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The spontaneous transitions between D-dimensional spatial maps in an attractor neural network are
studied. Two scenarios for the transition from one map to another are found, depending on the level of
noise: (i) through a mixed state, partly localized in both maps around positions where the maps are most
similar, and (ii) through a weakly localized state in one of the two maps, followed by a condensation in the
arrival map. Our predictions are confirmed by numerical simulations and qualitatively compared to recent
recordings of hippocampal place cells during quick-environment-changing experiments in rats.
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In 1982, Hopfield proposed a neural network model for
autoassociative memories, in which specific configurations
(patterns) of the activity could be stored through an
adequate choice of the interactions between the neurons,
modeled as binary units σ ¼ 0; 1 [1]. Starting from an
initial configuration partially resembling one pattern, the
network configuration dynamically evolves until a fixed
point, coinciding almost exactly with the stored pattern, is
reached [2]. In this Letter, we consider an extension of
the Hopfield model, in which the attractors stored are
continuous and D-dimensional (with D ≥ 1), rather than
discrete fixed points (D ¼ 0), and discuss the existence and
the mechanisms of spontaneous transitions between those
attractors. Besides its intrinsic interest from a statistical
mechanics point of view, our study is motivated by the
observation of abrupt transitions between the representa-
tions of space in the brain [3], in particular, in quick-
environment-changing experiments on rats [4].
Continuous attractors are not unusual in statistical

physics. An illustration is given by the Lebowitz-
Penrose theory of the liquid-vapor transition [5].
Consider a D-dimensional lattice, whose N sites ~xi can
be occupied by a particle (σi ¼ 1) or left empty (σi ¼ 0).
The energy of a configuration fσig is given by the Ising-
like Hamiltonian

E½fσig; f~xig� ¼ −
X
i<j

Jðj~xi − ~xjjÞσiσj; ð1Þ

where J is a positive and decaying function of its
argument, i.e., of the distance between sites. At a fixed
number of particles and low enough temperature, trans-
lation invariance on the lattice is spontaneously broken:
particles tend to cluster in the ~x space and form a high-
density region (liquid drop) surrounded by a low-density
vapor. The density profile of this “bump” of particles
hardly fluctuates, but its position can freely move on the
lattice and defines a collective coordinate for the micro-
scopic configuration of particles.

From the neuroscience point of view, the existence of a
collective coordinate, weakly sensitive to the high stochas-
ticity of the microscopic units, is central to population
coding theory [6]. Following the seminal discovery of
“place cells” in a brain area called the hippocampus [7],
continuous attractors have been proposed as the basic
principle of the coding for position in space [8]. The
model we consider here goes as follows [9]. In a rat moving
freely in a given environment, a place cell i becomes active
(σi ¼ 1) when the rat is at a specific location in the
environment, called the place field and centered in ~xi,
and silent otherwise (σi ¼ 0). Place cells i; j with over-
lapping place fields, i.e., such that the distance between ~xi
and ~xj is small enough, may be simultaneously active and
have a tendency to strengthen their connection Jij during
the exploration of the environment. The potentiation of the
couplings between coactive neurons is called Hebbian
learning, an important paradigm in autoassociative memo-
ries. In addition to the local excitation, global inhibition
across the network keeps the fraction of active units
constant. As a result, the probability of a place-cell activity
configuration fσig would formally coincide with the Gibbs
measure associated to model (1), with a temperature T
dependent on the neural noise.
When the rat explores a new environment, hippocampal

place cells undergo a process called remapping, in which
place-field locations are randomly reallocated [10]. A
simple model of remapping consists in randomly permuting
the indices of the place-field locations: the center of the
place field attached to place cell i becomes ~xπðiÞ, where π is
a random permutation defining the spatial map of
the environment. We assume that the contributions to the
interactions of the different maps add up and obtain the
Hopfield-like Hamiltonian

E½fσig; f~xig; fπlg� ¼ −
X
i<j

Jijσiσj; ð2Þ

where the couplings are
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Jij ¼
XL
l¼1

Jðj~xπlðiÞ − ~xπlðjÞjÞ; ð3Þ

L is the number of environments, and πl is the permutation
in the lth environment (l ¼ 1;…; L). This Jij matrix
exhibits a “small-world-like” topology [11]: the couplings
due to an environment, say, l ¼ l0 in (3), connect neurons
with place fields close to each other in this environment,
while the other environments (l ≠ l0) contribute long-
range and random connections. Despite this structural
disorder, in model (2) and in similar rate-based models
with continuous units [12–15], the activity can be localized
in any of the environments: the active neurons have
neighboring place fields in one map, provided the load
α ¼ L=N and the temperature T are not too large.
The purpose of this Letter is to study the transitions

between different maps, i.e., how the population activity
can abruptly jump from being localized in one map to
another one. For definiteness we choose the N place-field
centers to be the nodes ~xi of a regular D-dimensional cubic
lattice. The coupling function in (1) is set to JðrÞ ¼ ð1=NÞ
if r < rc, and 0 otherwise, where r measures the distance
on the grid; the cutoff distance rc is such that each neuron is
connected to its wN closest neighbors in each map. The
fraction of active neurons is fixed to the value f. We report
in Fig. 1 the outcome of Monte Carlo (MC) simulations of
model (2) with L ¼ 2 maps, referred to as A and B, in
dimension D ¼ 1 (see Supplemental Material [16] for a
simulation in D ¼ 2 dimensions). The bump of activity
diffuses within one map with little deformation and

sporadically jumps from map A to B and back. We study
below the mechanisms underlying those transitions, which
have remained poorly understood so far.
To capture the typical properties of model (2), we

compute its free energy under the constraint that the
average activities of neurons whose place fields are
centered in ~x in map A and in ~y in map B are equal to,
respectively, ρAð~xÞ and ρBð~yÞ. We use the replica method
to average the free energy over the random permutations
πl. The outcome, within the replica symmetric hypothesis
and for N → ∞, is the free energy per neuron:

F ¼ −
1

2

Z
d~x

Z
d~x0ρAð~xÞJðj~x − ~x0jÞρAð~x0Þ

−
1

2

Z
d~y

Z
d~y0ρBð~yÞJðj~y − ~y0jÞρBð~y0Þ þ αβ

2
rðf − qÞ

þ
Z

d~xμAð~xÞρAð~xÞ þ
Z

d~yμBð~yÞρBð~yÞ − ηf

− α
X
~k≠~0

� ðq − f2ÞΛ~k

1 − βðf − qÞΛ~k

− T log½1 − βðf − qÞΛ~k�
�

− T
Z

d~xd~yDz logð1þ eβ½μAð~xÞþμBð~yÞþz
ffiffiffiffi
αr

p
−η�Þ; ð4Þ

where β ¼ 1=T, Dz ≡ expð−z2=2Þ= ffiffiffiffiffiffi
2π

p
, Λ~k ≡Q

D
μ¼1 sinðkμπw1=DÞ=ðπkμÞ are the eigenvalues of the J

matrix, and the components kμ are positive integer num-
bers. Fields μAð~xÞ, μBð~yÞ and parameter r are conjugated to,
respectively, the densities ρAð~xÞ, ρBð~yÞ and the Edwards-

Anderson overlap q ¼ ð1=NÞPi hσii2, where h·i denotes
the Gibbs average with energy (2) at temperature T and ð·Þ
is the average over the random permutations. Parameter
η is chosen to enforce the fixed-activity constraint:R
d~xρAð~xÞ ¼ R

d~yρBð~yÞ ¼ f.
Minimization of F allows us to determine the properties

of the “clump” phase (CL), in which the activity has a
bumplike profile in one map and is flat (¼ f) in the other
one; see Fig. 2(a). Details about the activity profile for a
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FIG. 1 (color online). Time evolution of a network with N ¼
1000 neurons and L ¼ 2 one-dimensional maps. Each black dot
represents an active neuron σi. Panels (a) and (b) show the same
data, up to a permutation of the neuron indices i to sort place-field
centers in increasing order in the corresponding map (x axis).
Right: Contributions to the total energy due to each map, divided
by 1

2
f2w (absolute value of the PM energy). Parameter values:

T ¼ 0.007, f ¼ 0.1, and w ¼ 0.05. Each MC round includes 103

steps.

FIG. 2 (color online). Activity profiles ρAðxÞ (red, left panels)
and ρBðyÞ (blue, right panels) computed from replica theory
for (a) the phase CLA (T ¼ 0.006), (b) the transition state TS2
(T ¼ 0.006), and (c) the transition state TSA1 (T ¼ 0.007).
Profiles attached to CLB and TSB1 are obtained from CLA and
TSA1 by swapping ρA and ρB. Densities were discretized
over 201 bins. Parameter values: f ¼ 0.1, w ¼ 0.05, and
L ¼ 2 one-dimensional maps.
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given realization of the maps are shown in Supplemental
Material [16]. This CL phase corresponds to the retrieval of
one map. The phase diagram in the α; T plane is shown in
Fig. 3(a) and also includes the paramagnetic (PM) phase at
high T and the spin-glass (SG) phase at high α, in which
no map can be retrieved [9]. In the PM phase, the neural
noise is large enough to wipe out any interaction effect: the
average activity hσii of each neuron coincides with the
global average activity f. In the SG phase, activities are
nonuniform (hσii ≠ f) for a given realization of the maps
but reflect the random cross talk between the maps: they do
not code for a well-defined position in any environment.
To understand the transition mechanisms, we look for

saddle points of F , through which the transition pathway
connecting CLA to CLB will pass with minimal free-energy
cost NΔF . According to the nucleation theory [17], we
expect those transition states (TS) to be unstable along
the transition pathway and stable along the other directions.
We identify two types of TS, referred to as 1 and 2,
respectively, depending on the number of maps in which
the activity is localized at the saddle point [Figs. 2(b)
and 2(c)]. The corresponding transition pathways are
schematized in Fig. 4. Which type of TS is chosen by
the system depends on the values of α and T; see Fig. 3(a).
At a low enough temperature, the transition pathway

passes through a transition state TS2, where the activity is
equally localized in both maps [Fig. 2(b)]. TS2 is a
minimum of the free energy F in the symmetric subspace
ρA ¼ ρB and is unstable against one transverse fluctuation
mode [Fig. 4(a)]. The barrier ΔF is the difference between
the free energies of TS2 and CL [17] and is shown as a
function of temperature in the case L ¼ 2 in Fig. 3(b). For a
given realization of the maps, the lowest free-energy barrier
will be achieved by centering the bumps around positions ~x
in A and ~y in B, such that the maps are locally similar, i.e.,
such that the adjacency matrices of the maps locally
coincide. We define the local resemblance between maps
A and B at respective positions ~x and ~y through

ResABð~x; ~yÞ≡ 1

N

XN
i¼1

ρð~x − ~xπAðiÞÞρð~y − ~xπBðiÞÞ; ð5Þ

where ρ denotes the bump profile of TS2 in Fig. 2, common
to the two maps. ResABðx; yÞ is shown in Fig. 5(a) for two
randomly drawn one-dimensional maps and compared in
Fig. 5(b) to the number of transitions, starting at position x
in A and ending at position y in B (or vice versa), observed
in Monte Carlo simulations. Both quantities are strongly

FIG. 3. (a) Region of stability of the CL phase and PM-SG
boundary in the ðα; TÞ plane (thick lines); the PM and SG phases
coexist with the CL phase, respectively, above and below the
dotted line. Dashed line: Boundary between one- and two-bump
TS scenarios. (b) Theoretical barriers ΔF=T vs temperature T for
L ¼ 2 environments. Same parameter values as in Fig. 2.

FIG. 4 (color online). Top: Representative points of the CLA,
CLB, PM, or SG phases and of the saddle points TS2 (left), TSA1 ,
and TSB1 (right). Coordinates correspond to the averaged squared
densities in maps A (x axis) and B (y axis), and arrows represent
the stability of the phases and saddle points. The transition
pathways are sketched by the green straight lines. Bottom:
Monte Carlo simulations illustrating the transition scenarios
and energy contributions due to each map in units of f2w=2
(x axis as in Fig. 1). Dotted lines, from left to right: Theoretical
values of the energies in the CL, TS, and PM phases. Parameter
values: N ¼ 1000, f ¼ 0.1, w ¼ 0.05, L ¼ 2, T ¼ 0.006 (left),
and T ¼ 0.007 (right).

FIG. 5. (a) Local resemblance of maps [contour lines of
ResABðx; yÞ] and (b) number of transitions between positions x
in A and y in B observed in Monte Carlo simulation, for two
randomly drawn one-dimensional maps A and B. Parameters:
T ¼ 0.006, f ¼ 0.1, w ¼ 0.05, L ¼ 2, and N ¼ 333. Transitions
were counted over 106 rounds of 10N MC steps, with starting or
ending positions binned in 25 cells in each map.
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correlated, showing that transitions take place at positions
where maps are most similar, as intuited in Ref. [18].
In addition, those “gateway” positions are energetically
favorable and kinetically trap the activity bump (Fig. 1),
hence making transitions more likely to happen [19].
At high temperatures or loads, no saddle point of F

localized in two maps can be found. At such temperatures
or loads, the PM or the SG phase coexists with CL
[Fig. 3(a)]. The PM or SG phase is separated from CLA

by a transition state TSA1 [Figs. 2(c) and 4(b)] and from CLB

by a transition state TSB1 . The transition pathway goes from
CLA to TSA1 , then to TSB1 at constant F level, before
reaching CLB [Fig. 4(b)]. The barrier ΔF is given by the
difference between the free energies of CL and TS1 and is
shown in Fig. 3(b). Note that at intermediate T or α values
PM or SG are very shallow local minima of F [Fig. 3(b),
dotted line]. The system is likely to transiently visit PM or
SG from TSA1 or TSB1 . The activity configurations are then
delocalized in both maps, before eventually condensing into
the CL phase. Model (2) defines a dilute ferromagnet with
inhomogeneities in the interaction network; see (3). Bumps
of neural activity are likely to melt, and TS1-based tran-
sitions to take place, where the network is less dense [20].
Two-clump (TS2) and one-clump or delocalized (TS1)

transition scenarios are observed in simulations as reported
in Fig. 4 and Supplemental Material [16], Figs. 4–6,
whether the CL phase coexists with the PM (small loads
α) or the SG (moderate loads) phases; see Fig. 3(a). The
two scenarios also coexist over a range of temperatures
[Fig. 3(b)] and may be alternatively observed in finite-size
simulations. As an illustration, the second transition in
Fig. 1 is of type 1 (at≃1.05 × 106 MC steps), while all three
other transitions are of type 2. The boundary line along
which both scenarios have equal free-energy barriers is
shown in Fig. 3(a). Simulations confirm that the transition
rate increases with α and T and decreases exponentially with
N (Supplemental Material [16], Figs. 1 and 2).
It is interesting to compare the scenarios above to the

experiment by Jezek et al. [4], in which a rat was trained to
learn two environments, A and B, differing by their light
conditions. The activity of ≃30 recorded place cells was
observed to rapidly change from being typical of environ-
ment A to being typical of environment B, or vice versa,
either spontaneously or as a result of a light switch. During
light cue-induced transitions, mixed states, correlated with
the representative activities of both maps, were observed
for a few seconds [Figs. 3(a) and 3(b), and Supplemental
Figs. 6 and 7(b) in [4]]. Spontaneous transitions were also
found to take place, in correspondence to mixed states, or to
neural configurations seemingly uncorrelated with A and B;
see Fig. 3(c) in [4]. Those findings are qualitatively
compatible with our two transition scenarios. A quantitative
comparison of our model with the neural activity in the
CA3 and CA1 areas recorded in [4] will be reported in a
forthcoming publication.

Our work could be extended along several lines, e.g., to
study the consequences of rhythms, such as the ≃8 Hz
Theta oscillations, believed to be very important for the
exploration of the space of neural configurations [21] and,
hence, for transitions [4,22]. In addition, we have assumed
here, for the sake of mathematical tractability, that the
coupling matrix in each map was homogeneous (the
number of neighbors of each neuron is uniform across
the population), a result of perfect exploration and learning
of the environment. In reality, imperfect learning, irregu-
larities in the positions and shapes of place fields, and
the sparse activity of place cells in CA1 [23], and even
more so in CA3, will concur to produce heterogeneities in
the coupling matrix. Numerical simulations suggest, how-
ever, that the mechanisms of transitions we have analyti-
cally unveiled in the homogeneous case are unaltered in the
presence of heterogeneities (Supplemental Material [16]).
Last of all, the notion of space itself could be revisited. The
“overdispersion” of the activity of place cells [24], its
dependence on task and context [25], etc., suggest that
place cells code for “positions” in a very high-dimensional
space, whose projections onto the physical space are the
commonly defined place fields. Extending our study to the
case of generic metric spaces could be very interesting and
shed light on the existence of fast transitions between task-
related maps [26] and, more generally, on the attractor
hypothesis as a principle governing the activity of the brain.
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