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Binding sites for the yeast Pho4p transcription factor
(Source : Oshima et al. Gene 179, 1996; 171-177)

Alignment of transcription factor binding sites

Gene Site Name Sequence Affinity

PHO5 UASp2 ---aCtCaCACACGTGGGACTAGC- high

PHO84 Site D ---TTTCCAGCACGTGGGGCGGA-- high

PHO81 UAS ----TTATGGCACGTGCGAATAA-- high

PHO8 Proximal GTGATCGCTGCACGTGGCCCGA--- high

PHO5 UASp3 --TAATTTGGCATGTGCGATCTC-- low

PHO84 Site C -----ACGTCCACGTGGAACTAT-- low

PHO84 Site A -----TTTATCACGTGACACTTTTT low

group 1 consensus ---------gCACGTGggac----- high-low

PHO5 UASp1 --TAAATTAGCACGTTTTCGC---- medium

PHO84 Site E ----AATACGCACGTTTTTAATCTA medium

PHO84 Site B -----TTACGCACGTTGGTGCTG-- low

PHO8 Distal ---TTACCCGCACGCTTAATAT--- low

group 2 consensus --------cgCACGTTt-------- med-low

Degenerate
consensus

---------GCACGTKKk-------



 Pos 
Base 

1 2 3 4 5 6 7 8 9 10 11 12 

A 1 3 2 0 8 0 0 0 0 0 1 2 
C 2 2 3 8 0 8 0 0 0 2 0 2 
G 1 2 3 0 0 0 8 0 5 4 5 2 
T 4 1 0 0 0 0 0 8 3 2 2 2 
   V C A C G T K B   
 

Binding site for the yeast Pho4p transcription factor
(Source : Transfac matrix F$PHO4_01)

Regulatory sites : matrix description

Alignment matrix



Position-weight matrix

Prior  Pos 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

0.33 A -0.79 0.13 -0.23 -2.20 1.05 -2.20 -2.20 -2.20 -2.20 -2.20 -0.79 -0.23 

0.18 C 0.32 0.32 0.70 1.65 -2.20 1.65 -2.20 -2.20 -2.20 0.32 -2.20 0.32 

0.18 G -0.29 0.32 0.70 -2.20 -2.20 -2.20 1.65 -2.20 1.19 0.97 1.19 0.32 

0.33 T 0.39 -0.79 -2.20 -2.20 -2.20 -2.20 -2.20 1.05 0.13 -0.23 -0.23 -0.23 

1 Sum -0.37 -0.02 -1.02 -4.94 -5.55 -4.94 -4.94 -5.55 -3.08 -1.13 -2.03 0.19
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A alphabet size (=4)
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
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Reference: Hertz (1999). Bioinformatics 15:563-577.



Information content

Prior  Pos 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

0.33 A -0.12 0.05 -0.06 -0.08 0.97 -0.08 -0.08 -0.08 -0.08 -0.08 -0.12 -0.06 

0.18 C 0.08 0.08 0.25 1.50 -0.04 1.50 -0.04 -0.04 -0.04 0.08 -0.04 0.08 

0.18 G -0.04 0.08 0.25 -0.04 -0.04 -0.04 1.50 -0.04 0.68 0.45 0.68 0.08 

0.33 T 0.19 -0.12 -0.08 -0.08 -0.08 -0.08 -0.08 0.97 0.05 -0.06 -0.06 -0.06 

1 Sum 0.11 0.09 0.36 1.29 0.80 1.29 1.29 0.80 0.61 0.39 0.47 0.04
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A alphabet size (=4)
w matrix width (=12)
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
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Reference: Hertz (1999). Bioinformatics 15:563-577.
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Nalignments = C2s L−w+1( )
occe =  8.8*1038

Pattern discovery: typical dimensionality

 Typical case: GAL genes
 s 6 genes

 occe expected pattern occurrence: 12

 L 800 bp upstream sequences
analysis on both strands

 w matrix width  = 25

 Let us assume that
 A signal can be found on any strand

 Each sequence contains one or several occurrences



Matrix-based pattern discovery

 Problem: the number of possible matrices is too large to
be tractable

 Approaches: define heuristics to extract a matrix with
highest possible information content (lowest probability to
be due to random effect) → optimization techniques

ν Two approaches working with regulatory sequences
θ greedy algorithm

θ gibbs sampling



Pattern discovery: greedy algorithm
(consensus, by Jerry Hertz)

1) Create all possible matrices with two
sequences

2) Retain the most significant matrices
only

3) Find best match in next sequence and
incorporate it into the matrix

4) Iterate from (2) untill all sequences
are incorporated

5) Return the most significant matrices

A 1 0 0 1 0 2
C 0 1 1 1 0 0
G 1 0 2 0 0 0
T 1 2 0 1 3 1

A 1 0 0 1 0 1
C 0 0 1 1 0 0
G 0 0 1 0 0 0
T 1 2 0 0 2 1



Greedy algorithm: weaknesses

 Returns multiple matrices, but they are generally slight
variants of the same pattern

 Time-consuming

 Sensitive to sequence ordering in the input data set

 Takes into account prior residue frequencies, but not
oligonucleotide bias

 References
 Hertz et al. (1990). Comput Appl Biosci 6(2), 81-92.

 Hertz, G. Z. & Stormo, G. D. (1999). Bioinformatics 15(7-8), 563-
77.

 Stormo, G. D. & Hartzell, G. W. d. (1989). Proc Natl Acad Sci U
S A 86(4), 1183-7.



Pattern discovery: The Gibbs sampler
(gibbs motif sampler, by Andrew Neuwald)

1) Initialization
o select a random set of

sites in the sequence
set

o Create a matrix with
these sites

2) Sampling
o Isolate one sequence

from the set, and score
each site of the matrix

o Select one “random”
site, with a probability
proportional to the score
(Ax, see next slide).

3) Predictive update
o Replace the old site with

a new site, and update
the matrix

4) Iterate steps 2 and 3 for
a fixed number of cycles

Pretend you know the motif, this might become true

A 1 0 1 1 1 0
C 0 1 1 2 1 0
G 2 1 1 0 0 0
T 1 2 1 0 2 3

After N iterations

Found

Not found

Predictive update step

Sampling step

Update the matrix

Build a matrix with selected sites

Sample a site on 
discarded sequence



Gibbs sampling - scoring scheme
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i index for the site
j index for the residue
ci,j counts for residue j at site i
N number of sequences
bj pseudo-count for residue j
B sum of pseudo-counts

W width of the matrix
R number of distinct residues
pj prior probability for residue j
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Ax =Qx /Px
Ax weight of segment x

(used for random selection)
Qx probability to generate segment x

according to pattern probabilities qij
Px probability to generate segment x

according to the background
probabilities  pi



Stochastic vs deterministic behaviour

 Why to select a random site ?
 A deterministic behaviour would consist in selecting, at each

iteration, the highest scoring site (the one which matches best
the matrix)

 This would give poor results because the program is attracted
too fast towards local optima.

 Stochastic behaviour
 At each iteration, the next site is selected in a stochastic rather

than deterministic way: the probability of each site to be selected
is proportional to its scoring with the matrix

 This allows to avoid weak local optima, and converge towards
better solutions.



Gibbs sampling: optimization of information content

source: Lawrence et al.(1993). Science 262(5131), 208-14.
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Gibbs sampling: strength

 Fast

 Probabilistic description of the patterns

 Can run with proteins or DNA



Gibbs sampling: weaknesses

 Returns a different result at each run

 Can be attracted by local maxima
 solution: run repeatedly and check which motifs come often

 The original Gibbs sampler takes into account prior
residue frequencies, but not oligonucleotide bias
θ → in yeast, often returns A/T-rich regions

 This is however improved in some versions of the Gibbs
samplers which use Markov chains for estimating the bacground
probabilities (eg the MotifSampler developed by Gert Thijs)

 No threshold on pattern significance
θ → frequent false positive



Improvements of the gibbs sampler

 Neuwald 1993
 Phase shifting

 Neuwald 1995
 0 or several matches per sequence

 column sampling (spacings can be admitted between columns of
the matrix)

 Roth (1998) : AlignACE
 Specific implementation for DNA (double strand is treated)

 post-filtering of motifs according to number of matches in the
genome, in order to discard frequent motifs

 Lui (2000), Thijs (2000)
 Markov-chain based calculation of background probabilities



References

 Original Gibbs sampler
 Lawrence et al. (1993). Science 262(5131), 208-14.

 Neuwald et al. (1995). Protein Sci 4(8), 1618-32.

 Neuwald et al. (1997). Nucleic Acids Res 25(9), 1665-77.

 MotifSampler
 Thijs et al. (2002). J.Computational Biology 9:447-464.



AlignACE, ScanACE and CompACE
gibbs sampler tools for regulatory sequence analysis

 Single/both strands

 Return multiple matrices, with iterative masking preventing slight
variants of the same pattern

 Matrix clustering

 A posteriori evaluation of pattern significance, by analysing the
whole-genome frequency of the discovered matrix.

 References
 Roth et al. (1998). Nat Biotechnol 16(10), 939-45.

 Tavazoie et al. (1999). Nat Genet 22(3), 281-5.

 Hughes et al. (2000). J Mol Biol 296(5), 1205-14.

 McGuire et al. (2000). Genome Res 10(6), 744-57.



Matrix-based pattern discovery: strengths

 More specific description of degeneracy than with string-
based approaches (frequency of each residue at each
position).

 The resulting pattern is more accurate than a string for
pattern matching (more sensitive scoring scheme)



Matrix-based pattern discovery: weaknesses

 The results strongly depend on parameter setting. Two essential
parameters have to be selected :
 Matrix width

 Expected number of sites

 The best parameter may change from gene family to gene family.
Choosing the appropriate setting requires experience.

 Impossible to evaluate all possible alignments

 Does not take into account higher-order correlation between
adjacent positions (oligonucleotide bias)


