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The mean-field (MF) approximation offers a simple, fast way to infer direct interactions between elements in
a network of correlated variables, a common, computationally challenging problem with practical applications
in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best
performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly
understood. In this work, we study the influence of pseudocount and L2-norm regularization schemes on the
quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We
argue, based on the analysis of small systems, that the optimal value of the regularization strength remains
finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF
approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the
analytical study of the m-component spin model for large but finite m. Additionally, we find that pseudocount
regularization is robust against sampling noise and often outperforms L2-norm regularization, particularly when
the underlying network of interactions is strongly heterogeneous. Much better performances are generally
obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency
symbols are reliably inferred.
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I. INTRODUCTION

Inferring effective interaction networks from the measured
time series of a population of variables is a problem of
increasing importance across multiple scientific disciplines,
including biology (for the study of protein residue coevolution
[1–7], gene networks [8–10], neuroscience [11–15], and
ecology [16–19], among others), sociology [20–22], and
finance [23,24]. One popular approach to this problem is to
infer a simple graphical model which reproduces the low-order
stationary statistics of the data, such as the single-variable
frequencies and the pairwise correlations. Inferred model
parameters then give clues about the underlying network of
interactions between the variables.

When the “true” model is uncertain, in practice one often
searches for the maximum entropy, or least constrained [25],
model capable of reproducing the data. The Ising model is the
maximum entropy model capable of reproducing the one- and
two-point statistical constraints between binary variables, e.g.,
the activity of a population of neurons, which are either silent or
emit a spike within a certain time window. When the variables
take more than two values, for example, specifying the amino
acid present at each site in a protein sequence, the Potts model
is a natural extension. In both cases the computational problem
consists of finding the set of couplings Jij (a,b), expressing
the interactions between the “symbol” a of variable i and
the symbol b of variable j , from the measured correlations
cij (a,b). This is referred to as the inverse Ising, or Potts,
problem. An exact solution generally requires computational
efforts increasing exponentially with the system size (number

of spin variables) N . Efficient and accurate approximation
schemes are thus required for the analysis of real data and a
host of methods have been developed with this goal in mind
[26–32].

Among the algorithms developed for solving the inverse
Ising and Potts problems, the mean-field (MF) inference
procedure is certainly the simplest. MF is fast as it runs in a
time growing polynomially with N . MF simply approximates
the coupling matrix with minus the inverse of the correlation
matrix, a result which would be exact for Gaussian distributed
variables but which is only approximate for the Ising or the
Potts model. This method has been shown to give very good
results for various biologically motivated problems, such as
the study of amino acid covariation in proteins [4–6] and
multielectrode recordings of neural activity [33].

Despite its popularity, key ingredients for the success of
MF inference remain poorly understood. In particular, an
essential ingredient of the inference from real data is the
presence of a regularization term ensuring that the inverse
problem is always well defined. To this aim L1- or L2-norm
regularization of the couplings, or pseudocount regularization
of the correlations, can be used [26]. However, from a Bayesian
point of view the optimal strength of these regularization terms
is expected to decrease with the level of the noise and should
vanish in the limit of perfect sampling. Empirical studies
show that this is not the case for MF inference: The best
performance of MF inference is achieved only in the presence
of very strong regularization. Predictions of contacts between
residues on protein folds based on MF inference are optimal
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when the regularization terms are very strong, without any
apparent dependence on the number of data [4–6,34]. Another
related finding which has lacked any explanation so far is why
pseudocounts are generally better than other regularization
schemes, such as L2- or L1-norm regularization of couplings,
when combined with MF inference.

Here we explore the performance of various regularization
schemes for MF inference on Ising and Potts models, and the
reasons behind their success, through the analytical analysis of
small model spin systems combined with extensive numerical
studies of larger systems. First, we show that abnormally strong
regularization is necessary to correct for errors produced by the
MF approximation itself, which we explain using the simplest
case of models with few variables (N = 2,3). In addition
we show that, in systems with homogeneous interactions,
pseudocounts and L2-norm regularization are performing
similar functions but not L1. When the (Ising or Potts) model
includes a large number N of spin variables we show based on
numerical simulations that the same phenomenon takes place:
Large regularization is necessary, but pseudocounts do a better
job than L2 for strongly heterogeneous networks. We explain
why this is so using analytical arguments based on the analysis
of the O(m) continuous spin model for large but finite m. MF
is exact for this model in the m → ∞ limit, and we show
that the optimal pseudocount remains finite in the absence
of sampling noise: The optimal penalty is of the order of 1

m
,

which estimates the deviation of the model with respect to
Gaussianity. Moreover, inference is less affected by sampling
noise when using large pseudocount than when using a large
L2-norm. Finally, we show that inference performances, even
with large pseudocount, may be much poorer for the Potts than
for the Ising model, especially so when the symbols on each
site largely differ in their frequencies. Our study therefore
provides a strong basis for the use of large regularization
penalties with mean-field inference, which thus far had been
totally empirical.

The paper is organized as follows. In Sec. II we present
the different regularization schemes studied in the paper and
briefly recall how couplings are inferred from correlations
within the Gaussian (MF) approximation. In Sec. III we present
a detailed analysis of the error of inference due to MF and how
those errors are corrected, with varying success, in the presence
of regularization. Section IV reports the performances of the
MF as a function of the regularization strength based on
extensive numerical simulations of Ising and Potts models
and with diverse interaction distributions and structures. The
statistical mechanics of the O(m) model and results regarding
the optimal value of the regularization penalty with MF
inference are presented in Sec. V. Conclusions are proposed
in Sec. VI.

II. REMINDER ON MEAN-FIELD INFERENCE
AND REGULARIZATION

The mean-field approximation consists, as far as inference
is concerned, of approximating the Ising (or the Potts) model
couplings with the off-diagonal elements of minus the inverse
of the correlation matrix. We recall below that this result can be
found for the Ising model within the Gaussian approximation
(Sec. II A), where the discrete nature of the spin variables

is omitted. Section II B briefly presents the regularization
schemes studied here, namely the pseudocount and the L2-
norm (as well as the L1-norm). Specificities of the inference
applied to the Potts model are discussed in Sec. II C.

A. Inference of couplings within the Gaussian approximation

In the Gaussian approximation the differences between
the Ising spin variables σi = 0,1 and their empirical average
values,

σ̂i = σi − 〈σi〉, (1)

are assumed to be drawn from a Gaussian distribution, with
zero mean and empirical covariance matrix cij = 〈σ̂i σ̂j 〉 =
〈σiσj 〉 − 〈σi〉〈σj 〉. The likelihood of a configuration is

P (σ̂1, . . . ,σ̂N ) =
√

det Ĵ

(2 π )N/2
exp

(
−1

2

∑
i,j

Ĵij σ̂i σ̂j

)
, (2)

where the off-diagonal elements of the Ĵ matrix coincide
with the opposite of the couplings: Ĵij = −Jij , for all i �= j .
Contrary to the Ising or Potts model the diagonal elements of
Ĵ are important to define the measure (2), and their values will
be specified later.

In the formulas above 〈·〉 denotes the empirical average
over the data set, composed of B independently sampled
configurations of the model. The log-likelihood of the data
within the Gaussian model (2) is a function of its empirical
covariance, given by

L(c|J ) = B

2
(−trace(Ĵ c) + log det Ĵ ). (3)

Maximization of L over Ĵ for a fixed c gives Ĵ = c−1. For the
off-diagonal entries we obtain

Jij = −Ĵij = −(c−1)ij , (4)

while the diagonal couplings Ĵii are Lagrange parameters
enforcing the N conditions 〈σ̂ 2

i 〉 = 〈σi〉(1 − 〈σi〉) for 0,1
spins or 〈σ̂ 2

i 〉 = 1 − 〈σi〉2 for ±1 spins. Hence, inference
with the Gaussian model provides the same expression for
the couplings as the mean-field approximation [35]. In the
following, we will use the subscript MF to refer to the
couplings given by expression (4).

B. Regularization schemes

Empirical averages are computed from a finite number
B of configurations, and therefore the correlation matrix
c is not always invertible. Zero modes are found when
some configurations of variables are never sampled, e.g.,
when variables σi and σj are equal in all B configurations.
The invertibility of a the correlation matrix can be ensured
by introducing some form of regularization to the model.
From a Bayesian point of view, such terms can be thought
of as the contribution of prior distributions for the model
parameters, and their amplitude should vanish in the limit of
perfect sampling (B → ∞). Below we review three popular
regularization schemes: pseudocount and the L1- and L2-
norm regularization of couplings. For the sake of simplicity,

012132-2



LARGE PSEUDOCOUNTS AND L2-NORM PENALTIES . . . PHYSICAL REVIEW E 90, 012132 (2014)

definitions are given for the Ising model, the extension to the
Potts case being straightforward.

1. Pseudocount

A very simple regularization scheme consists in adding
extra “pseudo” observations to the real data in order to
cure singularities caused by strong correlations. For instance,
consider the case of a frozen variable, e.g., such that σi = 0 in
all B configurations in the real data; σi could be given value 1
in a pseudo (B + 1)th configuration. This is the “pseudocount”
method, popular in the analysis of protein sequence data in
biology, which can be interpreted in terms of a Dirichlet prior
distribution for the observation of each state of the σi [36].
Typically, one chooses a prior distribution in which each value
of σi is considered equally likely. In this case the pseudocount
changes the frequencies and correlations in the following way:

〈σi〉 → (1 − α) 〈σi〉 + α

2
,

(5)
〈σiσj 〉 → (1 − α) 〈σiσj 〉 + α

4
(i �= j ),

for 0,1 spins and

〈σi〉 → (1 − α) 〈σi〉, 〈σiσj 〉 → (1 − α) 〈σiσj 〉 (i �= j ),

(6)

for ±1 spins. Diagonal terms are constrained to 〈σ 2
i 〉 = 〈σi〉

for σi = 0,1, and 〈σ 2
i 〉 = 1 for σi = ±1. The amplitude α

determines the strength of the pseudocount. We expect α to
vanish as B → ∞, as regularization should not be necessary in
the case of perfect sampling (assuming all the fields and all the
couplings in the underlying model for the data are finite). The
frozen-variable example given above amounts to choosing α =
αB = 2

B+1 . Note, however, that pseudocount regularization can
be applied to any data, even in the absence of frozen variables.

2. L1- and L2-norm regularization of couplings

Another possibility to prevent couplings from being infinite
is to consider a prior probability distribution for the couplings
which discounts large coupling values. The log of the prior
distribution then adds to the log-likelihood (3), with the
contribution

�L(J ) = −γ B

2

∑
i<j

J 2
ij (7)

in the case of a Gaussian prior with variance (γ B)−1 and
mean zero. We have factored out B in (8) to allow for a direct
comparison with the log-likelihood of the data set (3), which is
proportional to B. In principle, the prior should depend neither
on the data, nor on their number, B. Hence γ is expected to
scale as 1

B
and to vanish in the case of perfect sampling. In the

following we use the following L2 regularization, instead of
(7):

�L(J ) = −γ B

2

∑
i<j

pi (1 − pi) pj (1 − pj ) J 2
ij , (8)

where pi = 〈σi〉 are the empirical averages of the binary vari-
ables. The reason is that the coupling matrix J maximizing the

log-likelihood L(c|J ) + �L(J ) can be analytically calculated,
see Eqs. (21) and (35) in Ref. [37] with J = Id − J′.

Another frequently used regularization scheme is L1-norm
regularization of the couplings, corresponding to a Laplacian
prior distribution, which gives to the following additive
contribution to the log-likelihood:

�L(J ) = −γ B
∑
i<j

|Jij |. (9)

L1-norm regularization favors zero instead of small couplings
and produces sparse interaction graphs. In the following
analysis we will see that the L1-norm regularization is less
adequate than the two other schemes presented here for
mean-field inference. No analytical expression exists for the
optimal J . However, it can be found in a polynomial time
using convex optimization techniques [38].

C. Case of the Potts model

The Potts model is a generalization of the Ising model
in which each spin can take q � 2 values, hereafter called
symbols, a = 1,2, . . . ,q. A mapping can be made onto the
Ising model through the introduction of binary spins, σa

i = 1
if spin i carries symbol a, and σa

i = 0 otherwise. Any N

Potts-spin configuration {ai} can be uniquely written as an
N × q Ising-spin {σa

i } configuration through this mapping.
Reciprocally admissible Ising-spin configurations are such that
the constraints ∑

a

σ a
i = 1 (10)

hold for all sites i. In other words, at each site i, there is one
and only one Ising spin equal to 1, with the remaining q − 1
spins being equal to zero.

The Hamiltonian of the Potts model may then be recast as
an Ising Hamiltonian,

H [{ai}] ≡ −
∑

i

hi(ai) − 1

2

∑
i �=j

Jij (ai,aj )

= −
∑

i

hi(a) σa
i − 1

2

∑
i �=j

Jij (a,b) σa
i σ b

j . (11)

Due to the constraints (10) the local fields and the coupling pa-
rameters hi(a),Jij (a,b) can be concomitantly changed, with-
out affecting the Hamiltonian. One can check that H is invari-
ant under the change Jij (a,b) → Jij (a,b) + Kij (b),hi(b) →
hi(b) −∑

j (�=i) Kij (b) for arbitrary K . This invariance is called
gauge invariance. In the following, we will restrict to one
particular gauge, called zero-sum gauge, where for every pair
of sites (i,j ), the sums of couplings along each column and
each row of the q × q coupling matrix Jij (a,b) vanish.

The MF inference procedure presented in Sec. II A can be
readily applied to the Ising representation of the Potts model.
We obtain that the inferred coupling matrix, J MF

ij (a,b) is the
pseudoinverse of the correlation matrix, cij (a,b) = 〈σa

i σ b
j 〉 −

〈σa
i 〉〈σb

j 〉. The pseudoinverse must be considered here in order
to invert the correlation matrix in the N (q − 1)-dimensional
subspace orthogonal to the constraints (10).
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III. EFFECTS OF REGULARIZATION SCHEMES:
A TOY-MODEL ANALYSIS

In this section we consider the effects of regularization
through the analysis of very simple models with two or
three spins only. For simplicity we will focus on the Ising
model when exploring generic properties of regularized MF
inference. Results particular to Potts models are discussed in
Secs. III E 1 and III E 2.

In the following, we first infer the coupling between the
spins using various regularization schemes and compare the
outcome to the true value when sampling is perfect. We find
that the MF approximation introduces errors into the inferred
couplings, which can be corrected by strong regularization
terms. In the Potts model case, the optimal regularization
strength is found to depend on the number of symbols. We then
investigate the effect of poor sampling on the pseudocount
performance. Finally, we consider the case of nonuniform
couplings. Here we find that uniform L2-norm regularization
is suboptimal when couplings are strongly heterogeneous, and
in this case the pseudocount offers superior results compared
to L2-norm regularization.

A. Ising models: Case of perfect sampling

1. Mean-field overestimates strong couplings

Let us consider two spins σ1,σ2 = ±1 which are coupled
through an interaction J12 = J , with no local fields (h1 = h2 =
0). The magnetizations 〈σ1〉,〈σ2〉 vanish, and the correlation is
c12 = 〈σ1σ2〉 = tanh J . The 2 × 2 correlation matrix therefore
has elements unity on the diagonal and c12 on the off-
diagonal. Using (4) we obtain the inferred coupling within
MF approximation,

J MF(J ) = c12

1 − c2
12

= tanh J

1 − tanh2 J
= 1

2
sinh 2J. (12)

The MF prediction is plotted versus the true coupling J

in Fig. 1. The inferred coupling is in good agreement
with the true value only for small couplings (|J | < 1) and
diverges very quickly, |J MF| ∼ 1

4e2|J |, as J increases. The MF
approximation drastically overestimates strong couplings.

2. Strong regularizations with pseudocount or L2 correct
for MF errors

We start with the pseudocount regularization of intensity α,
see (6). The inferred coupling is given by

J PC(J,α) = (1 − α) tanh J

1 − (1 − α)2 tanh2 J
. (13)

The MF prediction with pseudocount (PC) regularization,
J PC(J,α), is plotted versus the true coupling J in Fig. 2(a)
for various values of α. Unlike pure MF inference (α = 0),
J PC saturates for very large couplings J to a finite value,
J PC(∞,α) = (1 − α)/(α(2 − α)). For intermediate couplings
|J | < J PC(∞,α) we find that the agreement between J PC

and J is remarkably good for α 
 0.2. Hence the pseudocount
with a large intensity (compared to the inverse of the number
of data, which is infinite here since sampling is perfect) can
correct for the dramatic overestimation of large couplings by
the mean-field approximation. Couplings weaker in absolute

-2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4JMF

J

FIG. 1. Coupling J MF inferred with the mean-field approximation
(12) overestimates the true coupling value J (dotted line) in a system
of two spins when J is large (in absolute value).

value than the saturation value J PC(∞,0.2) are precisely
inferred, while larger couplings cannot be distinguished from
J PC(∞,α).

A similar correction can be achieved with the L2 reg-
ularization. Adding the penalty term (8) to the mean-field
expression for the log-likelihood (3) and maximizing over
the 2 × 2-coupling matrix J we find that the off-diagonal
coupling, JL2 (J,γ ), is the root of the following implicit
equation:

tanh J = JL2 (J,γ )

[
γ + 2

1 +
√

1 + 4 JL2 (J,γ )2

]
. (14)

Figure 2(b) compares the outcome to the true coupling for
various values of γ . As in the pseudocount case JL2 saturates
for very large couplings J to a finite and γ -dependent value,
approximately equal to 1/

√
2γ for small γ . For intermediate

couplings we find that the agreement between JL2 and J is
very good for γ 
 0.13. Hence L2 regularization with a large
intensity (again, compared to the inverse of the number of
data, which is infinite here since sampling is perfect) avoids
the divergence at large couplings introduced by the mean-field
approximation, while being accurate for small coupling values.
We observe that the coupling saturation value for the optimal
γ with the L2-norm (
1.8) is, however, smaller than with the
pseudocount regularization (
2.2), compare Figs. 2(a) and
2(b); hence, the pseudocount regularization offers an accurate
inference over a slightly wider range of coupling values.
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FIG. 2. Coupling inferred with the mean-field approximation with (a) pseudocount of intensity α, J PC; (b) with L2-norm regularization of
intensity γ , J L2 ; (c) with the L1-norm regularization of intensity γ , J L1 , vs true coupling value J (dotted line) for a system of two spins. Due
to the symmetry J → −J only the positive quadrant is shown.

3. L1-norm regularization is less accurate than
pseudocount and L2

We now consider the L1-norm regularization of intensity
γ , obtained by adding the penalty term (9) to the log-
likelihood (3). An immediate calculation shows that the total
log-likelihood is maximized by the coupling value

JL1 (J,γ ) =
{

tanh J−γ

1−(tanh J−γ )2 if γ � tanh J,

0 if γ � tanh J.
(15)

The expression above for holds for positive J ; for negative
J we have JL1 (J,γ ) = −JL1 (|J |,γ ). The inferred coupling
JL1 (J,γ ) is plotted versus the true coupling J in Fig. 2(c) for
various values of γ . As with pseudocount and L2 JL1 saturates
for very large couplings J to a finite value, JL1 (∞,α) =
(1 − γ )/(γ (2 − γ )). The novelty is that the inferred coupling
vanishes for small J . Overall, for intermediate couplings
|J | < JL1 (∞,α), the agreement between JL1 and J is less
precise than what can be achieved with the pseudocount and
L2 regularization when, respectively, α and γ are properly
chosen. In Ref. [33] the inferred Ising couplings are compared
with Gaussian couplings with L1- and L2-norms on neural
data coming from multielectrode recordings. Also on these
data sets, in agreement with previous findings, L2 performs
better over L1 and large regularization strengths are needed to
improve the inference.

B. Performance of pseudocount as a function
of the sampling quality

We now focus on the pseudocount scheme. We assume that
a number, say, B, of configurations of the two spins are drawn
at random, from the Ising model measure,

PJ (σ1,σ2) = eJσ1σ2

2(eJ + e−J )
. (16)

The magnetizations p1 ≡ 〈σ1〉 and p2 ≡ 〈σ2〉, and the corre-
lation p12 ≡ 〈σ1σ2〉 are then computed as empirical averages
over the data. The joint probability density for these three

quantities is given by

ρ(p1,p2,p12; B,J )

=
∑

0�B++,B+−,B−+,B−−�B

(
B

B++,B+−,B−+,B−−

)

× eJ (B++−B+−−B−++B−−)

(2(eJ + e−J ))B

× δ

(
p1 − B++ + B+− − B−+ − B−−

B

)

×δ

(
p2 − B++ − B+− + B−+ − B−−

B

)

×δ

(
p12 − B++ − B+− − B−+ + B−−

B

)
. (17)

We then define the average squared relative error on the
inferred coupling as

ε(B,J,α) =
∫ 1

0
dp1 dp2 dp12 ρ(p1,p2,p12; B,J )

×
[
J PC(p1,p2,p12,α)

J
− 1

]2

, (18)

where

J PC(p1,p2,c12,α) = J MF[(1 − α)p1,(1 − α)p2,(1 − α)c12

+α(1 − α)p1p2], (19)

J MF(p1,p2,c12) = c12(
1 − p2

1

)(
1 − p2

2

)− c2
12

,

are the PC and MF predictions for the coupling given the
magnetizations p1,p2 and the connected correlation c12 =
p12 − p1p2. These expressions extend formulas (12) and (13)
to the case of nonzero magnetizations.

Peculiar samples for which J PC and J MF diverge, e.g., such
that p1 = p2 = 0 and p12 = −1, may happen with nonzero
(albeit exponentially small in B) probabilities. To get a well-
defined and finite expression for the squared error in (18) we
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replace the term squared within parenthesis with the minimum
of this term and one. The latter constant is arbitrary; any other
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FIG. 3. Relative squared error ε(B,J,α) (18) between the inferred
coupling with pseudocount of intensity α and the true coupling for
a system of two spins as a function of the number B of sampled
configurations. Each panel corresponds to one value of α and each
curve to one value of J . Pseudocount decreases the error on inferred
couplings even when the couplings are weak, or sampling is large,
but regularization that is too large leads to worse performance.

choice would lead to e−O(B) changes to the error. With our
choice, the relative square error cannot be larger than unity by
construction.

We show in Fig. 3(a) the relative square error as a function
of B in the absence of pseudocount (α = 0). We observe
that the error is small for small couplings J if the number
B of configurations is large and increases rapidly with J ,
in agreement with the findings of Fig. 2(a). For the optimal
value of the pseudocount strength, α = 0.2, the relative error
is a decreasing function of B and saturates to a small value
for all couplings, see Fig. 3(b); larger couplings produce larger
correlations and are easier to recover (require a smaller number
of configurations) than smaller interactions. If the pseudocount
strength is too large, e.g., α = 0.4, the error saturates to a finite
and larger value, as shown in Fig. 3(c). We conclude that the
presence of a pseudocount with fixed strength compensates the
errors due to the mean-field approximation, even for a small
number of sampled configurations.

C. Network effects on zero interactions

An important question is to estimate network effects on the
performance of mean-field inference. In order to study this
point in a simple case we consider a system of three spins,
with zero external fields and couplings J12 = J13 ≡ Ĵ0 and
J23 ≡ Ĵ1 �= Ĵ0. We assume that sampling is perfect and derive
the spin-spin correlations pij ≡ 〈σiσj 〉, with 1 � i < j � 3.
We obtain

p12 = p13 = e2Ĵ1 sinh(2Ĵ0)

e2Ĵ1 cosh(2Ĵ0) + 1
,

(20)

p23 = e2Ĵ1 cosh(2Ĵ0) − 1

e2Ĵ1 cosh(2Ĵ0) + 1
,

while all three magnetizations vanish. We infer the three
coupling values with the MF approximation by maximizing
the log-likelihood LMF(c|J ), where J is given by (22) and the
regularized correlation matrix is

c =
⎡
⎣ 1 (1 − α)p12 (1 − α)p12

(1 − α)p12 1 (1 − α)p13

(1 − α)p12 (1 − α)p13 1

⎤
⎦ . (21)

We specialize hereafter to the case Ĵ1 = 0 and ask whether
the mean-field inference procedure is able to detect that
this coupling vanishes; nonzero values for Ĵ1 are considered
in Sec. III D. Results are reported in Fig. 4. The inferred
coupling is correctly found to vanish for α → 1 (all connected
correlations vanish) and α → 0 (as sampling is perfect here).
However, for intermediate values of α, the inferred coupling
shows a nonmonotonic behavior and may reach very large
values, depending on the value of J0. The maximum is located
in α∗ 
 4/

√
3 × exp(−2Ĵ0),J ∗

1 
 (2 − √
3)/8 × exp(2Ĵ0) at

the leading order in Ĵ0. Hence, at small (but nonvanishing)
pseudocount, mean field assigns a large value to a coupling
whose true value is zero. The origin of the inferred nonzero
coupling can be easily understood. In the absence of coupling
between sites 1 and 3 the correlation p13 is equal to the product
of the correlations p12 and p13. After the pseudocount is
introduced, all correlations are multiplied by a factor (1 − α),
and the correlation p13 is now larger (by a factor 1 − α) than the
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FIG. 4. Mean-field prediction for the coupling Ĵ1 as a function
of the pseudocount strength α (log-log scale). The true interaction
network connects three spins, with two couplings equal to Ĵ0 (values
shown) and one vanishing coupling Ĵ1. The vertical dashed line
locates αMF 
 0.2.

product of the two other regularized correlations. As a result,
a fictitious positive coupling is inferred to account for this
excess in correlation. This artifact is cured by the introduction
of a large pseudocount. For α = αMF the inferred J1 remains
small whatever the value of Ĵ0 (Fig. 4).

D. Efficiency of uniform regularization for
nonuniform couplings

We now ask whether a regularization scheme with uniform
penalties, i.e., equal for all pairs (i,j ) is appropriate in
the case of a network of interactions with heterogeneous
interactions. We start to investigate this issue with the L2-norm
regularization and the 3-spin model described above. We
infer the three coupling values with MF by maximizing the

log-likelihood LMF(c|J ), where

J =
⎛
⎝K0 J0 J0

J0 K1 J1

J0 J1 K1

⎞
⎠ , c =

⎛
⎝ 1 p12 p12

p12 1 p13

p12 p13 1

⎞
⎠ , (22)

with an additive L2-penalty term given by (8). In the following,
rather than fixing the values for Ĵ0,Ĵ1 and calculating the
inferred couplings J0,J1, we do the opposite. The reason is that
the maximization equations are complicated implicit equations
over J0,J1 for given Ĵ0,Ĵ1 and are simpler to solve for Ĵ0,Ĵ1

given the values of J0,J1.
We show in Fig. 5(a) the relative squared error between the

true and inferred values for the couplings, as a function of J1

for a fixed J0 = 1. The value of the penalty is chosen to be
γ = 0.13, see Fig. 2(b). We observe that the relative squared
errors are small when J1 and J0 are close to each other as
expected. However, when J1 departs from the value of the
other couplings, J0, the relative error on J1 becomes large. We
conclude that imposing uniform L2 penalties is not optimal
for nonuniform couplings and can lead to substantial errors in
the inferred couplings.

We now consider the pseudocount regularization. Cou-
plings are computed by inverting the correlation matrix (21).
We show in Fig. 5(b) the relative squared error between the
true and inferred values for the couplings, as a function of J1

for a fixed J0 = 1. The PC strength is chosen to be α = 0.2,
see Fig. 2(a). We observe that for a large range of values of
J1 compared to J0 the errors on both couplings remains small.
The accuracy is better than with the L2-norm regularization.

E. Potts model: Case of perfect sampling

1. Homogeneous case

We now consider a two-spin Potts model and denote by
q � 2 the number of spin symbols. The model has Hamiltonian
H (a1,a2) = −J0 δa1,a2 , where a1 and a2 are the symbols
corresponding to, respectively, spins 1 and 2. Each spin is
equally likely to be in any of the q symbols, and we will
hereafter refer to this model as the homogeneous Potts model.
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FIG. 5. Relative squared error over the couplings with (a) uniform L2-norm penalty and (b) uniform pseudocount for a system of three
spins, see text. The dotted lines in (b) reproduce the relative squared errors found for the L2-norm regularization in (a). Note the change in the
vertical axis scale.
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The Ising model is recovered when q = 2; note that, as the
difference between the energies of the equal-spin and different-
spin configurations is J in the Potts model, the corresponding
Ising model coupling is J/2. In the following we will express
the q × q coupling matrix J in a specific gauge, in which the
sum of couplings over a row or a column of the matrix vanish

J =

⎛
⎜⎜⎜⎝

JA JB JB . . . JB

JB JA JB . . . JB

JB JB JA . . . JB

. . . . . . . . . . . . JB

JB JB JB JB JA

⎞
⎟⎟⎟⎠

(23)
with JA = q − 1

q
J0, JB = −J0

q
.

The two-spin correlations are

〈δσ1,aδσ1,a〉 = 〈δσ2,aδσ2,a〉 = 1

q
,

〈δσ1,aδσ1,b〉 = 〈δσ2,aδσ2,b〉 = 0,
(24)

〈δσ1,aδσ2,a〉 ≡ paa = eJ0

q(eJ0 + q − 1)
,

〈δσ1,aδσ2,b〉 ≡ pab = 1

q(eJ0 + q − 1)
,

where a and b denote different spin symbols. The 2q × 2q

entries of the connected correlation matrix C can be computed
from those values, after subtraction of 1/q2.

Note that the sum of the elements of C over a line or a
column is equal to zero. This property of C reflects the fact
that each spin takes one symbol value. To obtain the mean-
field prediction for the coupling, JMF, we consider minus the
pseudoinverse of C. Again, the sum of the elements of JMF over
a line or a column is equal to zero. The inferred Potts couplings
J MF

A and J MF
B correspond to, respectively, the diagonal and

off-diagonal entries of the off-diagonal q × q blocks of JMF.
Some simple algebra gives

J MF
A (J0,q) = q(q − 1)(paa − pab)

1 − q2(paa − pab)2
,

(25)
J MF

B (J0,q) = − q(paa − pab)

1 − q2(paa − pab)2
,

where the correlations paa and pab are given in (24). The
MF inferred couplings are shown as functions of J0 for
different q in Fig. 6(a). For each value of q there are two
branches corresponding to JA and JB . The upper branch JA

coincides with the lower branch JB after rescaling of J and
J MF by the factor −1/(q − 1). As in the Ising case, the MF
prediction is quantitatively correct for weak couplings but
strongly overestimates the right coupling value for large J

(in absolute value). Contrary to the Ising case there is an
asymmetry between the positive and negative values of J (for
q � 2) along each branch JA or JB .

In the presence of a pseudocount of strength α the difference
of the correlations paa − pab is multiplied by (1 − α). We can
use again formula (25) to obtain the corresponding couplings,
which we denote by J PC

A and J PC
B . Results for q = 5 symbols

and three values of the pseudocount, ranging from α = 0.25
to 0.55, are shown in Fig. 6(b). As in the Ising case we
find that the inferred coupling J PC saturates to a finite value
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B
(a)

JMF
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(b)

JPC

J

J
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FIG. 6. Homogeneous q-symbol Potts model. Couplings in-
ferred with the mean-field approximation, J MF

A (J0,q) (diagonal) and
J MF

B (J0,q) (off-diagonal), vs true values coupling JA and JB in
(23). Curves were obtained through a parametric representation with
J0 running from −4 to 4; longer stretches would be obtained by
increasing the range of values for J0. The dashed line represents
the J MF = J curve. (a) No pseudocount. (b) With a pseudocount of
strength α (see values in the figure) and for q = 5 symbols.

when J → ±∞. There is an optimal value of the pseudocount
strength α such that the inferred and true coupling values are
close to one another for positive JA, and negative JB . We ob-
serve, however, that for negative JA and positive JB , the
pseudocount is not able to correct the errors produced by the
MF approximation.

We may define the optimal pseudocount αMF(q) as the
largest value of α such that J PC = J has a nonzero solution (for
positive JA or, equivalently, for negative JB). In other words,
when α = αMF(q), the representative curve for the inferred
coupling touches the J PC = J line tangentially [dotted line in
Fig. 6(b)]. The value of αMF(q) is shown as a function of q in
Fig. 7 for q ranging between 2 and 20. We observe a monotonic
increase of the optimal pseudocount with q, from α 
 0.2 for
q = 2 to 
 0.74 for q = 20. Our finding is in good agreement
with empirical works on protein covariation, where the
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FIG. 7. Optimal pseudocount strength αMF(q) as a function of the
number of Potts symbols, q. The dotted line serves as a guide to the
eye.
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FIG. 8. Heterogeneous q-symbol Potts model. Couplings inferred with the mean-field approximation, J MF
L (J0,J1,q = 5) (left) and with a

pseudocount J PC
L (J0,J1,q = 5,α = 0.4) (right), vs true couplings JL(J0,J1,q); L = A,B,C,D labels the four different branches. The value

of the pseudocount strength α = 0.4 has been chosen according to Fig. 7. Curves were obtained through a parametric representation with J0

running from −8 to 8; longer stretches would be obtained by increasing the range of values for J0. Top: “Weak” bias (J1 = 3); bottom: “strong”
bias (J1 = 5).

pseudocount is often taken to be 0.5 but may vary between 0.3
and 0.7 depending on the protein family under consideration.

2. Heterogeneous case

We will now study a simple heterogeneous case, in which
one of the q symbols, say a = 1, has a larger frequency than
the other symbols. To do so we consider the Hamiltonian
H (a1,a2) = −J0 δa1,a2 − J1 δa1,1(1 − δa2,1) for the two spin

symbols on the two sites. The coupling parameter J1 acts as a
field along the a = 1 direction. The frequency p1

i of the first
symbol, a = 1, is the same on both sites and is larger than
1
q

if J1 > 0, and smaller than 1
q

if J1 < 0. All other symbols

a = 2, . . . ,q are equally likely with a frequency 1−p1
i

q−1 .
In the zero-sum gauge, in which the sums of couplings

along each row and each column vanish, the coupling matrix
reads

J =

⎛
⎜⎜⎜⎜⎜⎝

JA JB JB JB . . . JB

JB JC JD JD . . . JD

JB JD JC JD . . . JD

JB JD JD JC . . . JD

. . . . . . . . . . . . . . . JD

JB JD JD JD JD JC

⎞
⎟⎟⎟⎟⎟⎠ with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

JA = q−1
q

J0 − (q−1)2

q2 J1,

JB = − J0
q

+ (q−1)
q2 J1,

JC = q−1
q

J0 − J1
q2 ,

JD = − J0
q

− J1
q2 .

(26)

The off-diagonal q × q block of minus the pseudoin-
verse of the correlation matrix is the coupling matrix JMF

within the MF approximation, which fulfills the same gauge
condition as J. We obtain four couplings J MF

L (J0,J1,q),
which can be compared to the four couplings JL(J0,J1,q)
defined in (26), with L = A,B,C,D. The homogeneous case,
studied in the previous section, is recovered when J1 = 0.
In this case we have degenerate couplings: JA = JC and
JB = JD .

Figure 8 shows the couplings inferred with the MF
approximation against their true values for the q = 5-symbol
Potts model, in a “weakly” biased case (top row, corresponding
to J1 = 3) and in a “strongly” biased case (bottom row,
corresponding to J1 = 5). Note that the terms “weak” and
“strong” have no absolute meaning here, as the bias is not
constant when J0 varies. In the weak-bias case, we observe
that the degeneracy between the couplings is lifted compared
with the q = 5 curves in Fig. 6(a). As the bias gets stronger
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(Fig. 8, bottom and left), the branches corresponding to
JB and JD show markedly different behavior; for instance,
the discrepancy between the inferred and true values of the
couplings JB may largely exceed the errors on the diagonal
couplings JA and JC . Varying the value of q does not
qualitatively affect the results above, with the exception that
the off-diagonal couplings JB,JD become smaller as q grows,
in agreement with Fig. 6(a).

The introduction of a large pseudocount corrects, to some
extent, the errors resulting from the MF approximation, see
Fig. 8, right panels. Two remarks can be made. First, the quality
of the inference is better for the couplings corresponding to the
symbols with high probability, here JA and JB , as σ1 = 1 is the
most frequent symbol for J1 > 0, see (26). Second, when
the bias increases, the quality of the inference does not decrease
much for the couplings associated to frequent symbols (JA,JB )
but strongly deteriorates for the other couplings (JC,JD). As a
consequence, the inferred couplings occupy a larger part of the
J PC < J,J > 0 and J PC > J,J < 0 portions of the (J,J PC)
plane.

IV. NUMERICAL SIMULATIONS FOR LARGE SYSTEMS

To better understand mean-field inference on larger, more
realistic data sets, we have tested the accuracy of the interaction
graph recovered by pseudocount and L2-regularized MF
inference for a variety of Ising (Sec. IV A) and Potts models
(Sec. IV B).

A. Results for the Ising model

We have tested Ising models with different network topolo-
gies and random distributions of the couplings and using
differing numbers of samples to compute the correlations
(Fig. 9). All the simulations reported in this section were
performed with spins taking the values 0,1.

The accuracy of the MF inference was quantified in two
ways. First, we considered the standard root-mean-square
(rms) error between the inferred couplings J inf and those in
the true model J true,

�J =
√√√√ 2

N (N − 1)

∑
i<j

(
J inf

ij − J true
ij

)2
, (27)

where N is the system size. The rms error captures the
absolute difference between the true and inferred couplings
but is unable to clearly distinguish whether the relative
ordering of the couplings has been correctly inferred. This
limitation is problematic since many practical applications,
such as the prediction of protein contacts from MF in-
ference on sequence data [4,5,34], rely on proper rank
ordering of the inferred couplings rather than their absolute
magnitude.

Information about the correct rank ordering can be deter-
mined from the rank correlation between the true and inferred
couplings. To do this, we assigned each true coupling a rank
according to its absolute value, with the largest coupling as-
signed rank 1, and the smallest rank nNZ, where nNZ is the total
number of nonzero couplings. All couplings exactly equal to
zero are simply assigned rank nNZ + 1. We then computed the
Pearson correlation ρJ between the rank of the top nNZ inferred
couplings and their true counterparts, measuring how well the
ordering of the top inferred couplings matches the true ordering
in the underlying model. Letting {ik,jk}, with k = 1, . . . ,nNZ,
denote the pair indices of the largest nNZ inferred couplings,
this is

ρJ = 1

σr(J true) σr(J inf )

nNZ∑
k=1

(
k − nNZ + 1

2

) [
r
(
J true

ikjk

)− r̄ true
]
.

(28)

FIG. 9. (Color online) Representation of tested model parameters. Fields and nonzero couplings were selected according to model (a), all
fields and couplings normally distributed with means h̄ = 0, J̄ = 0 and standard deviations σh, σJ , respectively, or model (b), strong negative
fields and couplings normally distributed with means h̄ = −5, J̄ = 1 and standard deviations σh, σJ . Distributions for fields are shaded dark,
values for couplings are light. (c) For each model a range of σh (dark) and σJ (light) was tested. (d) Correlations used for the MF inference
were computed using B samples from a Monte Carlo simulation of the model, with B tested over a range from 500 to 106. All permutations of
the above parameters were considered for each choice of the network topology: (e) Erdős-Rényi graph where edges are kept with probability
p = 2/N or p = 4/N and (f) 1D lattice with nearest-neighbor couplings. In all cases we take the system size N = 100.
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FIG. 10. (Color online) Typical example trajectory of inference quality as a function of the regularization strength for a single randomly
chosen set of couplings and fields. At larger regularization strengths the inferred couplings are similar in magnitude to the true couplings, but
at lower regularization strengths the value of the strongest inferred couplings begins to diverge. The true model is a 1D spin chain, with zero
fields and couplings normally distributed with mean zero and standard deviation σJ = 3. B = 105 Monte Carlo samples were used to compute
the correlations used for the MF inference. (a) rms error �J (27) (circles, left axis), rank correlation ρJ (28) (squares, right axis), and fraction of
nonzero couplings recovered R (triangles, right axis), as a function of the pseudocount α. [(b1), (b2), and (b3)] Comparison of true and inferred
couplings for the three pseudocount values α1,α2,α3 shown in panel (a) by dashed vertical lines. Dashed lines mark the J inf = J true lines. The
N largest (in absolute value) inferred couplings are denoted by open circles and others are denoted by squares; the cut-off number N is chosen
to match the number of nonzero couplings on the true interaction graph. Note the change of vertical scale between panels. The performance is
maximal for α = α1 ≈ 0.2. This value of the pseudocount agrees well with the optimal pseudocount for the Ising model αMF = 0.2 shown in
Fig. 7. The rank correlation is worse for α = α2 ≈ 0.002, as the inference procedure assigns large values to couplings equal to zero on the true
interaction network, see Sec. III C. For α = α3 = 2 10−5 
 αB those fake couplings have essentially disappeared; the inferred couplings have
much larger values than the true couplings but are correctly ordered (large rank correlation).

Here r(J ) is the rank of coupling J , r̄ the average rank, and
σr(J ) the standard deviation of the ranks. Note that since the
inferred couplings are ranked from 1 to nNZ, their average
rank r̄ inf = (nNZ + 1)/2. The fraction R of true nonzero
couplings included within the top nNZ inferred couplings
was also computed. In this way, we can assess how well the
inferred couplings recover real couplings from the underlying
model and the degree to which their relative ordering is
preserved.

1. Regularization improves the quality of mean-field inference:
An example on a 1D lattice

As a typical example, in Fig. 10 we show the performance
of the mean-field inference as a function of pseudocount for
a model system with nearest-neighbor interactions on a 1D
lattice and with a good sampling on B = 105 configurations.
As the pseudocount is lowered from its maximum at α = 1,

rms error �J (27) decreases and the rank correlation ρJ (28)
improves until a peak is reached at α 
 0.2 [Fig. 10(a)], in
excellent agreement with the optimal value of the pseudocount
strength necessary to correct the MF approximation, αMF =
0.2, theoretically found for the Ising system with two spins
(Fig. 7). At α 
 αMF the largest true couplings are recovered
well, and the inferred couplings are similar to the true ones in
magnitude [Fig. 10(b1)]. At lower values of the pseudocount
the largest inferred couplings are much larger than their true
counterparts, and couplings that are zero in the true model are
more likely to be inferred as large [Fig. 10(b2)]. This phe-
nomenon agrees with the results of Sec. III C and considerably
lowers the rank correlation. As the pseudocount strength is
decreased further to α3 
 αB = 1/B, we observe the rank
correlation ρJ and fraction of nonzero couplings recovered R

reach a high value again, as the couplings whose true values
are zero are correctly inferred with small values [Fig. 10(b3)].
Though the ordering is good, the inferred couplings have
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magnitude much larger than their true counterparts, which
produces large rms error �J compared to the α 
 αMF case
[Fig. 10(a)].

2. Scaling of the optimal regularization strength with sampling
depth and coupling strength on random graphs

Analysis presented in Sec. III suggests an optimal value
for the regularization strength needed to correct for errors
introduced by the MF approximation, which is independent
of the amount of data. In contrast, in a Bayesian framework
the regularization strength should scale as αB ∼ 1/B as the
sampling depth is increased, where B is the number of
independent samples, as described in Sec. II B. Our simulation
results agree with the former picture: The optimal regulariza-
tion strength α minimizing the rms error between the true
and inferred couplings is nearly independent of the sampling
depth B, even when the latter is varied over four orders of
magnitude. This is demonstrated in Fig. 11 for a system with
underlying interactions given by an Erdős-Rényi graph, but the
result is completely general, holding for every model we have
considered.

Independent of the value of B we find that the value of
the pseudocount α which gives the best performance (smaller
rms error �J , largest rank correlation ρJ , and fraction R

of recovered nonzero couplings) is typically of the order of
αMF = 0.2, as computed in Sec. III E 1 for Ising spins. The
rank correlation (28) [Fig. 11(a), middle] and the fraction
of nonzero couplings recovered [Fig. 11(a), bottom] reach
similar values with a small regularization strength 
αB for
very good sampling. For intermediate sampling depths the
performances show a saturation for pseudocount values α <

αB , see [Fig. 11(a), middle]. The nonmonotonic behavior of
ρJ and R is similar to the one reported in Fig. 10 and is due to

the large values erroneously assigned to zero couplings by the
mean-field inference procedure (Sec. III C).

It is important to stress that for the pseudocount the value of
the optimal regularization strength is also largely independent
of the strength of the interactions (Fig. 12). In the case of
very weak interactions and good sampling, MF inference is
almost exact: The nonmonotonic behavior observed in Fig. 10
is not present, and performance with or without pseudocount
is comparable.

3. Comparison of pseudocount and L2 regularization
performance on random graphs

We report the performances of L2 regularization in
Fig. 11(b) and Fig. 12(b). In Fig. 13 we compare the L2

and pseudocount scheme for one example system on a rel-
atively well-sampled Erdős-Rényi graph. Consistent with the
analytical arguments presented in Sec. III for small systems,
regularization improves the quality of couplings inferred via
MF in large systems for a wide variety of underlying models. In
particular, the rms error �J (27) is improved by regularization
unless couplings are weak or sampling is very good. In
the latter case, the rms error may slightly increase with the
pseudocount at intermediate values of α [Fig. 10(a)], due to
the presence of large inferred couplings, whose true values are
equal to zero [Fig. 10(b2)].

The pseudocount can substantially improve rank correlation
ρJ (28) as well as the fraction of true nonzero couplings
recovered R, particularly when sampling is poor. L2-norm
regularization has some effect on the rank correlation and
fraction of nonzero couplings recovered but tends to improve
them only slightly compared to couplings inferred via MF with
no regularization. Moreover in Fig. 11(b) (middle and bottom
panels) we show that with the L2-norm the value of the rank
correlation and the fraction of nonzero couplings depends,

FIG. 11. (Color online) Optimal values of the regularization strength are only weakly affected by sampling depth, even when varied over
the full range from B = 500 (lightest) to B = 106 (darkest). Trajectory of the rms error �J (27) (top), rank correlation ρJ (28) (middle), and
fraction of nonzero couplings recovered R (bottom) as the pseudocount α (a) and L2-norm regularization strength γ (b) is varied, averaged
over 103 sets of random couplings. Relevant values of the pseudocount are α = αMF = 0.2 and αB = 1/B, roughly where ρJ and R begin to
plateau for the pseudocount. Each random set of interactions has all fields set to zero. The coupling network is an Erdős-Rényi graph (N = 100
nodes) where edges are kept with probability p = 2/N . Nonzero couplings are normally distributed with mean zero and standard deviation
σJ = 3. Bars denote one half standard deviation over the sample.
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FIG. 12. (Color online) Varying the strength of the underlying interactions can shift the optimal value of the regularization strength.
Trajectory of the rms error �J (27) (top), rank correlation ρJ (28) (middle), and fraction of nonzero couplings recovered R (bottom) as
the pseudocount α (a) and L2-norm regularization strength γ (b) is varied, averaged over 103 sets of random couplings, over a range of
coupling distribution widths σJ = 1 (light), σJ = 2 (medium), and σJ = 3 (dark). Relevant values of the pseudocount are α = αMF = 0.2
and αB = 1/B = 10−4, roughly where ρJ and R plateau for the pseudocount. Each random set of interactions has all fields set to zero. The
coupling network is an Erdős-Rényi graph (N = 100 nodes) where edges are kept with probability p = 2/N . Nonzero couplings are normally
distributed with mean zero and standard deviation σJ . MF couplings were inferred from correlations computed from B = 104 Monte Carlo
samples of the true model. Bars denote one half standard deviation over the sample.

even at large regularization strengths, on the sampling depth.
In particular, for poorly sampled systems, a large regularization
γ does not improve as much as the one with the pseudocount

FIG. 13. (Color online) Performance of the pseudocount (a) and
L2-norm regularization (b) differ as a function of the regularization
strength, particularly in the behavior of the rank correlation. The rms
error �J (27) (circles, left axis), rank correlation ρJ (28) (squares,
right axis), and fraction of nonzero couplings recovered R (triangles,
right axis), as a function of pseudocount α and L2-norm regularization
strength γ , averaged over 103 sets of random couplings. Dashed lines
in (a) mark α = αMF = 0.2 and αB = 1/B = 10−3, roughly where ρJ

and R plateau for the pseudocount. Each random set of interactions
has all fields h = −5. The coupling network is an Erdős-Rényi graph
where edges are kept with probability p = 4/N . Nonzero couplings
are normally distributed with mean J̄ = 1 and standard deviation
σJ = 2. MF couplings were inferred from correlations computed from
B = 103 Monte Carlo samples of the true model. Bars denote one
half standard deviation over the sample.

regularization. The reason is that, even for the large values of
γ (=100) considered in Figs. 11 and 12, the effective penalty
acting on coupling between sites i,j is γ × [pi(1 − pi)pj (1 −
pj )], see Eq. (8), which can be much smaller than γ if pi or
pj are small. Hence the couplings incoming onto those sites
are essentially free of any regularization and may take large
values (differing substantially from their true values) when
the sampling depth is poor. Those large couplings completely
reshuffle the ordering and make poor values for ρJ and R.
This is not the case with large pseudocounts, as pi and pj

are bounded from below by α/2. As a consequence, the rank
correlation does not exhibit any local maximum at large γ with
L2 regularization.

Generally, we find that the pseudocount is well suited to
situations where the sampling depth is poor and where the
true interactions are strong. In such cases ρJ and R can
achieve much larger values than with L2 regularization, while
maintaining similar rms errors �J . This difference between
the pseudocount and L2-norm regularization schemes can be
understood through analysis of the O(m) model, presented in
Sec. V. Performance of the pseudocount can be sensitive to
changes in α, but the optimal value of α, while varying some
with the strength of the true interactions, is generically of the
same order as αMF (Fig. 7). Additionally, �J is typically small
in the same range of α that maximizes the rank correlation
and fraction of nonzero couplings recovered, making the
pseudocount particularly attractive in this regime.

L2 regularization can offer modest advantages compared
to the pseudocount when sampling is very good, if the true
couplings are not too strong. In these cases L2 regularization
can achieve slightly higher values of ρJ and R at large values
of γ , where the rms error �J is minimized. This method also
has the advantage of being much less sensitive to the value of
the regularization strength γ .
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B. Results for the Potts model

In this section we consider the Potts model, with q = 5
and q = 21 symbols. We report below results for a one-
dimensional interaction network, with N = 50 sites; the
qualitative conclusions we draw from the study of this model
are in agreement with simulations on other interaction network
geometries, not shown here. Two variants of this model will be
studied, depending on how the Potts interactions vary between
the symbols σi,σi+1 on neighboring sites along the chain,

(i) Homogeneous variant: For each pair of neighbors i,i +
1, we draw randomly a number, J0, uniformly between −L

and L and set all the q × q couplings of the interaction matrix
Ji,i+1 through (23). The process is repeated, independently, for
all N pairs of neighbors. The model is such that the q Potts
symbols have equal frequencies pa

i = 1
q

.
(ii) Heterogeneous variants: Extensions of the above

model to nonequal frequencies can be easily obtained. To do so
we consider a local field hi(a) on each site and symbol, which
is also, for simplicity, drawn uniformly at random from the
[−L,L] range. The explicit introduction of a field allows us
to increase the bias between the frequencies of the q symbols.
This model will be called the heterogenous-A model in the
following. We may, in addition to the introduction of random
fields, draw randomly, for each pair of neighbors i,i + 1,
and for each pair of symbols a,b, a coupling Ji,i+1(a,b),
uniformly between −L and L. Again, the process is repeated,
independently, for all pairs of neighbors. We refer to this model
as the heterogeneous-B model.

The values of the one- and two-point correlations are
obtained from Monte Carlo simulations with the Hamiltonian
(11) in the case of limited sampling (from B configurations)
and through a transfer matrix calculation in the case of perfect
sampling (B = ∞). The following reports results of the MF
inference, with and without pseudocount. In the latter case we
use the strengths α = 0.41 for q = 5 and α = 0.75 for q = 21.
Those choices correspond to the “optimal” pseudocount values
found in Sec. III E 1 (Fig. 7).

We make sure that the coupling matrices Ji,i+1 satisfy the
zero-sum gauge: The sum of all couplings along each column

and row of the coupling matrix vanish. The gauge is imposed
through

Ji,i+1(a,b) → Ji,i+1(a,b) − 1

q

q∑
a=1

Ji,i+1(a,b)

− 1

q

q∑
b=1

Ji,i+1(a,b) + 1

q2

q∑
a,b=1

Ji,i+1(a,b). (29)

This choice allows us to compare the original and the inferred
couplings.

1. Importance of the bias in frequencies on
the quality of inference

In this section we consider the perfect sampling (B =
∞) case, in the presence or the absence of a pseudocount
regularization. We start with the homogeneous variant. The
results of the MF inference are shown in Fig. 14(a). We
observe a perfect agreement with the analytical curves, see
(23) and (25), if no regularization is present. As a result of
the presence of the pseudocount (Sec. III C), many couplings
whose true values vanish are inferred with nonzero values,
corresponding to the points (J = 0,J PC �= 0) in the scatter
plot of Fig. 14(b). In turn, to account for those extra fictitious
couplings, the inferred values for the “existing” (between
adjacent sites) couplings are lowered with respect to their
true values, see Fig. 14(b). This effect is weaker if the true
couplings are chosen from a smaller range, i.e., if L is
decreased.

Performance of MF inference for the heterogeneous
variants are shown in Figs. 15 and 16. Comparison with
the toy-model analysis of Sec. III E 2, see Fig. 8, may be
only qualitative here, because the heterogeneous models
considered in the simulations have a richer distribution of
frequencies pa

i . In the toy model and in the presence of a
pseudocount, where frequencies can take only two values,
four branches of couplings values appear in the regions
0 < J PC < J and J < J PC < 0 of the (J,J PC) plane. In the
heterogeneous models A and B the frequencies of the q
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FIG. 14. (Color online) Scatter plot of the couplings Jij (a,b) for the homogenous Potts model for q = 5 (filled circles) and for q = 21
(triangles) symbols; perfect sampling. (a) No pseudocount. (b) With pseudocount. Each panel shows results from three realizations with
different sets of couplings (L = 10). Black solid lines correspond to the analytical predictions of Sec. III E 1. Colors show values of pa

i p
a
j ,

here equal to 1/q2 for all interacting sites and for all symbols, see right scale.
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FIG. 15. (Color online) Scatter
plot of the couplings Jij (a,b) for the
heterogenous-A Potts model for q = 5
symbols, with perfect sampling. (a) No
pseudocount. (b) With pseudocount
(α = 0.4). Each panel shows results
from five realizations with different
sets of couplings and fields (L = 2).
Insets: Distributions of the frequencies
pa

i . Black solid lines correspond to the
analytical predictions of Sec. III E 1.
Colors show values of pa

i p
a
j , see right

scale.

symbols are not bimodal, see the inset of Figs. 15 and 16.
We anticipate that branches will be less easy to identify
but will occupy the same regions of the plane in a dense
way.

Results for the heterogeneous-A model are shown in Fig. 15
for q = 5 symbols; similar results were obtained for the q =
21-symbol Potts model with and without the pseudocount (α =
0.75). The agreement with the real couplings is generally better
for couplings Ji,i+1(a,b) corresponding to conserved sites and
symbols, i.e., with large values of the product pa

i pb
i+1. This

statement holds also in the presence of a pseudocount, which
improves the inference for pairs of sites and symbols with
medium and large frequencies [lightest points in Fig. 15(b)].
The behavior of these inferred J PC couplings with a large or
medium level of conservation is indeed similar to the branches
JA, JB from which we have tuned αMF (Fig. 7) in the toy
model for the homogeneous case. Moreover, as seen in the
homogeneous case [Fig. 14(b)], noninteracting but strongly
conserved sites can generate fictitious and strong inferred
couplings [Fig. 15(b)]. One consequence of the pseudocount is,
indeed, to produce larger correlations between very conserved
sites and, in turn, nonzero inferred couplings between those
sites.

Performances of the MF inference for the heterogeneous-B
model are shown in Fig. 16. The distribution of frequencies
pa

i is more peaked at low values (inset of Fig. 16) than in
the heterogeneous-A model (inset of Fig. 15). The global
picture is similar to the one of Fig. 15, with an even wider
dispersion. Again, we find that couplings corresponding to

medium or strongly conserved sites are generally better
inferred than the ones corresponding to nonconserved sites
for the mean-field inference. As in the heterogeneous-A
model, in the presence of a pseudocount, nonzero cou-
plings appear between nonadjacent and strongly conserved
sites.

2. Effects of finite sampling and reconstruction
of the network structure

We now study the effect of finite sampling on MF inference
for the heterogeneous-B model (Fig. 17). The errors on the
inferred MF couplings are strongly affected by the sampling
size for weak values of the pseudocount, e.g., the large peak
in J MF �= 0,J true = 0 corresponding to nonadjacent sites in
Fig. 17(a). Remarkably, for strong pseudocount (optimal value
defined in Sec. III E 1), limited sampling has little effect on the
inference error [Fig. 17(b)], which seems to be due primarily
to the poor performance of MF inference in the presence of a
wide distribution of the local frequencies pa

i .
We present in Fig. 18 the scatter plots of the Frobenius

norm Fij = (
∑

a,b Jij (a,b)2)1/2 for the same heterogeneous-B
model as in Fig. 17. The Frobenius norm Fij is a simple way
to include contributions from interactions between all symbols
at a pair of sites (i,j ) and to extract information about the
presence or the absence of a link between i and j . Indeed,
nonzero links (i,j ) in the interaction network generally give
rise to larger Fij than zero links. With a weak pseudocount, α =
1
B

, smaller sample sizes result in poorer performance. Many
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FIG. 16. (Color online) Scatter
plot of the couplings Jij (a,b) for the
heterogenous-B Potts model for q = 5
symbols, with perfect sampling. (a) No
pseudocount. (b) With pseudocount
(α = 0.4). Each panel shows results
from five realizations with different
sets of couplings and fields (L = 2).
Insets: Distributions of the frequencies
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FIG. 17. (Color online) Heterogenous-B
Potts model for q = 5 symbols, for
various depths of sampling. (a) Small
pseudocount α = αB = 1

B
. (b) Large

(optimal) pseudocount α = αMF = 0.4. Each
panel shows results from one realization of
the Potts model with random couplings and
fields (L = 2) and three sets of B sampled
configurations (for finite B).

pairs (i,j ) with zero couplings give rise to Frobenius norms
larger than the ones found for pairs of neighbors (i,i + 1),
which have real nonzero couplings. This artifact implies
that the graph structure cannot be correctly reconstructed,
without having an estimate of the statistical error bars on
single couplings due to the sampling noise [37]. However,
with the optimal strength α = 0.4, finite sampling effects are
better corrected for, and the correct structure of the graph is
recovered. Even though the inferred couplings J PC

ij (a,b) differ
from their true values Jij (a,b), the summation over the Potts
symbols in the Frobenius norms seem to average out those
errors and to allow for a good inference of the underlying
graph structure in the presence of a large pseudocount. This
result supports the use of large pseudocounts in real appli-
cations such as protein contact predictions from covariation
data [4].

V. ANALYSIS OF THE O(m) MODEL FOR LARGE
BUT FINITE m

In this section we consider a large system of N spins, and we
want to estimate the error on the inferred couplings due to the
MF approximation and how this error can be corrected for with
appropriate regularization. Estimating exactly this error would
require that one solves exactly the inverse Ising or Potts model,
which is computationally intractable. We therefore concentrate
on an extension of the Ising model, the O(m) model, which
can be solved analytically for large m. The spin variables in
the model are m-dimensional vectors, �σi , with squared norms
constrained to be equal to m: |�σi |2 = m,∀i. The case m = 1

corresponds to Ising spins. We first recall how the properties
of the O(m) model can exactly solved in the infinite m limit
and how a systematic expansion in powers of 1/m can be
carried out. We then compute the error done by MF on the
inverse O(m) model and study to which extent these errors are
compensated by pseudocount and L2 regularizations.

A. Statistical mechanics of the inverse O(m) model

Given a set of interactions Jij , the likelihood of a configu-
ration {�σ1,�σ2, . . . ,�σN } of the model is

p(�σ1,�σ2, . . . ,�σN ) = exp
(∑

i<j Jij �σi · �σj

)
Z({Jij }) , (30)

where the partition function reads

Z({Jij }) =
∫

|�σ1|2=m

d �σ1 . . .

∫
|�σN |2=m

d �σN

× exp

⎛
⎝∑

i<j

Jij �σi · �σj

⎞
⎠ . (31)

In the above formulas the center dot represents the dot product
between two spin vectors. The correlation per spin component
is defined through

cij = 1

m

∫
|�σ1|2=m

d �σ1 . . .

∫
|�σN |2=m

d �σN

×p(�σ1,�σ2, . . . ,�σN ) �σi · �σj . (32)
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FIG. 18. (Color online) Scatter plot of

the Frobenius norms of the inferred couplings
vs their true values for the pseudocount
strengths α = 1

B
(a) and α = 0.4 (b). Same

heterogeneous-B model and same conditions
as in Fig. 17. Lines locate the largest Frobe-
nius norm corresponding to a pair of sites
(i,j ) which are not neighbors on the one-
dimensional graph, i.e., which have zero true
coupling.
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To compute the partition function Z we introduce
imaginary-valued Lagrange multipliers λi to enforce the
constraint over the norm of �σi for all i = 1, . . . ,N . We obtain
the following:

Z({Jij }) =
∫

iR

dλ1

4π
. . .

∫
iR

dλN

4π

∫
d �σ1 . . .

∫
d �σN

× exp

[∑
i<j

Jij �σi · �σj +
∑

j

λj

2
(m − �σ 2

j )

]

= 2−N (2π )N(m/2−1)
∫

iR

dλ1 . . .

∫
iR

dλN

× exp

[
m

2

∑
j

λj − m

2
log det A(λ,J )

]
, (33)

where A(λ,J ) is a N × N symmetric matrix, with diagonal
elements Aii = λi and off-diagonal elements Aij = −Jij . For
large m we estimate the integral according to the saddlepoint
method: The values of the Lagrange multipliers λ∗

i are such
that the diagonal elements of the inverse matrix of A are all
equal to 1: [A(λ∗,J )−1]ii = 1,∀i. Gaussian corrections to the
saddlepoint are easy to compute with the following expression
for the log-likelihood of the data given the coupling matrix:

L(J |c) = m
∑
i<j

Jij cij − m

2

∑
i

λ∗
i + m

2
log det A(λ∗,J )

+ 1

2
log det H (J ),

= −m

2
Trace[A(λ∗,J ) c] + m

2
log det A(λ∗,J )

+ 1

2
log det H (J ), (34)

where we have omitted an irrelevant J -independent additive
constant, and the N × N symmetric matrix H is defined
through

Hij (J ) = ([A(λ∗,J )−1]ij )2, (35)

where H is the pointwise square of a positive definite matrix;
according to the Schur product theorem it is itself a positive
matrix.

We now consider the inverse O(m) problem. We want
to determine the coupling matrix J = {Jij } fulfilling the
constraints (32). To do so we maximize the log-likelihood L

with respect to J . In the infinite-m limit the solution is simply
(J∞)ij = −(c−1)ij , as expected for the Gaussian model, which
is equivalent to the mean-field approximation. Deviations from
the MF inference are found when m is large but finite,

δJij ≡ Jij − (J∞)ij = 1

m

(
H−1

∞
)
ij

cij + O

(
1

m2

)
, (36)

where

(H∞)ij = (cij )2. (37)

Expression (36) is our “exact” value for the couplings given
the correlation matrix. Below we study the accuracy of the MF
prediction (in the presence of regularization) compared to this
expression.

B. Effect of regularization schemes

We start with the L2 regularization with link-dependent
penalty, γij , i.e., we add a penalty term − 1

4

∑
i,j γij J

2
ij to the

log-likelihood L (recall that diagonal couplings Jii coincide
here with −λ∗

i ). We then extremize with respect to J and ask
for the change in J resulting from the presence of this new
L2 penalty term to compensate exactly δJ given by (36). A
straightforward calculation leads to

γij = − 1

m (c−1)ij

∑
k,�

cik

(
H−1

∞
)
k�

ck� c�j + O

(
1

m2

)
. (38)

We now repeat the approach with the pseudocount regu-
larization. We consider the general case of a link-dependent
pseudocount of strength αij . The off-diagonal entries cij of
the correlation matrix are now equal to (1 − αij )cij , while the
diagonal entries are unchanged: cii = 1. In the m → ∞ limit
the change in the coupling Jij resulting from the presence of
the pseudocount is, to the first order in α,

δJ PC
ij = −

∑
k �=�

(c−1)ik αk� ck� (c−1)�j . (39)

We want to compute the values of the strengths αkl , with k �= l,
such that δJ PC

ij and δJij in (36) sum up to zero for all i �= j .
The solutions are given by

αij = 1

m cij

[∑
k,�

cik

(
H−1

∞
)
k�

ck� c�j −
∑

k

cik dk ckj

]

+O

(
1

m2

)
, (40)

where

dk =
∑

i

(
H−1

∞
)
ki

∑
a,b

cia

(
H−1

∞
)
ab

cab cbi . (41)

The presence of the second term in the brackets in (40) ensures
that the pseudocount vanishes on the diagonal, i.e., αii = 0.

Two conclusions can be drawn as follows from the previous
calculations:

(i) We find that the optimal penalties, with L2 regulariza-
tion and pseudocount, do not vanish in the perfect sampling
limit considered here. The need for regularization can therefore
not be due to poor sampling only. More precisely, the optimal
penalties are of the order of 1

m
for large m. Loosely speaking,

they are proportional to the deviation from the Gaussian model
(recovered when m → ∞, for which MF inference is exact).

(ii) We also understand from the formulas above why
uniform pseudocount is generally better than uniform L2

penalty, as found in Sec. III D. In (40) the pseudocount strength
scales as the inverse of cij , which saturates to 1 for very
strongly correlated spins. In contrast, in (38), the penalty
scales as the inverse of c−1

ij , that is, as 1/Jij . This quantity is
not bounded from below when the coupling increases. Hence
we expect a much wider range of values for the optimal γ

coefficients than for the optimal α coefficients. Uniform L2

penalties are therefore far away from being optimal.
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VI. CONCLUSION

The present paper summarizes our efforts to understand the
empirically observed necessity of large regularization terms in
the mean-field inference of Ising or Potts interaction networks.
In the usual Bayesian interpretation pseudocount and L2-norm
regularization penalties are required in case of undersampling.
As more data become available, the sampling noise becomes
smaller, and so do the optimal values of the regularization
terms. A combination of analytical and numerical evidence
suggests that this interpretation is not correct for MF inference
and that the need for large regularization penalties rather comes
from the non-Gaussian character of the variable statistics. In
other words, large penalties, particularly for the pseudocount,
correct for the error in the inferred couplings introduced by MF.
The importance of large regularization penalties to correct for
errors introduced by the MF approximation is confirmed by
analysis of the m-components O(m) spin model: The optimal
amplitude for the regularization scales, for large but finite m,
as 1

m
, which coincides with the measure of the discrepancy of

the model with a Gaussian statistics.
In this work we also explored the performance of MF

inference with different regularization schemes for a diverse
set of underlying model systems. In general cases both large
pseudocount and L2-norm regularization can yield couplings
which correlate well with the true couplings; the pseudocount
is easier to use (requires less fine-tuning) in general, especially
when no knowledge of the true couplings exists to guide the
choice of an appropriate regularization strength. Moreover, a
large pseudocount gives extremely stable performance in the
inference in case of limited sampling. For the Ising model
case we find that the optimal pseudocount to infer the network
topology and the coupling values is αMF = 0.2, independently
of the sampling depth, of the values of the true interactions,
and of the structure of the interaction network. This value
corresponds to what was analytically obtained for a toy model
with only two spins.

The toy-model approach also allows us to show that the
mean-field inference of the coupling parameters Jij (a,b) in
the Potts model case is poorer than in the Ising model
case. The quality of the inference generally worsens with the
heterogeneity among the frequencies of the q Potts symbols
(states). The introduction of a pseudocount helps in reducing
the errors on the inferred couplings Jij (a,b), especially for

symbols a and b having medium and large frequencies on
the site i and j . For those couplings, an optimal value of the
pseudocount can be determined, which increases with q and
agrees with what was analytically found with the toy model in
the homogeneous case. Couplings attached to nonconserved
sites are the ones with the largest inference errors and cannot
be reliably inferred even in the presence of a pseudocount.
Moreover, the introduction of a pseudocount may lead to the
prediction of nonzero couplings between noninteracting but
very conserved sites, an artifact known in the context of the
application of MF inference techniques to residue covariation
in protein families [4]. Even if for heterogeneous Potts models
many couplings are poorly inferred, the introduction of a
pseudocount is helpful to improve the reconstruction of the
interaction network structure in the case of limited sampling.
This finding is, again, in good agreement with empirical results
in the context of protein covariation.

Our work could be extended in several ways. A potentially
important finding of Sec. V is that there exist optimal values for
the penalties, which depend on the empirical correlations, see
(38) and (40). It would be interesting to pursue this direction
and to see whether the introduction of link-dependent penalties
could, indeed, improve the quality of MF inference in practical
applications. Another issue of interest would be determine
if and how the optimal regularization strengths depend on
additional and specific constraints on the coupling matrix. A
practical example is provided by the inverse Hopfield model
[6,39], in which the rank p of the interaction matrix J is small
compared to the system size. Last, it would be interesting
to understand the observed stability of the inferred couplings
against the sampling depth in the presence of a pseudocount,
see Fig. 17 and Fig. 12 for, respectively, the Potts and Ising
cases. We expect performances to deteriorate when B gets of
the order of, or smaller than N [6], but a more quantitative
understanding of the minimal sampling depth required would
be useful in practical applications.
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