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Abstract. The maximum entropy principle (MEP) is a very useful working hypothesis in
a wide variety of inference problems, ranging from biological to engineering tasks. To better
understand the reasons of the success of MEP, we propose a statistical-mechanical formulation
to treat the space of probability distributions constrained by the measures of (experimental)
observables. In this paper we first review the results of a detailed analysis of the simplest case
of randomly chosen observables. In addition, we investigate by numerical and analytical means
the case of smooth observables, which is of practical relevance. Our preliminary results are
presented and discussed with respect to the efficiency of the MEP.

1. Introduction
The maximum entropy (ME) principle, which was proposed by Jaynes in 1957 to rederive
statistical mechanics from an information-theoretic viewpoint [1], recently stands out as a
useful working hypothesis in a wide variety of inference problems [2, 3, 4, 5, 6, 7, 8, 9, 10].
However, a better comprehension of why and when ME applies is still needed. In this respect,
we have recently introduced a statistical-mechanical formulation, in which we treated the space
of all probability distributions satisfying a set of moment-matching conditions [11]. Moment-
matching conditions were defined through the measured observables, and provided information
about the target distribution of interest. It was assumed in that work that the observables
were identically and independently distributed random variables, which enabled us to perform
analytical investigations and to get a precise quantitative characterization of the volume of the
space of probability distributions and of the distance between certain probability distributions
and the target one as the number of moment-matching conditions varies. An interesting, but
disappointed outcome of the analysis was that the ME distribution was not ‘closer’ to the target
distribution than most of the other distributions satisfying the conditions. It was however clear
that the failure of the ME principle was due to the irrealistic nature of the observable statistics.
In practical applications of the ME, indeed, the observables are not chosen randomly, but are
designed to represent some underlying features of the target distribution.

In the present paper, we try to relax the above randomization hypothesis. This strategy leads
us to introduce a bias in choosing observables. In particular, we consider the case of ‘smooth’
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observables, that is, taking values that cannot differ much between two nearby microscopic
configurations of the system. Though we have not been able to extend the detailed analysis of
[11] to this (much) more involved case, we report here some analytical and numerical results we
have recently obtained.

The organization of this paper is as follows. In the Sec. 2, we present our statistical-physics
framework, and discuss different distributions of observables (random and smooth); we also
give an overview of our previous results on the random case. In Sec. 3, we report numerical
calculations based on a Monte Carlo method in several different situations. In Sec. 4 we report
some attempts at solving the problem analytically. Last of all, we discuss our findings are their
possible implications for the ME. in the last Section.

2. Formalism and overview of results in the random observable case
2.1. Basic formulation
Let us consider a system described by configurations of N binary spins, s = {si = ±1}Ni=1, which
we call target system. The probability distribution of the target system, the target distribution,
is denoted by p̂s. Trial distributions, which we will fit based on the measurements of observables
(moments). will be generally written as ps.

We assume that a measurement gives a value of a linear combination of some moments of
the target distribution. Thus we can write a measurement of an observable {vs}s as∑

s

vsp̂s = v · p̂. (1)

where the summation runs over all the spin configuration and we introduce a vector notation
of the 2N dimension corresponding to all the spin configurations. The moment-matching (MM)
conditions for M observables {vµ}Mµ=1 are then written as

vµ · p = vµ · p̂, ∀µ. (2)

Those equations impose that the trial distribution p reproduces the measurements of the average
values observable vµ over the target distribution.

We are interested in the phase space of trial distributions constrained by the MM conditions
(2). To investigate this, we introduce the following probability distribution on trial distributions

ρ
(
p|Γ, E, {vµ}Mµ=1, p̂

)
=

1

V

∏
s

θ(ps)δ

(∑
s

ps − 1

)
exp

− 1

2E

M∑
µ=1

(vµ · (p− p̂))2 + ΓS(p)

 , (3)

where S(p) is the Shannon entropy whose mathematical expression is

S(p) = −
∑
s

ps log ps. (4)

The denominator V is the normalization factor, or the partition function,

V
(
Γ, E, {vµ}Mµ=1, p̂

)
=

∫ ∞
0

∏
s

dpsδ

(∑
s

ps − 1

)
exp

− 1

2E

M∑
µ=1

(vµ · (p− p̂))2 + ΓS(p)

 . (5)

The factor exp
(
− 1

2E

∑M
µ=1 (vµ · (p− p̂))2

)
corresponds to the MM conditions and E is the

tolerance against the error on the MM conditions. If p satisfies the MM conditions, the
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corresponding probability value ρ(p) is large, and small otherwise. Especially in the E → 0
limit, trial distributions exactly satisfying all the MM conditions are the only ones to ‘survive’
and to contribute to V . We call those distributions ‘good’ distributions.

All good distributions have an equal weight value of ρ at Γ = 0, but for large Γ � 0
good distributions with larger entropies are assigned larger weights. Hence Γ is a bias towards
distributions with large entropies. Studying the two extreme cases Γ = 0 and Γ → ∞, for
which only the ME distribution survives, we can compare typical good distributions and the
ME distribution. Actually, we observe some drastic changes for specific intermediate values of
Γ, which correspond to phase transitions; hence, the whole range of Γ > 0 is of interest.

2.2. Distribution of observables
We now need to specify how the observables {vµ}µ are chosen. In [11], we assumed the
observables were identically independently distributed (i.i.d.) Gaussian random variable

Prand(v) =
∏
s

1√
2π
e−

1
2
v2
s . (6)

The analysis of this random case, which is briefly reported in Section sec. 2.3, yields some
important notions and order parameters. However, it is unrealistic as the components of
observables are uncorrelated with each other. In particular, two configurations s and s′ differing
by a single spin, say, si, have totally uncorrelated observable values, vs and vs′ . This is clearly
not true for most systems: changing one among N spins generically does not affect dramatically
the system properties.

An inspiring idea comes from the Fourier transform in the spin-configuration space. Let us
consider an arbitrary function of spin configurations fs and the Fourier transform characterized
by a wavenumber vector of binary components k = {ki = 0, 1}Ni=1. The explicit expression of
the Fourier transform is

fk =
∑
s

(
1√
2N

N∏
i=1

skii

)
fs = wk · f , (7)

where we defined the s-component of wk to be equal to (
∏N
i=1 s

ki
i )/
√

2N . The modes {wk}k
constitute a complete orthogonal set, and thus any vector in the phase space can be expanded
on this set. Each mode has a physical meaning: a mode with a wavenumber k = |k| =

∑
i ki

corresponds to a k-spin multiplet. In particular, if fs is a probability distribution, fk is the
average value of the k-spin multiplet (divided by 1/

√
2N ).

If a random vector drawn from eq. (6) is expanded in the Fourier space, the corresponding
weights are statistically uniform on all the modes, which implies that the corresponding MM
condition includes correlations of very high-order multiplets of spins with relevant weights. This
is not natural because low-order multiplets are often considered to be more important than
high-order ones in a general situation. Actually in most of recent applications ranging from
biological to engineering problems [2, 3, 4, 5, 6, 7, 8, 9, 10], the ME models are constructed
based on observations of singlets and doublets, |k| = 1 and 2, of spins. Hence, a naive extension
from the random case to a more realistic situation is to bias the weights on some (low-|k|’s)
Fourier modes in generating observables.

A simple choice along the above idea is using the following distribution

P (v) = C exp

−1

2

∑
s,t

Mstvsvt

 , (8)
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instead of eq. (6). In the distribution above, the matrix Mst is chosen such to make sure that
components of the observable v corresponding to nearby configurations have similar values. In
other words, the presence of M should make the observable smooth over the configuration space.
Alternatively, and perhaps more simply, we may require that the Fourier expression of eq. (8)
becomes diagonal and the variance only depends on the absolute value of k = |k|

P (v) = C exp

{
−1

2

∑
k

v2
k

Vk

}
. (9)

Expression eq. (9) implies that the matrix entry Mst depends on s and t through the overlap∑
i siti only. If we choose Vk to be a rapidly-decreasing function of the modulus k, modes with

large k will be suppressed. There are many different ways to introduce a k-dependence in Vk.
We try several different expressions for Vk in the numerical studies reported in Section sec. 3.

2.3. Overview of results for random observables
We now briefly recall the results of [11] corresponding to the random case defined in eq. (6).
The average value of logarithm of V in the large-system-size limit can be computed with the
replica method (within the replica symmetric (RS) ansatz),

F = [log V ]rand = lim
n→0

1

n
log [V n]rand , (10)

where the square brackets [· · ·]rand denote the average over the observables (6). Our analysis
showed that F depends on the target distribution only through the entropy curve

σ(ω) =
1

N

∑
s

δ (ω − ωs) , (11)

where we assume the target distribution obeys an exponential scale for N � 1, i.e. that

ωs ≡ −
1

N
log p̂s, (12)

has a well-defined limit for N →∞. This assumption is true for common physical systems. We
give a typical shape of σ(ω) as the left panel of Fig. 1, which corresponds to the independent
spin model (ISM) with H = 0.5 as the target distribution

p̂ISM
s =

eH
∑
i si

(2 coshH)N
. (13)

The characteristic values of ω, ωk with k = 0, 1, 2, are defined by

dσ(ω)

dω

∣∣∣∣
ω=ωk

= k, (14)

and they are connected to certain phase transitions (see [11] for details of the transitions). These
characteristic values of ω separate the entropy curve in three regions (the rightmost region is
not relevant), each of which is called I, II, and III as shown in Fig. 1.

The analysis in the random case revealed that the following three order parameters are useful

Q({vµ}µ, p̂) ≡
∑
s

〈
(ps − p̂s)2

〉
, (15)

R({vµ}µ, p̂) ≡
∑
s

(〈ps〉 − p̂s)2 , (16)

D({vµ}µ, p̂) ≡ Q−R =
∑
s

(〈
p2
s

〉
− 〈ps〉2

)
, (17)
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Figure 1. (Left) The entropy curve of the ISM with H = 0.5. There are three characteristic
values of ωk with k = 0, 1, 2, each of which is defined as a tangential point of the slope k
(tangential lines are denoted by solid straight lines). (Right) A schematic diagram of the phase
space. The large circle represents the set of all good probability vectors. The shaded area
represents the typical fluctuating region of p. The target distribution exists apart from 〈p〉 by√
R. The ME distribution pME also exists somewhere inside the large circle.

where the angular brackets 〈· · ·〉 denote the average over ρ(p). The physical significance of each
order parameter is clear: Q measures the averaged square distance between p and p̂. R also
quantifies the distance between the target distribution and the averaged p and is similar to Q,
but R’s meaning is clearer since it does not include the fluctuation of p. On the other hand, D
purely measures the fluctuation of p around the averaged value. We depict the phase space of
good probability vectors with the order parameters in the right panel of Fig. 1.

The control and order parameters scale exponentially with N in the large N limit

M = eNα, Γ = eNγ , Q = eNq, R = eNr, D = eNd. (18)

Here we plot q, r and d of the ISM against α and γ in Fig. 2. Clearly q = r holds, which is

Figure 2. Plots of q, r and d against α at Γ = 0 (left) and against γ at a small value of α
(right). Dotted vertical lines denote the transition points.

always true in the random case. Our crucial observation about the ME principle is that q (or
r) does not depend on γ, that is, on the strength of the entropy bias at all as seen in Fig. 2,
which is the case for all values of α. This means that the distances from the target distribution
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to the ME one and to a typical (randomly chosen) ‘good’ distribution are equal. Thus the ME
does not help to infer the target distribution. This is the consequence of the random nature of
the observables.

An interesting finding in the analysis of the random case was the existence of the so-called
‘learning edge’. The learning edge ωE is the scale separating accurately inferred values of ωs (see
eq. (12)) from the ones which cannot be inferred: for target probability values with ωs ≤ ωE we
can infer those values, and for ωs > ωE we cannot. The learning edge is a strictly monotonically
increasing function of α (see Fig. 3 as an example for the ISM), whose behaviour reveals the
existence of phase transitions. When the learning edge takes values of ωk with k = 0, 1, 2, the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

α
1
=ω

1ω
Ε

α

ω
0

log 2
γ

O
2 2 1 1

I II III

II
ΜΕ

I
ΜΕ

log2

log2

III
ΜΕ

0

Figure 3. (Left) Plot of the learning edge ωE against α at Γ = 0 for the ISM with H = 0.5.
The dotted lines represent the transition points of the learning edge. At α = log 2, all the values
of target probabilities are learned, implying the learning edge is not well defined for α > log 2.
(Right) A shematic phase diagram of the random case. Each phase is named after the location
of the learning edge.

phase transitions occur. We call each phase by the location of the learning edge: if ωE < ω2

then the phase is I, and phases II and III are defend as well (see the left panel of Fig. 1). The
resultant phase diagram is given in the right panel of Fig. 3. In the phases subscripted by ME,
the order parameter d is dominated by the ME bias Γ in contrast to the phases without the
subscript.

An important finding of the calculation in the random case is that the marginal density of a
small number (compared to 2N ) of probabilities of configurations factorizes a product of single-
configuration probability densities ρ(p) ≈

∏
s ρs(ps). Unfortunately, this nice property, at the

origin of the existence of the learning edge, does not hold for the case of smooth observable,
which makes the analysis much more complicated.

3. Numerical studies
3.1. Algorithm for sampling the probability distribution space
We briefly summarize our Monte Carlo (MC) algorithm. We randomly change the probability
vector from p to p′ = p + ∆p in the phase space to perform sampling of the space of all
distributions. The change of the vector, ∆p, must satisfy the following conditions

Orthogonality (E = 0): ∆p · vµ = 0,∀µ.

Normalization:
∑

s ∆ps = ∆p · 1 = 0 where 1 = (1, 1, · · · , 1)t and the symbol t denotes the
transpose.
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Positivity: ps + ∆ps ≥ 0,∀s.

Combining the orthogonality with the initial condition p(0) = p̂, we see that the vector chosen
in this algorithm always satisfies the constraints vµ · p = vµ · p̂,∀µ, which is needed since we
are basically interested in E = 0. These orthogonality and normalization conditions restrict
the possible move directions. On the other hand, the positivity condition is maintained by
appropriately choosing the move width x. With a chosen move direction w, the minimum and
maximum values of x are written as

xmax = max
s

min

(
−ps
ωs

,
1− ps
ws

)
, xmin = min

s
max

(
−ps
ωs

,
1− ps
ws

)
. (19)

The intermediate values between these two bounds are randomly chosen with equal weight,
and thus the trial move becomes ∆p = xw. Finally, we calculate the entropy difference
∆S = S(p′)−S(p) and determines whether the move p→ p′ is accepted or not by the probability

paccept = min
(
1, eΓ∆S

)
. (20)

3.1.1. Observables drawn from the Fourier basis In the analytical treatment, we put v as
a random vector drawn from eq. (8), each component of which can take a continuous value.
However for numerical implementation, it is more convenient to choose observables from a set of
vectors constituting a complete orthogonal set, because the above orthogonal and normalization
conditions can be easily satisfied in that way.

We choose the Fourier basis as such a set. The random case corresponds to the situation where
all the modes (except for w0) are drawn uniformly at random. In the studies reported below, we
bias the weights of the Fourier modes based on the values of corresponding wavenumber k = |k|,
see eq. (9).

3.1.2. Lessons from the random case: equilibration and finite-size effects We define one MC
step by one trial of changing the probability vector p. As reported in [11], the total MC steps
for sufficient equilibration and sampling grow fast as the system size increases. For example
for N = 10, we need O(108) MC steps typically, which requires a couple of days. Due to this
expensiveness, we mainly run our simulations for sizes less than or equal to N = 10.

This system size might sound small, but our numerical simulation on the random case showed
that even for N = 10 numerical result could be quantitatively compared to the analytical one.
As a demonstration, we display the order parameters of the random case calculated by the MC
simulation for finite N in Fig. 4, which exhibits a clear indication of the phase transitions even
for size N = 10. This result in the random case provides a guide for simulating more general
cases. Our simulations given below are based on the equilibration criterion invented in the
random case, and we expect that the treated sizes N = 8 or 10 capture the behavior in the
large-size-system limit.

3.2. Exponentially-decaying weight and the smoothness parameter
Here we assume that each mode of the Fourier basis is chosen with a probability weight e−b|k|,
and we call b smoothness parameter. The pseudo code to construct the set of observables is as
follows:

(i) Prepare a set of Fourier modes consisting of all the modes except for |k| = 0. We call this
set “pool”. Similarly one prepares an empty set, called “observables”.

(ii) Calculate the normalization constant as Z =
∑

k∈pool e
−b|k|.

(iii) Choose one mode of the wavenumber vector k from the pool with probability pk = e−b|k|/Z
and put the chosen mode into the observables set. Remove the mode from the pool.
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Figure 4. Numerically-evaluated order parameters q (left) and d (right) of the ISM with
H = 0.5 plotted against α (left) and γ (right). Analytical predictions are given by black curves,
which are well consistent with the numerical data. Clear indication of the phase transition from
small to large Γ is seen in the right panel, and thus finite-size effects seem to be not so large.

(iv) Continue (ii)-(iii) until the size of the observables set becomes equal to M . At the end,
what is left in the pool is our set of of possible MC-move directions.

We have to remove w0 = 1/
√

2N from the beginning since it is connected to the normalization
condition and can neither be a nontrivial observable nor a MC-move direction. The
exponentially-decaying weight in (iii) corresponds to putting V −1

k = 2b|k| in eq. (9).

As for the target model, we adopt the Boltzmann distribution p̂s = e−βH/Z generated from
the p-spin Hamiltonian

H = −
∑

i1<i2<···<ip

Ji1i2···ipsi1si2 · · · sip , (21)

where we assume Ji1i2···ip is an i.i.d. random variable drawn from N
(

0, p!
Np−1

)
. Hereafter we

call this model p-spin model (pSM). Parameter p measures the “smoothness” of the target
distribution. In the large-p limit (after the large-N limit), this model converges to the
random energy model (REM)1. The REM is a completely non-smooth model and we expect
the smoothness of observables will not help inference of this model at all. On the other hand,
if p is enough small, we expect that the ME distribution at large values of b preferentially has
lower-spin multiplets in the effective Hamiltonian and matches to the target one, leading to an
excellent performance in inference. Hence it is meaningful to compare different-p results for
examining the effect of smoothness in the observables.

We below see the MC results with changing the parameters N,M, b, p and Γ. The quality of
inference is quantified by the order parameter q as introduced in the random case. Error bar is
estimated from the standard deviation σsample of the objective quantity among different samples
as

Error bar =
σsample√
Nsample − 1

. (22)

where Nsample is the number of simulated samples and are chosen to be 10 in most of the below
results.

1 The REM is defined by the Boltzmann distribution whose energies {Es}s are drawn from an i.i.d. normal
distribution N (0, 2/N) (see reprints in [12] for details).

STATPHYS-KOLKATA VIII IOP Publishing
Journal of Physics: Conference Series 638 (2015) 012018 doi:10.1088/1742-6596/638/1/012018

8



3.2.1. Result in the smooth case We plot q of the 2SM in Fig. 5. We see that the larger b tends
to give smaller q meaning better inference. Especially for M = 64 and 128 with enough large b,
we find that q becomes smaller and smaller as Γ grows, implying that the ME distribution given
in Γ→∞ realizes the perfect learning q →∞. Similar observation is found for the 3SM in Fig.
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Figure 6. Plots of q for the N = 8 3SM vs. b, for M = 16, 36, 64, and 128 from left to right and
from upper to lower. The curve for M = 36 (right upper) shows a dip around b = 0.8, implying
the existence of an optimal value of b.

6. In this case, we calculate a wider range values of b and Γ. The results of M = 16, 64, and
128 are very similar to the 2SM case. A characteristic dip is observed in M = 36, implying the
existence of an optimal value of b, though the difference from other values of b is not so strong.
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Figure 7. Plots of q for the N = 8 REM vs. b, for M = 16, 64, and 128 from left to right.

Fig. 7 shows the result for the REM. We see no clear dependence of q on b for any value of M ,
meaning that the smoothness does not help the inference at all, as expected.

The above results for the 2SM, 3SM, and REM clearly exhibit a certain compatibility between
the observables and the target distribution. For further examining this, the 3SM result, especially
the existence of an optimal value of b, can be a good starting point. To interpret this result, we
introduce Nk ({vµ}µ) representing the number of modes with the wavenumber k in a given set
of observables {vµ}µ, and define the average occupation ratio of the k-modes by

uk = [Nk ({vµ}µ)]b

(
N

k

)−1

, (23)

where the brackets [· · ·]b denote the average over the distribution with the smoothness b stated
above. This quantity is easy to calculate because this is independent of the target distribution
and moreover the MC simulation is not needed. The occupation ratios for M = 16, 36, 64, and
128 are shown in Fig. 8. A remarkable quantity for examining the 3SM result is u3 which shows
the following behavior

• For M = 36, it exhibits a clear peak around b = 0.8.

• For M = 64, it increases monotonically as b grows up to b = 4.

• For M = 128, it saturates to unity for b & 2.

These observations are probably connected to the characteristic behavior of q: the dip for
M = 36, the monotonic decrease of q with b for M = 64, and the significant decrease of q as Γ
grows at large values of b for M = 128. It is also interesting to see how q behaves as Γ changes
when u3 = 1 is satisfied, which is demonstrated in the right panel of Fig. 9. For b = 3, where
u3 = 1, q seems to decrease as a linear function of γ in the large γ region, while at small values
of b the dependence on γ is quite weak and can become positive (decreasing q) and negative
(increasing q). For comparison, we also give the same plot of M = 64 in the left panel, in which
no significant decreasing of q occur.

3.2.2. Consequences of the smooth-case results. The above results certainly demonstrate some
situations where the ME distribution, and more generally, the introduction of an entropic bias
helps to infer the target distribution. However, the interpretation based on uk implies the close
connection between target distribution and observables. If we know the “smoothness” of a target
distribution, we can determine the appropriate observables for applying to the target system,
but in practical situations the nature of the target distribution is unclear.
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Figure 8. The occupation ratio of Fourier modes with wavenumber k for M = 16, 36, 64, and
128 in N = 8. Different colors correspond to different k.
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3.3. On control of the ratio of “correct” observables.
Here, we examine a quantitative relation between q and the ratio of “correct” observables. A
“correct” observable here is such that the corresponding interaction in the target energy, see
eq. (21), is nonzero. For example in the 2SM, only observables with the wavenumber k = 2 are

correct. Let us consider the 2SM and M =
(
N
2

)
observables. We assume that the observables

are a mixture only of k = 2 and 3 modes. We treat u2 as a control parameter on this setup, in
contrast to the smooth case where uk is the function of b and M .

In Fig. 10, we give the plot of q against u2 of the N = 10 2SM. To examine the size dependence
of q, we also show the u2-q plots for N = 6, 8 and 10 at Γ = 0 and 25N/2 in Fig. 11. In Fig.
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Figure 10. The order parameter q is plotted against u2 in the N = 10 2SM. Different colors
correspond to different Γ values. At u2=1, q will go to −∞ in the limit Γ→∞.
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Figure 11. The u2-q plots at Γ = 0 (left) and 25N/2 (right). Different colors represent different
system sizes. Black dotted lines denote the analytic solution in the random case.

10, we see that q decreases as u2 increases at large values of Γ. Especially at u2 = 1, the ME
distribution appearing in the limit Γ → ∞ recovers the target distribution and thus q should
go to −∞ in that limit. This tendency is actually observed in Fig. 10. On the other hand from
Fig. 11, at Γ = 0 the u2-q curves seem to converge to the analytical solution in the random case
for any u2 as the system size grows. A similar behaviour is expected even for large Γ if u2 is not
too large. These observations suggest to focus on u2 close to, but slightly smaller than 1.
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Comparing the size dependence of q at u2 = 1 and around u2 = 0.9 in Fig. 11, we find that
the size dependence at u2 = 1 seems to converge already for N = 10 and q in the limit N →∞
is expected to be different from the random-case one, while the one around u2 = 0.9 is still
significant and q seems to converge to the random-case value as N grows. This observation
yields a pessimistic description: in the N →∞ limit, only the u2 = 1 point is special and for all
other values of u2 < 1 the order parameter q converges to the random-case value irrespectively
of the ME bias Γ.

These results imply that the ME principle does not work even as an approximation, at least
in the present scale of the analysis, unless we exactly know what kind of interactions are needed
to describe the target distribution. This consequence is only based on a limited result, and hence
in the next subsection we reexamine it from another viewpoint.

3.4. Comparison of low- and high-|k| modes
As stated above, in realistic situations low-k modes are thought to be more important than high-
k modes, and k = 1 and 2 modes are used in most applications. We now examine the possible
difference in approximation performance between low-k and high-k modes. We choose 3SM as
the target system. Due to computational limitations, we fix the system size to N = 8. The
number of observables is fixed as M = 36 which is equal to

(
N
1

)
+
(
N
2

)
with N = 8. Hence, we can

include all k = 1 and 2 modes, the common choice in the applications, in a set of observables.
Let us label this set by a = 1. We also define sets of observables labelled by a = 2, 3, 4, and 5.
The sets a = 2, 3, and 4 consists only of k = 3, 4, and 5 modes, respectively, and the a = 5 one is
a mixture of all the k = 6 and 7 modes. We compare the values of q among those different sets.
Since the target system is the 3SM, the set a = 2 (k = 3) gives a better performance than the
others, which is trivial. An interesting possibility is whether the results for a = 1 (k = 1, 2) are
better than the ones for a = 3, 4, and 5. If so, it could give support to why the ME distribution
constructed with k = 1- and 2–observables works well in many applications. Unfortunately, we
do not see any obvious difference in performance between a = 1 and a ≥ 3 in Fig. 12.
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Figure 12. The order parameter q is plotted against u2 in the N = 10 2SM. Different colors
correspond to different Γ values. At u2=1, q will go to −∞ in the limit Γ→∞.

4. Analytical treatment of the smooth-observables case: some results
In this section, we provide an analytical solution in some limited cases. We start from stating
some assumptions and approximations for making the analysis amenable.
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4.1. Assumptions and approximations
4.1.1. Prior over the target distribution and the annealed approximation. We have introduced
the prior distribution of observables (8) with the matrix Mst which controls the smoothness
of observables. Similarly, we here introduce the prior over the target distribution. This was
irrelevant in the random case due. In the presence of nontrivial Mst, however, we have to treat
correlations among different spin configurations, which requires to specify the properties of the
target distribution. The prior distribution of the target distribution is chosen as the following
quadratic form

P̂ (p̂) = Ĉ
∏
s

θ(p̂s)

∫ i∞

−i∞
dΛ̂ eΛ̂

∑
s(p̂s−1)− 1

2

∑
s,t M̂stp̂sp̂t . (24)

The matrix M̂st controls the smoothness of the target distribution as Mst in eq. (8). The

integration variable Λ keeps the normalization condition
∑

s p̂s = 1. The factor Ĉ is just the
normalization.

As eq. (10) in the random case, we calculate the averaged logarithm of the partition function,
F , by using the replica method with the RS ansatz. After some calculations, we get

log [V n]smooth = Extr
Ω

{
−M

2

{
log

(
1 +

Q+ (n− 1)R)

E

)
+ (n− 1) log

(
1 +

Q−R
E

)}

+
1

2
nQ(Q′ −R′)− 1

2
n(n− 1)RR′ + log

∫ √
detMst
√

2π
2N

(∏
s

dzs

)
e−

1
2

∑
s,tMstzsztX,

}
(25)

where the brackets [· · ·]smooth denote the average over eqs. (8,24), Ω represents the set of order
parameters Ω = {Q,Q′, R,R′,Λ,Λ′}, and

X =

∫ ∞
0

∏
s

dp̂sP̂ (p̂)Y n, (26)

Y =

∫ ∞
0

∏
s

dps exp

{
√
R′
∑
s

zs(ps − p̂s)− Λ
∑
t

(pt − p̂t)

−1

2
Q′
∑
s,t

M−1
st (ps − p̂s)(pt − p̂t)− Γ

∑
s

ps log ps

}
. (27)

Now, we should in principle take the quenched limit n→ 0, but unfortunately, the computation
in this limit is far from being an easy task. Instead, we work in the annealed case n = 1, and
the resultant formula becomes much simpler

log [V ]smooth = Extr
Ω′

{
−M

2
log

(
1 +

Q

E

)
+

1

2
QQ′ + logXanneal

}
, (28)

where Ω′ = {Q,Q′,Λ,Λ′}

Xanneal =

∫ ∞
0

∏
s

dp̂sP̂ (p̂)

∫ ∞
0

∏
s

dps exp

{
−Λ

∑
t

(pt − p̂t)

−1

2
Q′
∑
s,t

M−1
st (ps − p̂s)(pt − p̂t)− Γ

∑
s

ps log ps

}
. (29)
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4.1.2. A simple choice of Mst and M̂st. As noted above, Mst should only depend on the
overlap

∑
i siti. Here we consider one of the simplest choice obeying this constraint:

M−1
st =

eB
∑
i siti

(2 coshB)N
. (30)

The parameter B ∈ R controls the smoothness of observables and the random case is reproduced
in the limit B →∞. Note that B is defined from the inverse of Mst. The matrix Mst itself can
be written in the same form, but the parameter corresponding B becomes complex in general.

How about the matrix M̂st? We do not want to bias a specific spin and thus M̂st should
have the permutation symmetry of the spin index, meaning that M̂st is a function of the overlap∑

i siti and the two magnetizations
∑

i si and
∑

i ti only. The symmetry between the two
magnetizations should be also maintained. Here we choose

M̂st = ĈeB̂
∑
i siti+Ĥ(si+ti). (31)

As seen below, this functional form leads to the ISM as the target distribution.

4.1.3. A saddle-point approximation of the integration over p. A notable point of the
present formulation is that all the variables obey the exponential scale. Thanks to this,
we can approximate the integration over p by a saddle-point (SP) technique. Actually, this
approximation gives the exact result, which was demonstrated in [11] in the random case. We
expect the same is true in the present case. Hence, instead of integrating out over p and p̂, we
take the SP condition on the exponent of Xanneal. The result is

−Λ−Q′
∑
t

M−1
st pt +Q′

∑
t

M−1
st p̂t − Γ(log ps + 1) = 0, (32)

Λ̂ +Q′
∑
t

M−1
st (pt − p̂t)−

∑
t

M̂−1
st p̂t = 0, (33)

Taking the extremization condition with respect to Q in eq. (28), we see Q′ is proportional to
M . Hence, for small M , we find that the SP solution of p̂ gives back the ISM

p̂∗s = Λ̂
∑
t

M̂st =
eH
∗∑

i si

(2 coshH∗)N
, (34)

where H∗ is a function of B̂ and Ĥ in eq. (31). We expect the smallness of the second term in eq.
(33) to hold for general M . Therefore, we hereafter choose the ISM as the target distribution.
This is natural since the target distribution should not be changed as M increases. Thanks to
this assumption, we can concentrate on solving only eq. (32) for p̂ defined by the ISM, see eq.
(13).

Note that variable ps is a probability value and cannot be negative, a fact ignored in deriving
eq. (32). We give the name “SAT” to the set of spin configurations s whose probability values
derived from the SP equation becomes positive, and “UNS” to the other configurations. Thus
the correct SP equation is{

−Λ−Q′
∑

t∈SATM
−1
st pt +Q′

∑
tM

−1
st p̂t − Γ(log ps + 1) = 0, (s ∈ SAT)

ps = fs(Γ), (s ∈ UNS)
(35)

This is the extension of the modified SP approximation used in [11]. For UNS, the function
fs(Γ) is expected to be a simple function of Γ. For example in the random case, fs(Γ) = 0 for
0 ≤ Γ < 2N and fs(Γ) = 1/2N for Γ ≥ 2N .
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The difficulty in solving this set of coupled equations is the classification of the SAT and UNS
configurations. In the random case B →∞, target probabilities are learned in descending order
of their values, and the structure in the spin-configuration space is completely irrelevant: the
classification of the SAT and UNS configurations is reduced to the self-consistent determination
of the boundary value, namely, the learning edge, between the learned, large probabilities and
the unlearned, small ones. However in the present case, due to the presence of the nontrivial
matrix Mst, we have to treat the spin-configuration space itself, and the classification of the
SAT and UNS configurations is very complicated.

In the following subsection, we assume that the learning edge can be uniquely determined for
finite but still enough large B, which enables us to conduct the analysis. The applicable range
of this assumption is also discussed.

4.2. Perturbation from large B at Γ = 0
In the discussion below, we put Γ = 0 in eq. (76) and use the following truncation with a fixed
Ξ ∈ N ∑

t

M−1
st (· · · ) ≈

∑
{t|Qst=N,N−2,··· ,N−2Ξ}

M−1
st (· · · ), (36)

where Qst =
∑

i siti and Ξ is the truncation range. Let us write the solution of the SP equation
as

p∗s = p̂s −
Λ

Q′
+ Φs. (37)

For s ∈ SAT the residual term Φs is zero at the random case and we expect Φ is small for
enough large B, while for s ∈ UNS Φs = Λ/Q′ − p̂s since p∗s = 0.

4.2.1. The Ξ = 1 case. Let us put TB = eBN/(2 coshB)N . Remembering that our target
distribution is the ISM and depends only on the magnetization Ms =

∑
i si = Nms, we get

from the third term in the upper line of eq. (76)∑
{t|Qst=N,N−2}

M−1
st p̂t = TB

{
p̂Ms + e−2B (Dsp̂Ms+2 + Usp̂Ms−2)

}
, (38)

where Us(Ds) is the number of up (down) spins of the configuration s. The variables Ms, Us,
and Ds are extensive and proportional to N . Hence, to validate the above truncation, we need

ε ≡ Ne−2B � 1. (39)

Inserting the solution form eq. (37) into eq. (76), we get

ε
(1−ms)

2
ΦMs+2 + ΦMs + ε

(1 +ms)

2
ΦMs−2 =

Λ

Q′
1− TB(1 + ε)

TB
. (40)

The term in the righthand side appears due to the modification from the normalization

0 = 1−
∑
t

M−1
st ≈ 1− TB(1 + ε). (41)

So, we can neglect the righthand side of eq. (40).
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Ms-dependent solution. As Φ = const is an inappropriate solution to eq. (40), we look for a
Ms-dependent solution. To lighten notations, we change the index of p̂ from the magnetization
Ms into the number of up spins, Us, and carry out the same change of notations on the other
variables. The equation we want to solve is now

ε(1− us)ΦUs+1 + ΦUs + εusΦUs−1 = 0, (42)

where us = Us/N . The general solution of this equation is not simple due to the us-dependence
of the coefficients. Thus we work on the large N limit and assume the scale Φ(Us) = eNφ(us).
Correspondingly,

ΦUs±1 = eNφ(us±1/N) ≈ eNφ(us)e
± ∂φ
∂u |u=us . (43)

The SP equation becomes quadratic of y = e
∂φ
∂u |u=us and the solution is

y =
−1±

√
1− 4ε2us(1− us)

2ε(1− us)
. (44)

In the limit ε → 0, we expect Φ(Us) = 0 if Us, implying y = 0. Thus we need to take the plus
sign in eq. (44). Using this solution and integrating log y with respect to u, we get

φ(u) = φ0 + u log

{
−1 +

√
1− 4ε2u(1− u)

2ε(1− u)

}
− 1

2ε
log
{
−ε+ 2εu+

√
1− 4ε2u(1− u)

}
+

1

2
log
{

1− 2ε2 + 2uε2 +
√

1− 4ε2u(1− u)
}
≡ φ0 + φc(u). (45)

Since our target distribution is the ISM, there is the edge value of U , UE = NuE , corresponding
to the learning edge ωE . The constant Φ0 = eNφ0 is determined from the boundary condition
at Us = UE . We can put ΦUE−1 = p̂UE−1 − Λ

Q′ , hence from the SP equation at Us = UE , we get

Φ(u) = −y(uE)

(
p̂UE−1 −

Λ

Q′

)
eN(φc(u)−φc(uE)), (46)

where we used a simple relation

2εuE

1 +
√

1− 4ε2uE(1− uE)
= −y(uE). (47)

The corresponding p∗U thus becomes

p∗U = p̂U −
Λ

Q′
− y(uE)

(
p̂UE−1 −

Λ

Q′

)
eN(φc(u)−φc(uE)). (48)

It is easy to confirm that sign(y(u)) = −1 and 0 < |y(u)| < 1 for any 0 < ε < 1 and 0 < u < 1.
Hence, eq. (48) has a good interpretation. The factor y(uE)eN(φc(u)−φc(uE)) controls the changing
speed when we change U around UE . Namely,

p∗UE+K ≈ p̂UE+K −
Λ

Q′
+ (sign(y(uE)))K+1|y(uE)|eK log |y(uE)|

(
Λ

Q′
− p̂UE−1

)
. (49)

If the increasing speed eK log |y(uE)| is slower than the one of p̂UE+K = p̂UEe
− ∂ω
∂u
K , we can see

all U ≥ UE are fine and the corresponding {p∗U}U≥UE take positive values, then the learning
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edge is well-defined. This is the case for ε < 1 since log |y| is always negative and smaller than
−∂ω
∂u = H∗

2 > 0. Thus our analysis is consistent with the assumptions.
We should clarify the magnitude relation between Λ/Q′ and p̂UE . We expect the righthand

side of eq. (49) to be positive if U ≥ UE , and zero or negative for U ≤ UE − 1. The definition
of y leads to a relation eN{φc(uE−1/N)−φc(uE)} ≈ y−1(uE), which simplifies the inequalities for
U = UE and U = UE − 1:

p̂UE ≥
Λ

Q′
{1− y(uE)}+ y(uE)p̂UE−1, (50)

p̂UE−1 ≤
Λ

Q′
{

1− y(uE)y−1(uE)
}

+ y(uE)y−1(uE)p̂UE−1 = p̂UE−1. (51)

Hence the SP equation at Us = UE − 1 is marginally satisfied, implying p∗UE−2 < 0. These
inequalities imply

p̂UE−2 <
Λ

Q′
< p̂UE . (52)

Effective number of observables. In the usual situation, we calculate the learning edge ωE for a
given number of observables M , but here we perform the opposite analysis, namely we calculate
the effective number of observables Meff for a given ωE . If Meff(ωE) is smaller than the one in
the random case with the same value of ωE , it means that the inference improves as a result of
the introduction of the nontrivial matrix Mst.

From the extremization conditions with respect to Q and Q′ in eq. (28) with negligibly small
E, we get

Q =

〈∑
s,t

M−1
st (ps − p̂s)(pt − p̂t)

〉
, (53)

Q′Q = M. (54)

The summation over
∑

s,t in the first equation can be divided into three categories

∑
s,t

(· · · ) =

 ∑
s,t∈SAT

+
∑

s,t∈UNS

+2
∑

s∈SAT,t∈UNS

 (· · · ). (55)

Let us assume the average over ρ, 〈· · ·〉, can be replaced by the SP values of p. Then we get

∑
s,t∈SAT

M−1
st (p∗s − p̂s)(p∗t − p̂t) =

∑
s,t∈SAT

M−1
st

(
Φs −

Λ

Q′

)(
Φt −

Λ

Q′

)
.
= eNσ̂

(
Λ

Q′

)2

, (56)

where the symbol
.
= denotes the equality in the exponential scale. To derive this, we assume

Λ/Q′ > |Φs| which is true in the random case and is strongly expected in the present case too.
Similarly, we have ∑

s,t∈UNS

M−1
st (p∗s − p̂s)(p∗t − p̂t) ≈

∑
s,t∈UNS

M−1
st p̂sp̂t

.
=

∑
Us<UE

p̂2
Us
, (57)

∑
s∈SAT,t∈UNS

M−1
st (p∗s − p̂s)(p∗t − p̂t)

.
= eNσE

(
Λ

Q′

)2

, (58)
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where σE = σ(ωE). Collecting and comparing all these terms, we see the dominant term is

Q
.
=

∑
s∈UNS

p̂2
s
.
=

{
eN(σ(ω2)−2ω2) (ωE ≤ ω2)

eN(σE−2ωE) (ωE > ω2)
= eNq(ωE). (59)

We expect Λ = 2N in an interesting situation. Hence, we can calculate Meff from a given
value of Λ/Q′ = L and from eq. (54) as

Meff =
2N

L
Q

.
= eN(log 2−ωE+q(ωE)). (60)

The last inequality comes from L .
= e−NωE derived from eq. (52). This effective Meff is identical

to the one in the random case for a given ωE , implying that the inference is not improved at
least in the exponential scale, unfortunately.

4.2.2. General Ξ = O(1). Next, we proceed to the case of larger values of ε. Now, we need
higher orders in the truncation. We assume Ξ is a O(1) constant and is not extensive. As in the
Ξ = 1 case, the SP equation is expressed as

Ξ∑
i=0

εi
i∑

j=0

ujs
j!

(1− us)i−j

(i− j)!
ΦUs+i−2j = 0. (61)

To derive this, we neglect sub-leading factors in the large-size limit as(
Us

j

)
≈ N j u

j
s

j!
. (62)

This truncation is justified if eq. (39) is satisfied. Fortunately, we can solve this equation for
general Ξ = O(1). We state the outline of deriving the solution.

First we need to solve the characteristic equation

Ξ∑
i=0

εi
i∑

j=0

ujs
j!

(1− us)i−j

(i− j)!
y(us)i−2j = 0. (63)

This has 2Ξ different roots. The appropriate roots are the ones going to zero as ε → 0. As
far as we searched, the appropriates roots consist of some real-valued ones and some complex-
conjugate pairs. For example in Ξ = 3, we found that the appropriate roots are constituted
by one real-valued root y1 and one pair of complex roots y2 and y3 which are in the complex
conjugate relation. Using these roots, we can write

Φ(u) =
Ξ∑
i=1

Aie
Nφi(u), (64)

where

φi(u) =

∫ u

dx log yi(x). (65)

Now, the coefficients {Ai} are determined from the boundary conditions Us = UE , · · · , UE+Ξ−1,
leading to

Λ

Q′
− p̂UE−ξ = Φ(UE − ξ) ≈

R∑
i=1

Aiy
−ξ
i eNφi(uE) (ξ = 1, · · ·Ξ). (66)
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Thus means p∗UE−ξ = 0, (ξ = 1, · · · ,Ξ) is maintained by the boundary conditions. From the

boundary conditions, we also find the magnitude relation between Λ/Q′ and p̂UE

p̂UE−Ξ−1 ≤
Λ

Q′
≤ p̂UE . (67)

These are the construction of the solution of eq. (61).
We confirmed up to a reasonable value of Ξ that the real part of the suitable {yi(u)} are

decreasing function with respect to u for a certain moderate range of ε > 0, and thus φi(u)
too. Hence, Φ(UE +K) is expected to decrease as K grows by the factor eK log |yi(uE)|, and the
learning edge is well-defined.

The effective number of observables can be also evaluated in this case. Unfortunately, as long
as Ξ = O(1), Meff(ωE) cannot be different in the exponential scale from M(ωE) in the random
case, since both Q and L = Λ/Q′

.
= e−NωE are essentially the same as the ones of the random

case. This naturally motivates us to treat Ξ = O(N), but that is not easy since it becomes even
nontrivial to write down the SP equation. We leave this as a future work. Instead in the next
subsection, we try to examine the effect of the ME bias Γ in the same setting.

4.3. Perturbation from large B at finite Γ
4.3.1. Review of the random case. We start by reviewing the random case with relatively small
M . The SP equation is

ps = p̂s −
Λ

Q′
− Γ

Q′
(1 + log ps) . (68)

For large Γ ≥ 2N , the order parameter Λ behaves as

Λ = (N log 2− 1)Γ, (69)

and the solution of the SP equation is

p∗s =

{
p̂s − Γ log 2N p̂s

Q′ , (s ∈ SAT)

p0 + ∆s, (s ∈ UNS)
, (70)

where

p0 = e−1−Λ
Γ =

1

2N
, ∆s =

Q′p0

Q′p0 + Γ
(p̂s − p0) . (71)

The expression of ∆s can be derived from the perturbation with respect to ∆ in eq. (68).
Inequalities

p0 > ∆s, Γ > Q′p̂s (∀s ∈ UNS) (72)

are needed to justify this perturbation. To make the above expressions consistent, the learning
edge should be

ωE = q′ − γ = q′ − λ. (73)

For Γ < 2N
.
= Λ(Γ = 0), the situation is essentially identical to the case Γ = 0. This can

be understood by comparing each term of the righthand side in eq. (68). For s ∈ SAT the
dominant term is the first term p̂s and for s ∈ UNS the second one is dominating. The last term
proportional to Γ/Q′ is always smaller than the other two in the exponential scale and hence
essentially does not change the SP equation.
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4.3.2. General Ξ = O(1). A lesson from sec. 4.2.2 tells that the introduction of the nontrivial
Mst does not change the scale of the problem if Ξ = O(1), and another lesson from sec. 4.3.1
says that the effect of the ME bias Γ appears when Γ becomes comparable with Λ in the scale.
These two lessons imply that the ME bias and Mst cannot provide a meaningful effect on the
inference in the present setting.

As an example, let us see the SP equation for the truncation range Ξ = 1 with Γ which can
be written as

Φ(us) (ε(1− us) + 1 + εus) = − Γ

Q′
(1 + log ps) , (74)

We found that Φ(us) = p∗us − p̂us + Λ
Q′ is the decreasing function of u, and the leading-order

terms in Φ are p∗s
.
= p̂s for s ∈ SAT and Λ/Q′ for s ∈ UNS. The scale of Φ itself is smaller than

p∗s
.
= p̂s for s ∈ SAT due to the cancellation in p∗s − p̂s. If Γ/Q′ is smaller than any of these

two terms, the situation will be identical to Γ = 0 as the random case with Γ < 2N . This is
consistent to the leading order of eq. (74). As Γ grows and Γ

.
= Λ(Γ = 0)

.
= 2N , the situation

is changed: Λ scales as Γ for Γ > 2N and the learning edge determined by the balance between
Λ/Q′ and p̂s starts to decrease since Q′ is kept to be constant against Γ. Thus introducing the
ME bias worsens the inference performances, as found with the annealed approximation in the
random case.

This situation seems to remain the same as long as Ξ = O(1) where the coefficient of Φ
is O(1). Hence, from the annealed calculations, we cannot find any good effect on inference
produced by the ME bias.

4.3.3. Some comments on the quenched case. A crucial difference between the quenched and
annealed cases is the behavior of Q′. The extremization condition over Q′ in eq. (25) after taking
the n→ 0 limit becomes

Q′ =
M

D
, (75)

and D is scaled as D = Γ−1 for Γ > 2N in the random case. Hence, Q′ increases with the growth
of Γ as Λ. This is good for the ME principle since the learning edge ωE = q′−λ does not change
as Γ grows.

On the other hand, the SP condition with respect to p becomes{
−Λ−Q′

∑
t∈SATM

−1
st pt +Q′

∑
tM

−1
st p̂t +

√
R′

Q′ zs − Γ(log ps + 1) = 0, (s ∈ SAT)

ps = fs(Γ), (s ∈ UNS)
. (76)

The only difference with the annealed case is the presence of the term
√
R′

Q′ zs and we expect that
the nature of the SP equation does not change so much.

4.4. A semi-analytical treatment: numerical evaluation of the SP equation
In the above subsections, we have concentrated on studying the truncated SP equation. For
general B, ε = Ne−2B can be large so the truncation cannot be justified. To examine this case,
we numerically evaluate (76). Actually, directly evaluation of (76) is not easy, and instead of
that, we minimize the following cost function

L =
1

2

∑
s,t

M−1
st (ps − p̂s)(pt − p̂t) +

Λ

Q′

∑
t

(pt − p̂t) +
Γ

Q′

∑
s

ps log ps, (77)
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for given Λ/Q′ and Γ/Q′ under the condition ps ≥ 0. This is a convex optimization problem with
constraints and can be solved by certain known algorithms such as the interior-point method.
By this minimization, we can obtain the solution of the SP equation, p∗, and thus related
quantities can be evaluated. In solving this, we assumed the symmetry that p∗s having the
same magnetization value share the same probability value as well as p̂s, which reduces a lot of
computational costs.

An interesting finding might be the absence of the unique learning edge, which is
demonstrated in Fig. 13. In the figure, the absolute values of the lefthand side of eq. (32)

Figure 13. The absolute values of the lefthand side of eq. (32) of the upper line are plotted
against the magnetization Ms =

∑
i si. The target model is the ISM with H = 0.5, and other

parameters are N = 50, B = 0.2, H = 0.5,Γ = 0 and Λ/Q′ = 5.0×10−20. If s ∈ SAT (UNS), the
corresponding value denoted by a blue point becomes smaller (larger) than the chosen threshold
value 10−70 denoted by the green line. We see that the blue points locating below the threshold
value are distributed in a patchy fashion, implying the absence of the learning edge.

of the upper line are plotted against the magnetization with the parameters: N = 50, B =
0.2, H = 0.5,Γ = 0 and Λ/Q′ = 5.0 × 10−20. Namely, if s ∈ SAT, the corresponding value
should be enough small (here we set the threshold value as 10−70). In the random case B →∞,
there exists an edge value of M , ME corresponding to the learning edge ωE , and all the SP-
equation values for M ≥ ME are smaller than the threshold, while the ones for M < ME are
larger. In the present case B = 0.2, however, we see that the blue points locating below the
threshold value are distributed in a patchy fashion and we cannot find such a clear edge value for
M . This results implies that no learning edge can be defined, which makes the resolution of the
SP equation directly (76) very difficult, as pointed out in sec. 4.1.3. Note that this calculation
requires a very multiple precision because our variables obey the exponential scale and can be
very large and small. For N = 50, we used 170 digits to express a real number.

5. Discussion and summary
In the present work, we have investigated the space of probability distributions constrained by
smooth observables. We have first introduced a Monte Carlo procedure to sample the space
of probability distribution over the set of configurations made of a small (in practice ≤ 10)
number of spins. In this numerical study, we have used the order parameter q measuring the
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distance between the target distribution and the averaged one to quantify the quality of inference.
Our numerical investigations have revealed that the ME principle can work better than other
typical distributions, in particular when the the target distribution and the observables have
comparable smoothnesses. As a consequence, once we know the nature of the interactions
present in the target distribution, we can construct the ME distribution precisely describing the
target system. However, our numerical simulations also show that a few errors in specifying the
type of interactions leads to a significant worsening of the ME distribution. This suggests that
the ME principle is not good in approximating a target distribution. In practical situations,
it does not seem easy to precisely know the type of the interactions of the target system, and
compatibility is a serious issue.

To get deeper insight, we have also carried out some analytical investigations. We have
assigned a specific functional form to the matrix controlling the smoothness of the observables
and introduced a prior distribution over the target distribution. In this setting, we have analyzed
the perturbative regime from the random case, combining this approach with the annealed
approximation and the saddle-point approximation. We were able to construct a solution in this
case, but the solution was not informative. The annealed approximation, indeed, corresponds
to ‘bad’ choices of the constraints, making the volume V increase compared to its typical value
for quenched, random observables.

One of the main outcomes of the present work is that, in the presence of smooth observables,
no learning edge, separating small from large target probabilities cannot be defined, see Fig.
13, as used to be the case in the non-smooth case [11]. This result highlight the complexity of
learning in the smooth case, and its collective nature. While the probabilities of the different
spin configuration were essentially learned independently of each other in the non-smooth case,
this is clearly not the case anymore. How to describe in a mathematically controlled and precise
way this collective phenomenon remains a challenge. We hope that the remarks presented here
will be useful for further progresses in this direction.
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