore x   (t)  >  0.

The probability distribution function (PDF) of x, P(x), satisfies the Fokker-Planck 
equation. For µ > 0 its steady solution is given by

P (x) = Nx
µ
D
−1e

−x2

2D� (2)

where the normalization constant N  is set by the condition 
∫
P (x) dx = 1 [12]. For 

µ < 0, it is P (x) = δ(x). The moments can be calculated and are non zero for posi-
tive μ. Due to the singularity of P at x  =  0, we obtain 〈xm〉 ∝ µ in the small μ-limit. 
For what concerns the most probable value, it is zero for 0 � µ � D and is equal to 
(µ−D)1/2 for D � µ.

The behavior of the moments (all linear in μ) is an eect of the multiplicative 
noise on the dynamics of x close to the onset. Indeed, the time series alternates 
between phases where the value of x is large and nonlinearities are important 
(on-phases) and phases where x fluctuates close to zero (o-phases) [13–15]. This 
behavior is called on–o intermittency and an example of time series is displayed 
in figure 1.

This phenomenon was first identified in the study of coupled chaotic dynamical 
systems. At strong coupling, the solutions follow the same trajectories and the distance 
between two solutions vanishes. At zero coupling, the trajectories are independent and 
the distance between trajectories fluctuates around a value that is set by the structure 
of the chaotic attractor. At intermediate coupling, one observes phases where the tra-
jectories are the same and the distance between them vanishes, and phases of burst into 
a state of desynchronised trajectories, with large distance. Close to the onset of appear-
ance of this intermittent behavior, the evolution equation  of the distance between 
trajectories has the same linear term as equation (1) and was first studied in [13, 14]. 
The name ‘on–o intermittency’ was given later in the context of the dynamics of an 
unstable mode close with its onset in the presence of multiplicative fluctuations [15]. 
This behavior is associated to several properties that we will discuss in the following. 
When these properties are controlled by the o-phases, they are generic in the sense 
that they do not depend on the nonlinear term.

During an o-phase, x is very small, the nonlinear term can be neglected and the 
time series satisfy

https://doi.org/10.1088/1742-5468/aa6f3d
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log(x(t)) = log(x(0)) + µt+

∫ t

0

ζ(t′)dt′.� (3)

Averaging over the realizations of the noise, the stochastic term disappears and we con-
clude that 〈log(x)〉 tends toward −∞ if μ is negative and towards +∞ if μ is positive. 
µ = 0 thus corresponds to the onset of instability of x  =  0. For small and positive μ, 
log(x) is a random walk with a bias towards positive values. This is true only for small 
x. For large x, the nonlinear eects prevent the random walk from reaching too large 
positive values. This is displayed in figure 1. The origin of the on–o behavior is easily 
understood: the phases where log(x) is smaller than a given threshold (here arbitrarily 
taken to x  =  10−2) appear as nearly zero for x.

In addition to this prediction that results from the analogy with a biased random 
walk, we can make the following predictions for small drift. For µ = 0 and small x, if 
a steady distribution were to exist for log(x), it should be uniform as there is no pre-
ferred direction for the evolution in the off-phase. Then the distribution of x should be 
P (x) ∝ x−1 which is not normalizable. It can thus not be the equilibrium distribution; 
at long time, x tends to zero and the steady distribution is P (x) ∝ δ(x). For positive 
μ and small x, we have P (x) ∝ xµ/D−1; for large x, in the on-phase, the distribution 
displays a cut-o due to the nonlinear eects. The divergent behavior of P at small x 
results from the o-phases, during which x reaches nearly vanishing values.

The duration of the o-phases is also an important property that can be under-
stood from the analogy with a biased random walk [16]. Indeed, during an o-phase, 
x remains below a given threshold, say xt, until the random walk reaches again xt. The 
duration of the o-phase is thus the same as the one of the return time of a weakly 
biased Brownian motion. The distribution of this quantity is a well-known property 

Figure 1.  Time series of x(t) solution of equation  (1) in the regime of on–o 
intermittency. The top figure  uses a log scale for x. The horizontal line is an 
arbitrary threshold, corresponding to x  =  10−2, so that if x is below this threshold, 
it appears as nearly zero in the bottom figure that uses a linear scale. The numerical 
solutions are obtained using the Stratanovich interpretation of equation (1) and 
the associated temporal discretization.

https://doi.org/10.1088/1742-5468/aa6f3d
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and is of the form P (Toff) ∝ T
−3/2
off  for small To with a cut-o at large To of the form2 

exp(−µ2Toff/D).
The moments of x display an unusual scaling: they are linear in the departure 

from onset 〈xn〉 ∝ µ, which is dierent from the deterministic behavior 〈xn〉 ∝ µn/2. 
Obviously this scaling law results from the form of the PDF P(x) and more precisely 
from its divergent behavior for small x. We can also understand it from the time series 
of x. At µ = 0, the mean duration of the o-phase 〈Toff〉 diverges, like the mean return 
time of an unbiased Brownian motion. At weak bias μ, we have 〈Toff〉 ∝ µ−1. As dis-
played in figure 1, it is clear that the o-phases do not contribute to the moments. 
In the limit of small μ, the duration of the on-phases and the value achieved by the 
moments do not depend on μ. With these properties, we can estimate the moments as 
〈xn〉 � 〈Ton〉xn

on/(〈Ton〉+ 〈Toff〉) and the only singular term is 〈Toff〉 that diverges as µ−1, 
so that we recover the scaling of the moments that are linear in μ.

The power spectrum density of x, Sx   ( f ), displays also a rich behavior [13, 14]. At 
large μ, it is a Lorentzian function. Indeed, x fluctuates around some non zero mean 
value, say X. The dynamical equation contains the terms ẋ = Xζ(t) + ... so that the 
noise acts as an additive term from which the f−2 behavior at large f is easily recovered.

At small μ, the spectrum displays three regimes (see figure 2). At large frequencies, for 
f � D, we recover a f−2 behavior similar to the former case. At very low frequencies for 
f � µ2/D, the spectrum is flat. In between these two regimes, it displays an unusual f−1/2 

power law. This behavior is related to the distribution of the o-phases P (Toff) ∝ T
−3/2
off . 

We start by calculating 〈Toff〉T  the duration of the o-phases for a time series of dura-

tion T. Because the distribution of To is large, this is estimated by restricting the PDF 

2 We note that the PDF is not normalizable at short To. This is related to a property of the Brownian motion 
due to the non-smoothness of the trajectory: when it reaches a given value, it crosses this value an infinite number 
of times. For what concerns the on–o intermittent regime in a real system, the noise term has a finite (possibly) 
short correlation time, say τc. The PDF then has a cut-o for time shorter than τc and is therefore normalizable.

Figure 2.  Power spectrum density of x solution of equation (1): (cyan), µ = 1, the 
spectrum is a Lorentzian; (red), µ = 0.01; (black), µ = 0.004; (magenta) µ = 0.002 
and (blue) µ = 0.001. At high frequency, the spectrum is nearly f−2, it is flat at low 
frequency and when μ is decreased, a f−1/2 regime appears as indicated by the thick 
black line. For the smaller values of μ the crossover frequency to the flat behavior 
is smaller than the smallest frequency displayed in the figure.

https://doi.org/10.1088/1742-5468/aa6f3d
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to values smaller than T, so that 〈Toff〉T �
∫ T

ToffP (Toff)dToff ∝ T 1/2. The number of 

o-phases during T is N(T ) = T/〈Toff〉T ∝ T 1/2, which is also the number of on-phases. 

As their duration does not diverge, the duration spent in the on-phases behaves as T1/2 
and the probability to be in the on-phase as T 1/2/T = T−1/2. As only the on-phases give 
a contribution to the autocorrelation function C(t) = 〈x(t)x(0)〉, we obtain C(t) ∝ t−1/2. 

Using Wiener–Khintchin theorem, we obtain Sx( f) =
∫
C(t) exp (i2πft)dt ∝ f−1/2. The 

power-law behavior of the spectrum is thus due to the self similar behavior of the time 

series and more precisely of the arrival of the on-phases. We can also note that the 
distribution of To has a cut-o at Tc = D/µ2, which sets the crossover frequency in the 
spectrum between the f  −1/2 and the flat, f 0 behavior.

We point out that there is a relation between the exponent of the power law of 

the distribution of the o-phase (say β so that P (Toff) ∝ T−β
off , with β = 3/2) and the 

exponent of the spectrum (say α, with Sx( f) ∝ f−α, with α = 1/2). Indeed, we have 

α = β − 1 for 1 < β < 2. As we will see in the following, this is one of the general laws 
that relate exponents of distribution of rare events and exponents of spectrum (see 
section 3).

3. Generation of a magnetic field by a turbulent flow of liquid metal

3.1.  Introduction: the dynamo eect

It is strongly believed that many planetary and stellar magnetic fields are generated by 
a dynamo eect, i.e. an instability mechanism that results from electromagnetic induc-
tion by the flow of an electrically conducting fluid [17]. Maxwell’s equations together 
with Ohm’s law give the governing equation  of the magnetic field, B(r, t). In the 
approximation of magnetohydrodynamics (MHD), it takes the form

∂B

∂t
= ∇× (v ×B) +

1

µ0σ
∇2B,� (4)

where µ0 is the magnetic permeability of vacuum and σ is the electrical conductivity. 
The last term on the right hand side of (4) represents ohmic dissipation, and the first 
one, electromagnetic induction due to the velocity field v(r, t). B = 0 is an obvious 
solution of (4), and for v = 0, any perturbation of B(r, t) (respectively of current den-
sity j(r, t)) decays to zero due to ohmic diusion. B = 0 can be an unstable solution if 
the induction term compensates ohmic dissipation. The ratio of these two terms defines 
the magnetic Reynolds number, Rm = µ0σV L, where V is the typical velocity ampl
itude and L the typical length scale of the flow. If v(r, t) has an appropriate geometry, 
perturbations of magnetic field grow when Rm becomes larger than a critical value Rc

m 
(in the range 10–1000 for most studied examples). Magnetic energy is generated from 
part of the mechanical work used to drive the flow.

https://doi.org/10.1088/1742-5468/aa6f3d
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In order to describe the saturation of the magnetic field above the dynamo thresh-
old Rc

m, we need to take into account its back reaction on the velocity field. v(r, t) is 
governed by the Navier-Stokes equation

∂v

∂t
+ (v · ∇)v = −∇

(
p

ρ
+

B2

2µ0ρ

)
+ ν∇2v +

1

µ0ρ
(B · ∇)B,� (5)

that we have restricted to the case of an incompressible flow (∇ · v = 0). ν is the kine-
matic viscosity and ρ is the fluid density. In the MHD approximation, the Lorentz 
force, j×B, can be split into the two terms involving B in (5). If the modification of 
the flow under the action of the growing magnetic field weakens the dynamo capability 
of the flow, the dynamo bifurcation is supercritical, i.e. the magnetic field grows con-
tinuously from zero when Rm is increased above Rc

m.
Assuming that the set of parameters defined so far fully characterizes the problem, we 

should have another independent dimensionless parameter besides Rm. We can choose 
either the kinetic Reynolds number, Re = V L/ν , or the magnetic Prandtl number, 
Pm = Rm/Re = µ0σν. Then, dimensional analysis implies that we have, Rc

m = f(Pm), 
for the dynamo threshold and 〈B2〉 = µ0ρV

2 g(Rm, Pm), for the mean magnetic energy 
generated above the dynamo threshold. f and g are arbitrary functions at this stage. 
Their dependence on Pm (or equivalently on Re) can be related to the eect of tur-
bulence on the dynamo threshold and saturation. In many realistic situations, more 
parameters should be taken into account. For instance, f and g also depend on the 
choice of boundary conditions (for instance their electrical conductivity or their magn
etic permeability, etc). In the context of planetary or stellar dynamos, the eect of 
the rotation rate Ω should be also taken into account via the Rossby, Ro = V/ΩL or 
Ekmann number E = ν/ΩL2.

For planetary or stellar dynamos, as well as for any laboratory experiment per-
formed with a liquid metal, we have Pm < 10−5, the largest value being reached using 
liquid sodium. This has strong consequences on the dynamo bifurcation and makes 
the problem both dicult and interesting. Pm being the ratio of the diusive time 
scales of the magnetic field and the velocity field, no direct simulation solving the full 
MHD equations can handle such small values. In addition, small Pm implies that the 
flow is strongly turbulent when the dynamo threshold is reached (Re ∼ Rc

m/Pm > 106). 
The velocity field being fully turbulent when the dynamo threshold is reached for any 
experiment performed with a liquid metal, we can use the Reynolds decomposition and 
write v(r, t) = V(r) + ṽ(r, t) where V(r) is the mean flow and ṽ(r, t) are the turbulent 
fluctuations. The over-bar stands for a temporal average in experiments. Therefore, 
both the mean flow V(r) and the fluctuations ṽ(r, t) are involved in the induction term 
of (4) and one has to understand their respective eects on the dynamo process. Dynamo 
experiments thus provide a way to study an instability problem from a fully turbulent 
state. Several interesting questions arise: does the generated magnetic field involve a 
mean large scale component, as observed in planetary or stellar dynamos? What are the 
behaviors of f and g when Pm → 0? Are they constant with respect to Pm in this limit, 
thus giving Rc

m = constant and 〈B2〉 ∝ µ0ρV
2g(Rm), i.e. 〈B2〉 ∝ [ρ/(µ0σ

2L2)] g(Rm) close 
to threshold [18]? What is the eect of turbulent fluctuations on the bifurcation? Is 
g(Rm) ∝ Rm −Rc

m as for a usual supercritical bifurcation close to threshold, or should 
we expect a behavior involving an anomalous exponent [19]? What is the eect of tur-
bulent fluctuations on the dynamics of the magnetic field?
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3.2. The VKS experiment

Three successful fluid dynamo experiments have been performed so far: the Karlsruhe 
experiment [20], the Riga experiment [21] and the VKS experiment [22]. The VKS 
experiment diers from the two others as follows: the Karlsruhe and Riga experi-
ments have been designed by geometrically constraining a mean flow V(r) known for 
its ecient dynamo action, the Roberts’ flow (respectively the Ponomarenko flow) for 
the Karlsruhe (respectively Riga) experiment. Thanks to geometrical constraints, tur-
bulent fluctuations were roughly an order of magnitude smaller than the mean flow. 
The experimentally observed dynamo threshold as well as the geometry of the mean 
magnetic field, have been found in good agreement with a linear stability analysis based 
only the mean flow, i.e. discarding the fluctuations.

The VKS experiment consists of a von Kármán swirling flow of liquid sodium. It is 
generated in a cylinder by the motion of two coaxial counter-rotating disks fitted with 
eight blades as shown in figure 3 (left). The mean flow has the following characteristics: 
the fluid is ejected radially outward by the disks; this drives an axial flow toward the 
disks along their axis and a recirculation in the opposite direction along the cylinder 
lateral boundary. In the case of counter-rotating impellers, the presence of a strong 
axial shear of azimuthal velocity in the mid-plane between the impellers generates a 
high level of turbulent fluctuations, roughly of the same order as the mean flow. It is 
thus unlikely that the fluctuations ṽ can be neglected compared to V in (4). It has been 
indeed observed that when the disks counter-rotate with the same frequency, F1 = F2, 
a stationary magnetic field is generated with a dominant axial dipolar component, BP, 
together with a related azimuthal component Bθ, as displayed in figure 3 (left) [22]. 
Such an axisymmetric mean field cannot be generated by the mean flow alone, V(r, x), 
that would give a non axisymmetric magnetic field according to Cowling theorem [17], 
and also as observed in numerical modeling performed using V(r, x) alone [23]. Non 
axisymmetric fluctuations ṽ(r, θ, x) thus play an essential role. As explained in [19], a 
possible mechanism is of α− ω type, the α-eect being related to the helical motion 
of the radially expelled fluid between two successive blades of the impellers, and the 
ω-eect resulting from dierential rotation due to counter-rotation of the impellers. 
This mechanism has been confirmed by kinematic dynamo simulations: it has been 
shown that when strong enough vortices along the blades are added to an axisymmetric 
mean flow, the generated dynamo is no longer an equatorial dipole but is dominated 
by an axial dipole as observed in the experiment [24]. Following the α− ω mechanism 
described in [19], helical fluctuations have been modeled using mean-field MHD [25]. 
An axisymmetric dynamo has been recovered but it has been found that it requires 
unrealistically large values of the α-eect to explain the VKS observations (see below 
the role of the iron impellers).

In conclusion, the VKS dynamo is not generated by the mean flow alone in contrast 
to Karlsruhe and Riga experiments, and non-axisymmetric turbulent fluctuations play 
an essential role in the dynamo process.

3.3. Role of the iron impellers

The VKS dynamo has been observed so far only when impellers made of soft iron have 
been used. More precisely, one iron impeller is enough provided it rotates fast enough. 

https://doi.org/10.1088/1742-5468/aa6f3d
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Both the disk and the blades should be made of iron. This of course does not mean that 
iron impellers are necessary to generate a dynamo. They are required in our experiment 
in order to reach the dynamo threshold Rc

m with the available motor power. In some 
configurations using impellers made of stainless steel, we have been able to predict an 
out of reach dynamo threshold by measuring the decay time of a transient magnetic 
field.

Impellers made of iron first modify the boundary conditions for the magnetic field. 
It is therefore not surprising that this changes the dynamo threshold. Indeed, numer
ical simulations have shown that magnetic boundary conditions corresponding to the 
high permeability limit significantly decrease the dynamo threshold both for an axial 
or equatorial dipolar mode [24, 26]. This shift in threshold does not fully explains the 
experimental results since an experiment performed with two impellers made of stain-
less steel within an iron cylinder did not reach the dynamo threshold. The estimated 
threshold using decay time measurements gave Rc

m of order 80 instead of 30 in the case 
of two iron impellers.

Numerical simulations using mean-field MHD with boundary conditions that mimic 
iron impellers of VKS experiment have shown that the required magnitude of the α-
eect for dynamo threshold decreases when the magnetic permeability of the impellers 
increases [27]. Below dynamo onset, ferromagnetic impellers lead to an increased decay 
time of the axisymmetric mode [28]. It has been claimed that impellers of high magn
etic permeability are important ‘to promote axisymmetric modes’. This is true only at 
low kinetic Reynolds number Re. When Re increases and the flow becomes turbulent, 
an axial dipolar dynamo is favoured compared to an equatorial dipole even without fer-
romagnetic boundary conditions [29] (see below). It has been also argued [27] that the 
periodic modulation of the magnetic permeability in the azimuthal direction resulting 
from presence of the blades, could generate a dierent dynamo mechanism in which the 
poloidal and toroidal field components are coupled through the boundary conditions. 
This is indeed a possible mechanism but it leads to a dynamo threshold orders of mag-
nitude larger than the one observed in the VKS experiment [30, 31].

An analytical model using mean-field MHD allows to understand the physical mech
anism explaining the decrease of dynamo threshold that results from the presence of 
an iron disk [32]. It should be first noticed that the dierential rotation generating the 

Figure 3.  Left: experimental set-up showing the location of the Hall probes. Right: 
the dipolar mode, that corresponds to the dominant mean magnetic field generated 
when the propellers are counter-rotating at the same speed.
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ω-eect in the VKS experiment has opposite signs in the bulk and behind the disks. 
Assuming that the poloidal field does not change sign across the disk, the azimuthal 
field generated by the ω-eect should change sign, and therefore should vanish on the 
disk. The other alternative is that the poloidal field vanishes on the disk, the azimuthal 
field keeping the same sign on both sides of the disk. In both cases, if the component 
of the field that vanishes remains small close to the disk, the dynamo eciency that 
requires the presence of both components, will decrease. It has been shown in [32] that 
increasing the magnetic permeability of a disk results in a more abrupt change of sign 
of the axial field. Therefore the axial field is large on both sides of the disk, thus leading 
to a configuration with a good dynamo eciency. It has been also shown that there is 
an optimum value of the magnetic permeability for maximum dynamo eciency, i.e. 
minimum dynamo threshold. The low dynamo threshold observed when both the disks 
and the blades are ferromagnetic can be understood along the same line of thought: 
the easy magnetisation direction is azimuthal in the disk and along the blades in the 
blades. The ferromagnetic disk (resp. blades) leads to a large toroidal (resp. poloidal) 
component of the magnetic field in the vicinity of the impeller. Therefore both the ω 
and α-eect are large in the same region close to the impellers, thus providing a high 
dynamo eciency.

Direct numerical simulations taking into account the boundary conditions related 
to iron impellers have been recently performed [33]. Although the kinetic Reynolds 
number Re is orders of magnitude smaller than in the VKS experiment, interesting 
features have been observed. First, it has been confirmed that increasing Re in order 
to reach a fluctuating flow favours the axial dipolar dynamo mode. Second, it has been 
shown that when µr = 50, the threshold of this mode decreases from Rc

m = 130 to 90 
when Re in increased from 500 to 1500. Finally, when µr is decreased from 50 to 5 
for Re = 1500, the same dynamo mode with a dominant axial dipole is observed. Only 
its threshold is increased. It would be interesting to check whether this mode is also 
observed for µr = 1 or if one needs a larger value of Re. These results give confidence 
that the VKS dynamo (Re ∼ 5 106) would involve a dominant axial dipole with non fer-
romagnetic impellers, the eect of µr being just to shift the dynamo threshold without 
changing the geometry of the growing magnetic field.

3.4. Dynamics of the magnetic field generated by a von Kármán flow of liquid sodium

The magnetic field generated by impellers counter-rotating at the same speed involves 
strong fluctuations. The intensity and spectrum of these fluctuations depend on the 
location of the measurement point [22]. At low frequency 1/f-type spectra have been 
reported, i.e. power laws of the form 1/fα with 0 < α < 2. Measurements of the azi-
muthal component of the magnetic field, performed in the mid-plane for a rotation 
frequency of the impellers F  =  20 Hz, are displayed in figure 4 together with the power 
spectrum which exhibits a f−α power law with α � 0.5 for 1  <  f  <  15 Hz, i.e. below the 
inertial frequency range. For f  >  20 Hz, the power-spectrum scales as f −11/3, due to the 
passive stretching of the magnetic field by the small-scale turbulent fluctuations.

As observed in figure 4 (left), the magnetic field displays bursts with amplitudes up 
to eight times the average value. We first low-pass filter the times series of the magnetic 
field below 200 Hz. We then define a two-states signal s(t) by phases of weak and large 
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amplitudes. Among the possible criteria to define a burst, we consider a threshold equal 
to twice the average value of the magnetic field, such that above (resp. below) it, the 
system is in the high (resp. low) amplitude state. The resulting two-states signal s(t) is 
displayed in figure 4 (left) in grey. The power-spectrum of s(t) (in grey) is compared to 
the one of the magnetic field (in black) in figure 5 (left). At low frequency, both power 
spectra follow the same power-law. The distribution P (τ) of waiting times τ between 
bursts is displayed in figure 5 (right). For the range of duration 5.10−2 < τ < 25.10−2 s, 
P (τ) follows a power-law τ−β with β � 2.5.

This result shows that the low frequency spectrum is related to the PDF of the 
waiting time between successive bursts. The agreement is quantitative, the theoretical 
prediction being α = 3− β for bursts when 2 < β < 3 [34]. It has been shown on several 
examples of turbulent flows that the low frequency behavior can be related to the PDF 
of the waiting time between the occurrence of coherent structures [35, 36].

The equation for the amplitude of the bifurcating magnetic field in the VKS experi-
ment cannot be derived from equations (4) and (5). Although turbulent fluctuations enter 
multiplicatively in equation (4), we do not expect that the form of this amplitude equa-
tion is the one of (1). We can however consider the similarities and dierences between 
the two systems that undergo a pitchfork bifurcation in the presence of fluctuations. 
Both display strong fluctuations in the form of bursts close to threshold with 1/f-type 
noise spectra at low frequency. However, the dynamo experiment does not display a 

Figure 4.  Left: time series B(t) of the azimuthal magnetic field, fluctuating around 
its mean value (dashed line). The grey line corresponds to the bursting process s(t) 
extracted from B(t). Right: power spectrum of B(t) displaying a f−0.5 behavior at 
low frequency (dashed line).

Figure 5.  Left: power spectrum of B(t) (black line) and s(t) (grey line) compared 
to the law f−0.5 (dashed line). Right: distribution of the waiting time τ  between 
bursts, with the law τ−2.5 (dashed line).
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PDF of the amplitude of the magnetic field that diverges for B → 0 close to threshold 
and correspondingly no anomalous scaling of the moments of the magnetic field. Possible 
explanation for the absence of on–o intermittency have been proposed [37].

3.5. Reversals of the magnetic field

3.5.1. Modes and symmetries.  A striking feature of the VKS experiment is that time 
dependent magnetic fields are generated only when the impellers rotate at dierent fre-
quencies [38, 39]. It has been shown in [40] that this is related to the broken invariance 
under Rπ when F1 �= F2 (rotation of angle π around an axis in the mid-plane). Dipolar 
(resp. quadrupolar) modes of the magnetic field are displayed in figure 6 (left) (resp. 
right): a dipolar mode is changed into its opposite by Rπ, whereas a quadrupolar mode 
is unchanged. When the impellers counter-rotate at the same frequency, the system 
is invariant under Rπ. Thus dipolar and quadrupolar modes are not linearly coupled. 
They become coupled when the impellers rotate at dierent frequencies such that the 
Rπ symmetry is broken.

We assume that the magnetic field is the sum of a dipolar component with an 
amplitude D and a quadrupolar one, Q. This is justified when the thresholds of these 
two large-scale modes have similar values. We define A = D + iQ and we write an 
amplitude equation in the form of an expansion in powers of A and its complex conju-
gate Ā. Taking into account the invariance B → −B, i.e. A → −A, we obtain

Ȧ = µA+ νĀ+ β1A
3 + β2A

2Ā+ β3AĀ
2 + β4Ā

3,� (6)
where we limit the expansion to the lowest order nonlinearities. In the general case, the 
coecients are complex and depend on the experimental parameters.

We point out that equation (6) looks like the normal forms for strong resonances, 
i.e. for the complex amplitude of an oscillatory mode generated by a Hopf bifurcation 
in the presence of an external forcing. The Ā (respectively Ā3) term results from a 
forcing around twice (respectively 4 times) the frequency of the oscillatory instability 
(see [41] for a study of the bifurcations and resulting dynamics). We also note that a 
model involving coupled dipolar and quadrupolar modes that bifurcate through Hopf 
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Figure 6.  Possible eigenmodes of the VKS experiment. The two disks counter-
rotate with frequency F1 and F2. Left: magnetic dipolar mode. Right: magnetic 
quadrupolar mode. Poloidal (blue) and toroidal (red) components are sketched.
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bifurcations instead of stationary ones as considered here, has been proposed to under-
stand some features of the dynamics of the magnetic field of the Sun [42].

We obtain additional constraints on the coecients when the impellers rotate at 
the same frequency because D and Q change in dierent ways under the transformation 
Rπ: D → −D, Q → Q, thus A → −Ā. We conclude that, in the case of exact counter-
rotation, all the coecients are real. Writing the equations for D and Q, we recover 
that the two modes are not linearly coupled as mentioned above. More generally, the 
real parts of the coecients are even and the imaginary parts are odd functions of the 
frequency dierence f = F1 − F2.

Let us denote the real (resp. imaginary) parts of the coecients with subscript r 
(resp. i). In the counter-rotating case, the growth-rate of the dipole (resp. the quadru-
pole) is µr + νr (resp. µr − νr). We take νr > 0 such that the dipolar mode bifurcates 
first as observed in the experiment. The solution B = 0 is unstable to a growing dipolar 
mode for µr > −νr. When µr is increased, the quadrupolar mode also becomes linearly 
unstable for µr > νr. More generally, the linear stability analysis of the solution A  =  0 
gives the dispersion relation for the growth rate s

s2 − 2µr s+ |µ|2 − |ν|2 = 0.� (7)

We have a stationary bifurcation for |µ| = |ν| if µr < 0, a Hopf bifurcation for µr = 0 if 
|µi| > |ν|, and a codimension-two bifurcation for µr = 0 and µ2

i = |ν|2. Therefore, close 
enough to the counter-rotating case, a stationary bifurcation is predicted as observed 
in the experiment. A Hopf bifurcation from the B = 0 solution is possible only if µi 
increases fast enough compared to νi when f is increased from zero. It is not clear that 
this occurs in the VKS experiment although in some parameter range, a time periodic 
dynamo bifurcates from a regime with a small magnetic field (see figure 2 in [47]). It is 
dicult to decide whether this regime is a weak dynamo or results from the amplication 
of the ambiant magnetic field by the flow.

3.5.2. A simple case.  Writing A = R exp iφ, the stability of finite amplitude solutions 
can be studied in the phase approximation provided the amplitude R is slaved to the 
phase. We assume for simplicity that the nonlinear terms just saturate the amplitude 
without qualitatively changing the dynamics. This is the case if A2Ā is the dominant non-
linear term with β2 real and negative. The imaginary part of the linear part of (6) gives

φ̇ = µi − νr sin 2φ+ νi cos 2φ.� (8)
The stationary solutions disappear via a saddle-node bifurcation when µ2

i = |ν|2 and a 
limit cycle that corresponds to periodic reversals is generated [40]. The period at insta-
bility onset diverges as observed in the experiment when the oscillatory reversal regime 
is reached from a stationary dynamo with a large amplitude [47].

The saddle-node bifurcation occurs only if µi increases faster than νi when the Rπ 
symmetry is externally broken. If |νi| > |µi|, the solutions remain stationary. A broken 
symmetry that induces |νi| much larger than |µi| has been found as a mechanism for 
hemispherical dynamos [43]. Such a dynamo regime with the magnetic field localized 
close to one impeller, has been observed in the VKS experiment [44]. We emphasize 
that the location of the saddle-node bifurcation is modified when the other nonlinear 
terms are taken into account, which can favour or not the reversal regime.
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The above phase approximation breaks down in the vicinity of the codimension-two 
point. Another type of bifurcation from stationary solutions to a limit cycle takes place 
in that case [45, 46]. It is a subcritical Hopf bifurcation that can be easily discrimi-
nated from the previous scenario; the limit cycle appears with a finite period whereas 
the period diverges when it is generated through a saddle-node bifurcation. Stationary 
and oscillatory solutions coexist in some parameter range, thus this second scenario dis-
plays bistability. Both bifurcation types, saddle-node and subcritical Hopf, have been 
reported for the reversals of the magnetic field in the VKS experiment [47].

We have thus found a simple mechanism to explain how the dipolar modes, observed 
for counter-rotating impellers at the same frequency F1 = F2 in the VKS experiment, 
first evolve to stationary solutions that also involve a larger and larger quadrupolar 
component when the frequency dierence |F1 − F2| is increased. Then, for a critical 
value of |F1 − F2|, a limit cycle is generated at finite amplitude and vanishing frequency 
by a saddle-node bifurcation.

3.5.3. Effect of fluctuations.  The eect of hydrodynamic fluctuations on reversals can 
be easily modeled by adding some noisy component to the coecients of equation (6). 
We consider the scenario of reversals generated through a saddle-node bifurcation. 
Before the bifurcation, the solutions of equation (8) correspond to mixed dipolar-quad-
rupolar modes. The stable (resp. unstable) ones originate from  ±D (resp.  ±Q) when 
f  =  0. These solutions are labeled  ±Bs and  ±Bu in figure 7. When a saddle-node bifur-
cation occurs for a larger value of f, the stable and unstable solutions collide by pairs 
and disappear. A limit cycle is generated that connects the collision point, Bc, with its 
opposite.

This provides an elementary mechanism for field reversals. First, in the absence of 
fluctuations, the limit cycle generated at the saddle-node bifurcation connects  ±Bc. This 
corresponds to periodic reversals. Slightly above the bifurcation threshold, the system 

Figure 7.  A generic saddle-node bifurcation in a system with the B → −B 
invariance: below threshold, fluctuations can drive the system against its 
deterministic dynamics (phase a). If the eect of fluctuations is large enough, this 
generates a reversal (phases b and c). Otherwise, an excursion occurs (phase a’).
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spends most of the time close to the two states of opposite polarity  ±Bc. Second, in the 
presence of fluctuations, random reversals can be obtained slightly below the saddle-
node bifurcation. Bu being very close to Bs, even a fluctuation of small intensity can 
drive the system to Bu from which it can be attracted by  −Bs, thus generating a rever-
sal. Adding a noisy component to the coecients of equation (6), we obtain random 
reversals displayed in figure 8 (left). The system spends most of the time close to the 
stable fixed points  ±Bs. We observe in figure 8 (right) that a reversal consists of two 
phases. In the first phase, the system evolves from the stable point Bs to the unstable 
point Bu (in the phase space sketched in figure 7). The deterministic part of the dynam-
ics acts against this evolution and the fluctuations are the motor of the dynamics. This 
phase is thus slow. In the second phase, the system evolves from Bu to  −Bs, the deter-
ministic part of the dynamics drives the system and this phase is faster.

The behavior of the system close to Bs depends on the local flow in phase space. 
Close to the saddle-node bifurcation, the position of Bs and Bu defines the slow direc-
tion of the dynamics. If a component of Bu is smaller than the corresponding one of Bs, 
that component displays an overshoot at the end of a reversal. In the opposite case, 
that component will increase at the beginning of a reversal. For instance, in the phase 
space sketched in figure 7, the component D decreases at the end of a reversal and the 
signal displays an overshoot. The component Q increases just before a reversal.

For some fluctuations, the second phase does not connect Bu to  −Bs but to Bs. It is 
an aborted reversal or an excursion in the context of the geodynamo. Note that dur-
ing the initial phase, a reversal and an excursion are identical. In the second phase, 
the approaches to the fixed point dier because the trajectory that links Bu and Bs is 
dierent form the trajectory that links Bu and  −Bs. In the case of figure 7, the dipole 
displays an overshoot at the end of a reversal and reaches smaller values during an 
excursion (see figure 8 right). By contrast the quadrupole exceeds its quasi-stationary 
value at the beginning of a reversal and reaches larger values during an excursion.

The dipolar and quadrupolar components of the magnetic field have been measured 
in the VKS experiment [49]. The results have been found in good agreement with the 
predictions of the present model. When the dipole reverses, part of the magnetic energy 

Figure 8.  Left: reversals of the magnetic field modelled by (6) with an extra noise 
term that takes into account the eect of the turbulent fluctuations. Right: zoom 
on reversals and excursions.
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is transferred to the quadrupole. Reversals begin with a slow decay of the dipole fol-
lowed by its fast recovery with the opposite polarity together with an overshoot. The 
decay rates of the dipolar and quadrupolar modes have been also measured in the VKS 
experiment [50]. It has been confirmed that reversals of the magnetic field are observed 
only when their bifurcation thresholds are close enough. Finally, a direct numerical 
simulation of the dynamo generated by a flow driven in a sphere by two counter-rotat-
ing co-axial propellers [51] has reproduced the main dynamical features of the VKS 
experiment. Reversals of the axial dipole occur only when the propellers are rotated 
at dierent rates. When the magnetic Prandtl number is small enough, they involve 
an axial quadrupole and the dynamics of the dipolar and quadrupolar modes during a 
reversal is similar to the one observed in the experiment.

3.6. Geomagnetic reversals

We have proposed a scenario for reversals of the magnetic field generated by dynamo 
action in the VKS experiment. When the impellers are counter-rotated at dierent 
frequencies, the flow breaks the invariance by rotation Rπ, and thus couples modes 
with dipolar and quadrupolar symmetries. This coupling drives the system close to a 
saddle-node bifurcation, such that even non-coherent turbulent fluctuations can gener-
ate a reversal. The scenario oers a simple and unified explanation for reversals of a 
vector field. In particular, it explains many intriguing features of the reversals of Earth 
magnetic field [48]. In that case, dipolar and quadrupolar modes are coupled when the 
flow in the core breaks the equatorial symmetry. The most significant output of the 
model is that it predicts specific characteristics observed both in VKS experiment as 
well as in palaeomagnetic records. It also explains recent numerical simulations of the 
geodynamo that have pointed out the importance of hydrodynamic symmetry breaking 
during reversals [52, 53]. A lot of other models, proposed to describe the reversals of 
the magnetic field of the Earth, are reviewed in [54].

4. Two-dimensional turbulence forced in a confined domain

4.1.  Introduction

Experiments on nearly two-dimensional flows generated in a thin layer of fluid by 
a spatially periodic forcing, often referred to as Kolmogorov flows, have been first 
performed to study the generation of large scale flows [55, 56] and the properties of 
two-dimensional turbulence [57–60]. These flows have been modeled using the two-
dimensional Navier-Stokes equation with an additional term describing fluid friction 
on the bottom boundary of the fluid layer. Thus, besides the Reynolds number, Re, a 
second dimensionless parameter, Rh, characterizes the ratio of the inertial term to fluid 
friction (see section 4.2 for a detailed description).

In the case of two-dimensional confined turbulent flows, it has been predicted [61] 
and observed [57, 58] that the inverse cascade of energy either leads to an homogeneous 
turbulent flow displaying a wide range of wave numbers k with a k−5/3 scaling law, or 
to a condensate regime that results from an accumulation of kinetic energy in the mode 
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of the fluid layer with the lowest wavenumber. The transition between the two regimes 
depends on the importance of large scale friction, i.e. on the value of Rh. In the pres-
ence of friction, the inverse cascade stops at a length scale lI. When Rh increases, lI 
reaches the size of the fluid layer L and energy accumulates at the lowest wave number, 
thus leading to a dominant large scale circulation.

We will study here the transitions that occur within the turbulent regime when 
Rh is increased with Re � Rh, starting from a turbulent state with a Gaussian large 
scale velocity observed for intermediate values of Rh ∼ 10. We first observe that the 
probability density function (PDF) of the large scale velocity changes from Gaussian to 
bimodal when Rh is increased. Above a critical value Rha, we show that the PDF can 
be fitted by the superposition of two symmetric Gaussians with a separation between 
their mean values increasing like 

√
Rh− Rha  and a nearly constant standard deviation. 

The bimodality becomes more and more pronounced as Rh is increased and is related 
to random reversals of the large scale circulation. The average waiting time between 
successive reversals becomes longer and longer and a condensed regime with no rever-
sal is finally observed above Rh = Rhc. Therefore, the regime with random reversals 
of the large scale circulation is located in parameter space between the condensed 
state and the turbulent regime with Gaussian large scale velocity. This scenario has 
been observed both in experiments [62] as well as in numerical simulations of the two-
dimensional Navier-Stokes equation with large scale friction [63].

4.2. Experimental set-up and dimensionless parameters

A thin layer of liquid metal (Galinstan) of thickness h = 2 cm, is contained in a square 
cell of length L = 12 cm and is submitted to a uniform vertical magnetic field up to 
B0 � 0.1 T. A DC current I (0–200 A) is injected at the bottom of the cell through an 
array of 2× 4 electrodes (diameter d = 8mm flush to the bottom of the fluid layer). 
Other experiements have also been performed using mercury and an array of 6× 6 
electrodes to drive the flow. A sequence of transitions similar to the one described here 
for Galinstan, has been observed. The current density j has a radial component above 
each electrode so that the associated Lorentz force density fL = j×B0 creates a local 
torque. This forcing therefore drives a periodic array of counter-rotating vortices (see 
[64] for a more detailed description of the experiment).

In addition to h, L, B0 and I, the relevant physical parameters are the fluid density 
ρ = 6.44 kg·m−3, its viscosity ν = 3.72 10−7 m2·s−1, its electrical conductivity σ = 3.46 106 
S·m−1 and the magnetic permeability of vacuum µ0. Four independant dimensionless 
numbers can therefore be constructed. However two of them can be ignored since the 
magnetic field is strong and the flow speed is small. More precisely, in the limit of large 
Hartmann number Ha = hB0[σ/(ρν)]

1/2 ∼ 102 and small magnetic Reynolds number 
Rm = σµUcL ∼ 10−2 (with Uc the characteristic speed of the flow), the velocity field is 
nearly two dimensional, and its vertical average satisfies the two dimensional Navier-
Stokes equation with an additional linear damping term −v/τH with τH = h2/(νHa) [65].

This quasi-2D flow depends on two dimensionless numbers, e.g. the Reynolds num-
ber Re = UcL/ν and Rh = UcτH/L which is the ratio of inertia to linear friction. For 
large Re and Rh, the characteristic velocity Uc is set by a balance between inertia and 
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the Lorentz force per unit mass and reads Uc =
√

IB0/(ρh). The ratio Re/Rh, inde-

pendent of the injected current, is equal to Ha(L/h)2 ∼ 104. By changing I we vary Rh 
between 1 and 50. Since viscous dissipation becomes ecient at scales smaller than 

l = L
√

Rh/Re ∼ 10−3 m, dissipation at large scale is mainly due to the friction term. It 

follows from these order of magnitude estimates that Rh is the relevant control param
eter for the large scale dynamics, which is well verified experimentally [64].

The large scale velocity is measured by the potential dierence between a pair of 
electrodes in the external magnetic field [66]. One of the electrodes is located in the 
middle of the cell and the other one close to the lateral wall, 5 mm away from it. The 

flow induces an electromotive force ∆V =
∫
L/2

(u×B0).dl � φLB0/h where L/2 is the 

distance between the two electrodes and φL is the flow rate between the center and the 
wall. From now on, we consider the spatially averaged velocity normalized by Uc, i.e. 
V = 2φL/(hLUc), which is therefore the large scale velocity coarse-grained on size L/2. 
Local velocity measurements have been also performed using Doppler acoustic velocim-
etry. Their spatial average compares well with measurements made using the potential 
dierence between two electrodes [64].

A summary of the evolution of the velocity field is presented in figure 9 together 
with pictures of the flow when Rh is increased. For Rh � 1.55, the forcing drives a 
laminar flow made of an array of 8 counter-rotating vortices. The large scale veloc-
ity vanishes as expected from the symmetries of the forcing. This linear response to 
the forcing becomes unstable when Rh is increased above 1.55: a stationary pitchfork 
bifurcation occurs first, for which the streamlines of one of the two pairs of diagonal 

Figure 9.  Top: pictures of the flow as a function of Rh. From left to right: laminar 
flow, first bifurcation, chaotic flow, turbulent flow with moderate large scale flow, 
turbulent flow with strong large scale flow (condensate). Bottom: sketch of the 
PDF of large scale circulation. Symmetry breaking indicates that depending on 
the initial conditions one of the two states (i.e. one of the two peaks of the PDF) 
will be observed.
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vortices merge, leading to the appearance of a large scale circulation which breaks the 
planar symmetries of the forcing. This regime is followed by two successive Hopf bifur-
cations for Rh = 1.7 and Rh = 2. The resulting quasiperiodic regime becomes unstable 
for Rh = 2.6 and displays a transition to chaos via intermittency. This chaotic attractor 
merges with the symmetric one through a crisis and a statistically symmetric attrac-
tor is observed above Rh � 3.1. For Rh ∼ 10, a turbulent regime that involves random 
motion of interacting vortices of dierent sizes is reached. The planar symmetries are 
statistically restored and the PDF of the large scale velocity is Gaussian.

4.3. Turbulent transitions at the edge of the regime with large scale flow reversals

For Rh slightly below Rha � 11, the amplitude of the large scale circulation fluctuates 
around zero. The next transition is related to the appearance of coherent states where 
the flow maintains its direction for long duration. Such events are visible in figure 10.

We want to quantify this transition using some kind of order parameter as done 
for bifurcations of stationary or time periodic flows. This is not straightforward as the 
basic state is already turbulent. We thus rely on statistical properties of the signal and 
first on the Kurtosis of the large scale velocity (〈V 4〉/〈V 2〉2). We observe that a trans
ition occurs for Rha � 11. The large scale velocity is Gaussian (K  =  3) for Rh � Rha 
and becomes non Gaussian above Rha. K decreases linearly from 3 to 2 when Rh is 
increased from 11 to 30 and then stays roughly constant when Rh is increased further.

To obtain a more precise description of the bifurcation, we have to consider the 
PDF of V. This can be technically dicult because any imperfection would bias the 
system even slightly toward one direction of rotation (i.e. one sign of V). Several analy-
ses presented hereafter, in particular involving fits, are highly sensitive to any asym-
metry of the system. For such analyses, we restrict to experiments for which the system 
is well equilibrated and the distributions are symmetrical.

As displayed in figure 11, the shape of the PDF changes with Rh. It is close to 
a Gaussian at Rh = 12, it is flatter at its center at Rh = 14 and, at Rh = 20, it is 
bimodal with a local minimum at V  =  0. The evolution of the PDF traces back to the 
modification of the time series of V: the appearance of non zero temporary attractive 
states is responsible for the bimodal structure of the PDF.

Figure 10.  Time series of the large scale flow for Rh = 20.
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The evolution of the shape of the PDF can be captured using the following model. 
We consider that it is the sum of two Gaussians of width σ and centered at  ±dX. We 
write

P [V ] = (2
√
2πσ)−1(exp(−(V − dX)2/(2σ2))

+ exp(−(V + dX)2/(2σ2))).
�

(9)

For Rh below Rha a single Gaussian provides a good fit to the PDF, and this corre-
sponds to dX = 0. For larger Rh, we extract dX and σ from best fits of the whole PDF. 
They are displayed in figure 12 (left). Note in particular that both the center and the 
tails of the PDF are well fitted by equation (9). The standard deviation σ of each PDF 
remains nearly constant, whereas its center, dX, increases with Rh. As displayed in the 
insert of figure 12 (left), this behavior is compatible with a power law (Rh− Rha)

1/2. As 
often when trying to extract critical exponents, we note that due to the error bars, our 
measurements do not exclude values of the exponent close to but dierent from 1/2.

The PDF becomes bimodal at a larger value Rhb � 17. This corresponds to dX = σ, 
the Rayleigh criterion for separating two lines in an optical spectrum. This secondary 
transition of the PDF, associated with the appearance of bimodality, is similar to the 

Figure 12.  Left: parameter dX (�) and σ (°) of equation (9) as functions of Rh. 
Insert: same data, dX2 as a function of Rh. Right: parameter a (°) and b (�) of 
equation (10) as functions of Rh.

Figure 11.  PDF of the amplitude of the large scale velocity for (from left to right) 
Rh = 12, 14, 20. Symbols are experimental data. The blue continuous curve is 
equation (9), the sum of the two gaussians displayed with magenta dashed curves. 
The green dash-dotted curve is equation (10). For Rh = 12, the two gaussians are 
very close to each other, so that the whole PDF is nearly gaussian. It becomes 
flatter close to V  =  0 at Rh = 14 and it is bimodal at Rh = 20.
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one of the free-energy in the context of second-order phase transitions in the model of 
Landau. Led by this analogy, in the vicinity of the transition, we model the PDF as

P [V ] ∝ exp (aV 2 + bV 4).� (10)

We emphasize that this model is restricted to small values of V (it is not expected to 
model the tails of the PDF). Landau’s assumption is that a varies linearly in the control 
parameter and changes sign at the transition while b remains roughly constant.

Extracting the values of a and b directly from the PDF results in large error bars 
and numerical values that strongly depend on the range over which the fit is achieved 
and on the possible asymmetry of the PDF. This is not the case with the following 
data treatment : equations (9) and (10) are expanded close to V  =  0 and then a and b 
are expressed as functions of σ and dX. The obtained values of a and b are displayed 
in figure 12 (right). a increases linearly with Rh and changes sign in the vicinity of Rhb. 
This corresponds to the change of concavity of the PDF at V  =  0, and the appearance 
of two non-zero maxima. b is very small below Rhb, in agreement with the Gaussian 
behavior of the PDF. It becomes negative when Rh increases. As displayed in figure 11, 
equation (10) is a good fit of the PDF only for small values of V: it does not describe 
the tails of the PDF.

Therefore, although equation (10) seems a more natural description for the trans
ition of the PDF, it provides a less accurate fit than equation  (9) that is also valid 
for the tails of the velocity distribution. Equation (10) would be obtained for a sys-
tem described by a free-energy proportional to −aV 2 − bV 4 and subject to additive 
fluctuations. In contrast equation (9) is expected if V is the sum of a constant veloc-
ity  ±dX and random fluctuations of constant energy.

When Rh is further increased, the value of the PDF close to V  =  0 decreases. 
This corresponds to the large scale circulation becoming more and more stable, and 
the reversals between these two directions of the flow becoming less and less frequent 
(figure 13). Ultimately, no reversals are observed on the maximum measurement time 
(set by the stability of the experiment). The obtained PDF becomes asymmetric and is 
peaked close to the sign of rotation that is selected initially.

4.4. Discussion

We have studied the dierent bifurcations that the large scale flow undergoes. At small 
Rh, a sequence of bifurcation drives the system from zero large scale circulation to a 
steady non-zero one, then to a time-periodic state followed by a quasi-periodic one. 
When increasing Rh further, the system becomes chaotic and explores successively 
positive and negative values of the large scale circulation.

Other bifurcations then occur over a fluctuating background. Bifurcations in that 
context are by far less documented than bifurcations occurring over a steady or time-
periodic state. Relevant quantities are statistical ones, such as moments or the PDF of 
the variable.

The PDF undergoes three bifurcations as Rh increases. First, it becomes non 
Gaussian, with a Kurtosis departing from 3. The whole PDF is then well described 
by the sum of two non-centered Gaussians. The distance between the center of the 
Gaussian increases while their standard deviation remains roughly constant, so that a 
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second bifurcation occurs: the PDF becomes bimodal. We can describe this phenom
enon using an analogy with Landau’s theory: the behaviors of the parameters a and 
b follow Landau’s assumption, which was not obvious since this theory fails in low 
dimension when spatial fluctuations are of importance. Here the unstable mode is at 
large scale so that spatial coupling is not relevant.

This evolution is associated in the time series with the appearance of long-lived 
coherent states during which the circulation does not change sign. The time series can 
then be described as random reversals between these two coherent states. We had stud-
ied in detail the spectral properties of these time series [35]. For Rh between 10 and 
30, the time series display 1/f noise. This behavior results from the distributions of the 
duration between sign changes that are heavily tailed. We note that 1/f fluctuations 
occur for 10 < Rh < 30. They are therefore observed for Gaussian, non Gaussian and 
bimodal PDF.

At even larger Rh, the mean duration between sign changes diverges. When it is 
larger than the duration of stability of the experiment (several hours), the observed 
PDF, measured over this maximum duration, will be restricted to positive or negative 
values (depending on the initial condition). We have thus observed in this experiment, 
two dierent scenarios that describe the disappearance of a regime of reversals. At large 
Rh, reversals become less and less likely and eventually are no longer observed. The 
system remains stuck in one of the two states. At low Rh, reversals disappear because 
the time series are so fluctuating, that one cannot identify anymore the two states 
connected by reversals. We expect that these two possible ways to destroy or create 
reversals are generic and are observed in other contexts [54, 67].

Random transitions between two-dimensional turbulent flows with mean flows of 
dierent geometries have been also studied. In the framework of statistical mechanics 
of the two-dimensional Euler equation  [68, 69], it has been shown that depending on 
the aspect ratio of the flow domain, the most probable flow can bifurcate, for instance 
from vortices to jets. Numerically integrating the two-dimensional Navier-Stokes equa-

tion with small viscosity ν, small friction coecient 1/τH and a noisy forcing proportional 

to 
√

(1/τH), random transitions between the two mean flows have been observed [70].

Figure 13.  Reversals of the large scale velocity field in a layer of mercury 
driven by an array of 6× 6 electrodes. Time series of the velocity V/Vc where 
Vc = (BI/(ρa))1/2 � 4.28 cm · s−1 for Rh = 37.7 and Re = 45 000. The two curves 
correspond to measurements located on opposite sides of the cell. The velocity is 
averaged between one centimeter and three centimeters away from the lateral wall.
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Another method to capture the dynamics of random switching between dierent 
mean flows consists of integrating the Euler equation truncated at a maximum wave 
number. We recently showed that the transitions within the turbulent regime of 
Kolmogorov flows described above can be all captured using the truncated Euler equa-
tion [71]. The bifurcation parameter in this framework is related to the initial condi-
tions. More precisely, it is a length scale given by the square-root of the energy to the 
enstrophy of initial conditions. Physically, this is the length scale l0 at which the inverse 
cascade stops. l0 is controlled by the large scale friction, i.e. Rh in the full Navier-Stokes 
equation. Increasing l0, we successively observe the turbulent regime with a Gaussian 
PDF, the transition to a bimodal velocity PDF related to reversals and finally the con-
densed state in agreement with the experiments or simulations of the two-dimensional 
Navier-Stokes equation when Rh is increased. In addition, the truncated Euler equa-
tion is a dynamical system that follows the Liouville theorem. It has been found that 
its microcanonical distribution correctly predicts the PDF of the large scale velocity 
and its transitions [71].

Let us finally mention that random reversals of a large scale flow have been recently 
studied in Rayleigh–Bénard convection in square or parallelepipedic containers [72–75]. 
They occur for dierent boundary conditions and in an extended range of Rayleigh 
Ra and Prandtl Pr numbers [73]. Reversals of the large scale flow involve interac-
tion between dominant modes with dierent symmetries [72, 74, 75] as in the case of 
reversals of the magnetic field. It has been shown that, depending on their symmetries, 
the modes of the velocity and temperature fields either reverse or remained unchanged 
when the large scale flow reverses [74], some feature also observed for Kolmogorov 
flows. The transition from non reversing to reversing regime has not been studied in 
detail. However, it has been shown that reversals are observed for intermediate val-
ues of Ra and disappear both for small and large Ra [73]. This reminds reversals in 
Kolmogorov flows that are observed only for intermediate values of Rh. The mean 
waiting time between successive reversals also displays a similar trend: it increases by 
more than two orders of magnitude when Ra is increased. Therefore reversals appear 
with a finite mean frequency at low Ra and disappear with vanishing frequency at high 
Ra. It would be interesting to analyse these two transitions in order to check the simi-
larities with reversals observed in Kolmogorov flows.

5. Conclusion

We have studied several experimental configurations displaying bifurcations on a 
strongly turbulent background that illustrate dierent possible behaviors. The dynamo 
threshold observed in the VKS experiment is qualitatively aected by the existence of 
non axisymmetric turbulent fluctuations. These fluctuations modify the geometry of 
the large scale magnetic field which is generated via the dynamo bifurcation. They also 
aect the dynamics of the magnetic field above threshold that involve random bursts 
and a related 1/f-type low frequency spectrum. Somewhat surprisingly, turbulent 
fluctuations play a simple role for reversals of the magnetic field. Their dynamics can 
be captured with a low dimensional dynamical system that describes the interaction 
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of dipolar and quadrupolar modes. The role of turbulent fluctuations is just to trigger 
random reversals slightly below the deterministic transition. The deterministic rever-
sal trajectories in phase space are only weakly aected by turbulent fluctuations. The 
robust character of the low dimensional modeling certainly relies on the proximity of 
the bifurcation threshold of dipolar and quadrupolar modes and on the smallness of the 
magnetic Prandtl number that result in strongly dierent time scales for the magnetic 
and velocity fields. It has been indeed observed that the morphology of the reversals 
is changed when the magnetic Prandtl number is increased and becomes of order one 
[51]. They involve more modes because of the stronger coupling between the velocity 
and magnetic fields.

Bifurcations between dierent turbulent regimes have been also observed in two-
dimensional turbulence in a confined domain. This purely hydrodynamic problem is 
more complex than the magnetohydrodynamic one since it is less obvious to disen-
tangle the bifurcating modes from the turbulent background. However, the transitions 
can still be defined by considering the symmetries broken or not by the turbulent state. 
We have observed a transition from a homogeneous turbulent flow with a Gaussian 
velocity PDF that has all the symmetries of the experimental set-up, to a flow with a 
bimodal PDF that involves a reversal dynamics of the large scale modes. In contrast to 
the magnetic case, this transition involves a lot of modes and no time scale separation 
(all the odd modes reverse when the large scale flow reverse [63]). Another transition 
is observed from the reversal regime to the condensate state which breaks the mirror 
symmetry of the driving device. In the vicinity of this transition, random reversals of 
the large scale flow become rare and we can expect that a low dimensional dynamical 
system involving a few large scale modes could describe the dynamics [67] in a similar 
way as for reversals of the magnetic field. However, in contrast to the magnetic field, 
it is not possible to identify a few modes which are close to some bifurcation threshold 
compared to the others that are damped and therefore can be eliminated. In other 
words, it is not clear how to disentangle the relevant modes from the others. Modeling 
these hydrodynamic transitions using the truncated Euler equation looks more promis-
ing and it seems worth using this method to study other turbulent flow configurations.
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