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Weoutline a theory to quantify the interplay of entropic and selective
forces on nucleotide organization and apply it to the genomes of
single-stranded RNA viruses. We quantify these forces as intensive
variables that can easily be compared between sequences, outline
a computationally efficient transfer-matrix method for their calcula-
tion, and apply this method to influenza and HIV viruses. We find
viruses altering their dinucleotide motif use under selective forces,
with these forces onCpG dinucleotides growing stronger in influenza
the longer it replicates in humans. For a subset of genes in the human
genome, many involved in antiviral innate immunity, the forces
acting on CpG dinucleotides are even greater than the forces ob-
served in viruses, suggesting that both effects are in response to
similar selective forces involving the innate immune system. We
further find that the dynamics of entropic forces balancing selective
forces can be used to predict how long it will take a virus to adapt to
a new host, and that it would take H1N1 several centuries to adapt to
humans from birds, typically contributing many of its synonymous
substitutions to the forcible removal of CpG dinucleotides. By exam-
ining the probability landscape of dinucleotide motifs, we predict
where motifs are likely to appear using only a single-force parameter
and uncover the localization of UpU motifs in HIV. Essentially, we
extend the natural language and concepts of statistical physics, such
as entropy and conjugated forces, to understanding viral sequences
and, more generally, constrained genome evolution.

The nucleotide sequence of a genome is composed of a variety
of sequence motifs whose organization is influenced by many

forces. Most prominently, amino acid coding sequences are re-
stricted by the genetic code and codon use patterns for a particular
organism or tissue (1–3). Likewise, a variety of cis-acting nucleo-
tide sequences control gene expression profiles, regulating factors
such as timing, quantity, and responses to environmental cues.
Karlin et al. first showed that the relative abundance of dinu-

cleotides in viral genomes could elucidate evolutionary relationships
between groups of viruses, and viruses and their hosts (4). Likewise,
Rabadan et al. (5) and Greenbaum et al. (6, 7) first demonstrated
that in influenza genomes, nucleotide sequence-specific evolution-
ary changes occur over decades and reflect viral transitions from
avian to human hosts. These changes are not driven by amino acid
alterations or codon preference—they largely reduce CpG con-
taining nucleotide sequence motifs by third codon position changes
that have no impact on amino acid composition of the viral pro-
teins. It was posited that this effect was due to differences between
the human and avian innate immune systems, which would recog-
nize (in humans) or not recognize (in birds) CpG dinucleotides in
the RNA of these viruses, possibly via a Toll-like receptor (TLR)
(8). Hence, influenza viruses moving into humans would adapt their
genome sequence motifs to avoid detection and inhibition by the
host immune system. Other patterns of host genome mimicry have
been demonstrated between viruses and their hosts (9, 10). In
viruses such as HIV, host enzyme activity creates biased nucleotide
composition in viral RNA and DNA (11, 12). Additional examples,
such as secondary structures of RNA genomes and bacterial re-
striction enzymes, exert analogous selective forces on sequence

motifs (13–15). Thus, there are many different forces under
which a genome’s information content may be optimized for a
particular environmental advantage.
There has not been a general quantitative theory designed to

characterize the forces that directly affect nucleotide sequence
organization and how they can change over evolutionary time
when a genome is introduced into a new environment. To ac-
complish this we use an approach from statistical physics (16,
17). We apply our method to the genomes of single-stranded
RNA (ssRNA) viruses, quantifying the degree to which avoid-
ance or enhancement of a nucleotide motif causes a virus to alter
its sequence organization relative to a given background distri-
bution. The magnitude of the effect is captured by a selective
force, conjugated to the number of times a motif occurs. In much
the same way as with thermodynamic forces, acting on the vol-
ume or the number of particles constrain a system, the presence
of selective forces constrains the diversity of viral genomes. By
contrast, the high rates of mutation and replication for these
RNA viruses provide a great deal of sequence diversity, creating
“entropic forces” opposing the selective forces minimizing se-
quence diversity. The larger of these two forces then drives the
evolution of the virus until, eventually, the two forces balance
each other and an evolutionary equilibrium state is reached.
Many viral genomes, such as those for ssRNA viruses, are

largely devoted to protein coding. In the absence of selective
forces on motifs, and fixing the amino acid sequence for a given
protein, codon use patterns would dictate the diversity of ge-
nome sequences. An “ideal” virus, in the absence of other out-
side forces on motifs, would evolve to have the number of motifs
one would expect given its amino acid sequence and a codon use
bias for the tissue in which it replicates. We can then derive the
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selective force on a motif in a virus by calculating the degree to
which the viral sequence is in a lower probability state than this
ideal virus, given the number of times that motif occurs. In this
work we examine these forces on dinucleotide motifs using both
the codon use bias of the protein sequence under consideration
and the average codon use bias of its host, interpreting the cases
where they differ.

Materials and Methods
Sequence Data. The influenza sequences used in this study were taken from
the National Center for Biotechnology Information Influenza Database (18).
Only those sequences containing complete coding regions were then used in
the analysis. The HIV sequences were taken from the Los Alamos HIV da-
tabase and the same controls were applied (19). The list of all sequences
used appears in Dataset S1. The human genomes used for the codon bias
calculation was Consensus-Coding DNA Sequence (CCDS) Build Hs36.3. The
data were obtained from the University of California, Santa Cruz Genome
Browser (20–22).

Distribution over Sequence Space. We want to quantify the constraints acting
on a nucleotide motifm in a (viral) DNA or RNA sequence, hereafter called C0.
We introduce a model over the set of all codon sequences C = (c1, c2, . . . , cL),
differing from C0 through synonymous changes only. In the absence of con-
straints the probability of a sequence C in our model is simply the product of
the probabilities of its codons, piðciÞ, where pi is the codon bias of the ith
codon in C0. In the presence of a constraint over a nucleotide motif m, the
probability of a sequence C becomes

PðCjxsÞ= 1
ZðxsÞ ∏

L

i=1
piðciÞexp

�
xs NmðCÞ

�
[1]

where NmðCÞ is the number of occurrences of the motif m in C, and the
denominator

ZðxsÞ=
X

sequences C

∏
L

i=1
piðciÞexp

�
xs NmðCÞ

�
[2]

ensures that the probability P is correctly normalized. Parameter xs, here-
after called the “selective” force, introduces a bias over P. Positive values for
xs push the distribution toward sequences with large N, whereas negative xs
favor sequences with a small N.

The choice of the exponential dependence on N in [1] is justified by in-
formation-theoretic arguments: P defined above is the least constrained
distribution (with minimal information, or with maximal entropy), whose
average number of motifs is

NavðxsÞ=
X

sequences C

PðCjxsÞNmðCÞ= ∂log Z
∂xs

ðxsÞ: [3]

The value of the selective force xs can then be chosen such that NavðxsÞ is
equal to the number of motifs m in the original sequence, NmðC0Þ: The
formalism above can be easily extended to the case of multiple selective
forces, acting on multiple motifs. Details can be found in SI Text.

Entropy of Sequences as a Function of the Number of Motifs. Let σðNÞ be the
logarithm of the number of sequences C having N repetitions of m, here-
after called “entropy.” σðNÞ is bounded from above by σ0, the total entropy
of the distribution of sequences in the absence of selective force ðxs = 0Þ. σ0
is equal to the sum over all 20 amino acids a of the number of codons coding
for a in the sequence C0, multiplied by the entropy of the codon bias dis-
tribution for this amino acid a. See SI Text where bounds on its value are
also derived.

Classical equilibrium thermodynamic relations show that σðNÞ is the
Legendre transform of log ZðxsÞ (23):

logZðxsÞ= max
N

�
σðNÞ− σ0 + xsN

�
: [4]

The maximization condition over N expresses the balance between the se-
lective force xs and the “entropic” force

xeðNÞ= dσ
dN

ðNÞ, [5]

equal to the derivative of the entropy. At equilibrium, xs and xe sum to zero.

However, selective and entropic force need not always compensate each other,
as when out-of-equilibrium dynamical effects are present (Dynamical Modeling).

The Legendre formalism [4] provides a parametric representation of the
entropy curve ðN,σðNÞÞ under the form

�
NavðxsÞ,σavðxsÞ

�
, which yields NavðxsÞ

as given by [3], and

σavðxsÞ= σ0 + log ZðxsÞ− xsNavðxsÞ: [6]

As xs spans the set of real numbers, the entropy curve is obtained; its maximum
is reached in ðNavð0Þ,σavð0Þ= σ0Þ, corresponding to vanishing force, xs = xe = 0.

We illustrate the notions above with a very simple example of a sequence C0
coding for one alanine (L = 1). We assume for simplicity that all four codons c =
GCn, with n = A, U, C, and G, coding for alanine have equal probabilities
pðcÞ= 1=4 (uniform codon bias). The entropy of sequences in the absence of
selective force is σ0 = log 4, which is the logarithm of the degeneracy of alanine.
In the presence of a selective force xs and for themotifm = CG, we readily obtain
ZðxsÞ= 3=4+ exs=4. The average number of motifs is NavðxsÞ= exs=ð3+ exs Þ
according to [3], and the entropy is σavðxsÞ= logð3+ exs Þ− xsexs=ð3+ exs Þ
according to [5]. The corresponding entropy curve is plotted parametrically
in Fig. 1A (see legend for further explanations).

In the generic case of a sequence C0 of length L, the sum defining ZðxsÞ in
[2] runs over an exponentially large-in-L number of sequences C. It can,
however, be computed very efficiently, in a time growing linearly with L
only. The method, called “transfer matrix” in statistical physics or “dynamic
programming” in computer science, allows us to compute the entropy even
for very long sequences in a short time. This method is useful for un-
derstanding the properties of a large system based on the interactions be-
tween its subsystems, which in our case are neighboring codons. Simple
examples of the transfer matrix method (Figs. S1 and S2), and details about
its implementation are found in SI Text.

Given the selective force xs the number N of motifs m in a random se-
quence C fluctuates around the average value NavðxsÞ, with a variance
varðNjxsÞ. Reciprocally the value of the force such that NavðxsÞ is equal to the
number N of motifs in the real sequence C0 may fluctuate around its average
value with a variance varðxsjNÞ. Both variances can be computed from the
uncertainty relation

varðNjxsÞ= 1
varðxsjNÞ =

∂2 log Z
∂x2s

ðxsÞ: [7]

The variance in the force on a motif is useful to estimate whether two values
of the forces computed for two sequences are statistically distinct.

Dynamical Modeling. We model the time evolution of N from an initial value
N0 to its equilibrium value NavðxsÞ under the action of a selective force xs
through a simple relaxation dynamics
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Fig. 1. Entropy curve σðNÞ as a function of the number N (Nb.) of occur-
rences of a motif. (A) Toy example of a single-codon sequence, coding for
alanine (derived in Materials and Methods). The entropy for an influenza B
isolate (B/Cordoba/2979/1991) is derived for motifs (B) ApA and (C) CpG.
Green and red lines show, respectively, the zero-force and real values of the
numbers of motifs, with the arrows indicating the balance of selective and
entropic forces at the real value. The ApA (B) entropy is flatter than the CpG
(C) entropy around the maximum σ0 = 4,342:6.
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τ
dNðtÞ
dt

= xe
�
NðtÞ�+ xs, [8]

where the entropic force, xe, is defined in [5]. The value of N will evolve until
the imposed selection force xs balances the entropic force xeðNÞ, resulting
from the loss of entropic diversity of the sequences. Parameter τ is a measure
of the time scale on which the number of motifs diminishes by one unit, when
the difference between the forces is of the order of the unity, e.g., at the
beginning of the evolution. As the difference between the forces gets smaller
and smaller with time, the relaxation time to equilibrium is much larger than τ.

Results
Forces Relative to Viral and Human Codon Biases. Materials and
Methods presents a procedure to compute the entropy, that is the
logarithm of the number of sequences, as a function of the number
of repetitions of a given motif. The background distribution is
derived from either viral or human codon biases. We also work
through a simple example of how to use these methods, which is
illustrated in Fig. 1A.
When the H1N1 influenza A virus entered the human pop-

ulation from a likely avian host in 1918, the CpG dinucleotide
content of the genome was lowered from levels typically associ-
ated with avian viruses toward levels more associated with hu-
man viruses (6–8). For the genomes of influenza B isolates,
a virus for which humans have been a natural host for many
centuries, the number of CpG dinucleotides varies little over
time. Fig. 1B shows the entropy curve for ApA. The curve is flat
and symmetric, and the slope of the curve at the value of ApA in
the real virus is close to zero (the maximum entropy value). The
occurrence of ApA dinucleotides to a large degree may therefore
vary randomly. The number of CpG dinucleotides corresponds
to a location on an entropy curve of high slope, as shown in Fig.
1C. We define the entropic force as the slope at the actual value
of these motifs in the viral genome. Unlike ApA, the selective
force acting on CpG, opposite to the entropic force, is very
different from the zero value corresponding to maximum en-
tropy. Both curves have the same maximum value, as they have
the same entropy when no force is applied. An expression for the
maximum value, and how it is bounded, appears in SI Text.
One can use either the virus or host codon bias to generate the

sequence background distribution relative to which these forces
may be inferred, and the resulting forces must therefore be

interpreted relative to that choice. For the human codon bias, we
use the coding regions of the whole human genome. This is an
average codon use bias that may not reflect more restricted
biases that occur in particular gene families or cell types. Fig. 2
compares the selective forces calculated for all 16 dinucleotides
derived relative to both the host and virus segment codon use
biases, for the longest genes of influenza polymerase basic 2
(PB2) and HIV polymerase (pol). In Fig. 2A the median force
values are given for influenza A H1N1 in 1918 (green) and 2007
(blue), along with those for influenza B (red). Relative to the
host codon use bias, and unlike the viral segment codon bias, the
forces acting on dinucleotides are often nonzero, with CpG being
the only large standout in magnitude. The dispersion of forces over
many dinucleotide motifs, relative to the average host codon use
bias, typically increases with time, and is greatest in influenza B, the
virus adapted to humans for the longest time. UpG and CpA, the
mutational outcomes of CpG avoidance, have a positive force rel-
ative to the host codon bias, and UpA has a negative force (two
mutational events are a less likely path). Most of the forces on
dinucleotides are smaller relative to the viral codon bias than rel-
ative to the human codon bias. Therefore, actual sequences in
a viral genome are closer to ideal viruses generated by the viral
codon use than those generated by human codon use. Thus, there
is a limit to the host mimicry observed in these viruses. The in-
fluenza A PB1 and PA genes are similarly analyzed and can be
found in Fig. S3.
The polymerase gene (pol) from HIV-1 was analyzed in the

same fashion and the results are shown in Fig. 2B, where the same
quantities are calculated for the pol gene from HIV-1, SIV
chimpanzee (SIVcpz), HIV-2, and SIV sooty mangabee (SIVsm),
all related viruses. The selective force on dinucleotides for viruses
changes less between these hosts, which are more closely related
(humans and simians), than in influenza (humans and avians).
One difference between HIV and influenza is that the dinucleotide
ApG in HIV genomes stands out as having a positive force not
observed with influenza virus segments. ApG motifs have been
associated with the action of RNA-editing enzymes on the HIV
genome (11, 12).
Despite their very different genome replication cycles, most

motifs of dinucleotides from HIV and influenza have no force
acting on them relative to the viral codon bias, whereas there are
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Fig. 2. Comparison of selective forces using both segment and human codon biases for all dinucleotides. Forces are derived for (A) influenza PB2 (showing
the 1918 H1N1 segment, and the median values for all 2007 H1N1 and influenza B segments), and for (B) HIV pol (showing median values for HIV-1, SIVcpz,
HIV-2, and SIVsm). Dinucleotides under large forces are indicated. For PB2, arrows indicate the direction from 1918 to influenza B. In the HIV and SIV, ellipses
contain outlying dinucleotides. (C) Histogram of forces on CpG for all human CDS regions, with a Gaussian fit to the bulk of the distribution. Far left outliers
contain many type I IFNs.
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dinucleotide motifs with forces acting on them relative to the
human codon bias. A parallel analysis of gag and env is pre-
sented in Fig. S4. The forces on HIV may reflect a functional
significance, as shown by the studies of Vabret et al. (24, 25),
who showed that the HIV-1 virus did not replicate as well when
third position codon nucleotides were changed (with no amino
acid changes) in the gag gene.

Host Gene Mimicry.An intriguing result was obtained in Greenbaum
et al. (7), when many of the genes that compose the innate im-
mune system were examined, particularly type I IFN genes in the
human genome. These genes also had very low numbers of
CpG dinucleotides, as was observed with influenza viruses
evolving in human populations. Based on those observations it
was hypothesized that a subset of genes in the innate immune
system are most subject to the forces acting on CpG motifs. The
quantitative theory developed here now allows us to calculate
and quantify those forces. It permits us to test the idea that
forces acting to change CpG content are gene- or function-specific
in the human genome. We show in Fig. 2C the histogram of the
selective forces on CpG for all coding regions in the human ge-
nome. The distribution can be fitted with a Gaussian, with mean
μ = −0.7611 and SD σ = 0.8551 apart from genes falling well
outside the distribution, with values less than −4. According to
standard extreme value theory the expected minimum value
from the normal distribution is equal to μ− σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðNÞp

, where
N is the number of normally drawn samples (26). For this case, the
expected minimum value if −4.5674 and all outliers less than −4
also fall outside of that value. A table of the median values of the
forces and their variances, another means of assessing outlier
significance, is shown in Table S1.
Many type I IFN genes appear as outliers on the left of Fig.

2C. The value of the CpG forces these genes are under, along
with other information is shown in Table S2. One would predict
that the effect of such forces on these genes could be used as
a discovery tool for human genes regulated in a similar fashion
with similar functions. This would be a quantitative definition of
a subset of genes that populate the human innate immune sys-
tem. As an experiment, we explored all genes whose CpG force
values were less than that observed in PB2 for influenza B. The
results are depicted in Table S3. Strikingly, not only are the type
I IFN genes depicted, but other innate immune genes are present
in this group.
For the same force to be causing these effects on both a host

and viral gene set, causing the virus to mimic the very genes that
respond to it, many mutational events must occur. The force could
be driven by a receptor that observes and interacts with the RNA
CpG motif, leading to the transcription of genes that limit viral
replication (8). The force would act on a set of host response
genes, as well as viral genes, so the mRNA of the host genes would
minimize CpG content to prevent a positive feedback loop from
occurring. Innate immune recognition of CpG in DNA is known
to occur via TLR9, and TLR7 and -8 recognize ssRNA (8, 27).
CpG methylation occurs in the DNA of host genes protecting
them from these innate responses, whereas methylation is not
observed in RNA viral genomes lacking a DNA intermediate step.

A Dynamical Model for the Influenza A Virus. In H1N1 human in-
fluenza viruses, the force on CpG levels declines over time ap-
proaching levels seen within influenza B viral genomes. The effect
is strongest in the three longest genome segments, and is less no-
ticeable in the HA gene, presumably due to strong selection from
the adaptive immune system on the HA protein. As seen in the
previous section, these dynamical changes which occur when in-
fluenza viruses switch from avian to human hosts, are not observed
when HIV and SIV are compared, likely reflecting the fact that
HIV came into the human population from a more closely related
simian reservoir.

A dynamical model was used to better understand how forces and
motifs evolve with H1N1 influenza viruses with time. In this model,
the number of motifs evolves under a (negative) selective force,
which increases the magnitude of the entropic force (reducing se-
quence complexity) until both the selective and entropic forces
compensate one another, and equilibrium is reached (Materials and
Methods). For PB2, PB1, and PA, we first determine the selective
force under the assumption that the influenza B genome represents
the equilibrium force value for that segment, as it has evolved in
humans for many years. The equilibrium force xB is estimated by the
mean value of the selective forces computed for all influenza B
sequences (Table 1). For the initial condition x0 we choose the
corresponding force value for the H1N1 sequence from 1918 when
H1N1 was first introduced into humans (Table 1). Our dynamical
model then gives the entropic force as a function of time, xeðtÞ,
where tmeasures years of evolution. The opposite of the entropic
force interpolates between −xeð0Þ= x0, and −xeðt→∞Þ= xB.
The outcomes of this analysis are shown in Fig. 3. The model

includes a single time scale, τ, which represents the elementary
time for motif loss, and is fitted to make −xeðtÞ best coincide with
the H1N1 data over the available time range. Because the H1N1
virus disappeared from the human population in the early 1950s,
and a nearly identical virus reappeared in 1977, the 27 y that
H1N1 was not circulating in the human population are not in-
cluded in the time that this virus evolved in humans (28). The
three rates (1/τ) for evolutionary change range from 0.17 per
year for PA, to about 0.4 per year for PB1 and PB2. Those
estimates are 2–5 times larger than the average time for a syn-
onymous substitution to happen in the corresponding genes (of
comparable lengths), about 0.07 per year (29). This would imply
that one in two synonymous substitutions in PA and one in five in
PB1 and PB2 result in the loss of a CpG motif. In addition,
according to the model it would take about five centuries for the
PA segment to reach equilibrium (Fig. 3). Remarkably all of
these sequence data fall within one SD (calculated according to
[7] and [8]) forming a narrow strip around the model prediction
as seen in Fig. 3.

Motif Localization. To visualize how these forces affect where the
motifs are likely or unlikely to be found in a viral genome, we
examined the local motif density, as described in SI Text. To do so,
we calculated the probability that a motif appears at a given po-
sition along the genome, both with the viral sequence and human
codon bias. Compared with the positions of dinucleotides from
sequence data this then becomes a test of the validity of the ap-
proach. Locations with high probabilities can be directly compared
with the real locations of motifs from the viral sequence data.
To get a sense of what these distributions might look like in an

equilibrium setting, the case of influenza B was examined. Both
CpG and UpG dinucleotides were calculated with the viral seg-
ment codon bias. In the former case the motif has a negative force,
and is therefore suppressed. In the latter the force is positive and
the motif is enhanced.
The local probability landscape for CpGdinucleotidemotifs with

C in the third codon position is shown in Fig. 4A. The locations of
CpGs determined from sequence data clearly tend to coincide with
peaks in the probability landscape. To better visualize this effect,
in Fig. 4B, the occupation probability predicted by our model,

Table 1. Dynamical parameters in H1N1 CpG force evolution

Segment

Parameters PB2 PB1 PA

Equilibrium force xB −1.99 −2.04 −2.2
Initial force x0 −1.21 −1.34 −1.15
Time scale τ 2.3 2.4 6.0

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1402285111 Greenbaum et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402285111/-/DCSupplemental/pnas.201402285SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402285111/-/DCSupplemental/st01.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402285111/-/DCSupplemental/st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402285111/-/DCSupplemental/st03.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402285111/-/DCSupplemental/pnas.201402285SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1402285111


averaged over the positions at which CpGs occur in the viral se-
quence, is plotted along with the same probability averaged over
the positions where the motif is absent from the RNA sequence.
The average probability associated with CpG occurrences from the
sequence data are consistently higher than the one corresponding
to locations with no CpG in the sequence data. Even though
the values of the force on CpG dinucleotides declines over time
(Dynamical Modeling), the ratio of the average probability asso-
ciated with actual CpG occurrences in a sequence to the
probabilities associated with sites where no real CpG occurs
remains essentially fixed.
Next, local probability landscapes for two examples of motifs

under positive selective forces were examined. Fig. 4C examines
the dinucleotide UpG, which undergoes a meaningful positive
force with respect to the viral segment bias. Unlike with CpG,
UpG is not a rare dinucleotide, so the fact that most sequence
occurrences of the dinucleotide come at high probability “hot-
spots” is clear.
Finally, we note that in HIV-1, a retrovirus with a very dif-

ferent replication cycle than influenza, localization of motifs also
occurs. Fig. 4D shows the HIV-1 gag dinucleotide probability
landscape with respect to the human genome bias for the di-
nucleotide UpU. There is a clear cluster toward the end of the
gag gene. This cluster is located in the region shown by Pavlakis
and colleagues to be a regulatory feature for the timing of the
gag gene expression, and is more precisely defined here (30, 31).
Here the selective forces for optimal replication of the virus
limits the sequence motif entropy. UpU motifs have also been
associated with the activation of a TLR (TLR8) (32).

Discussion
We have developed a quantitative method for the analysis of the
entropic and selective forces that act to shape the distribution of
nucleotide motifs in a genome. Although the genetic code and
codon use clearly shape nucleotide sequence motifs in a genome,
forces such as motif specific receptors and enzymes also play a
role. Our approach quantifies these forces, shows their effect on
sequence entropy, and allows direct comparisons between ge-
nomes as intensive quantities, meaning that their value is not re-
flective of the size of the genome considered, and one can thus

compare their value between sequences with different origins. In
addition to providing a more formal theoretical framework, this
approach is computationally far faster than other attempts to
measure similar parameters (6), where a set of randomized vi-
ruses had to be created to infer the number of significant motifs.
By far the strongest repressive forces altering viral genome

landscapes act on CpG dinucleotides. This can be observed in
very diverse viral genomes such as human influenza strains, HIV,
and SIV, taking as a reference both the viral codon bias and the
human codon bias. The observation is consistent with previous
observations (6), where CpG was found to be underrepresented
in influenza with respect to the viruses own codon bias, as well as
in all other mammalian ssRNA viruses.
Likewise, in the H1N1 strain of influenza A, UpG and CpA

are enhanced and UpA is repressed. With respect to the viral
codon bias, those forces are essentially zero for HIV, SIV, and
influenza B, but they differ from zero for the large majority of
dinucleotides when using the human codon bias as reference. The
fact that this occurs in viruses that have been replicating in
humans (or simians) for a very long time indicates that, at equi-
librium, the entropic and selective forces described in this paper
generically reflect a divergence away from the typical human
codon bias and the viral codon bias, limiting genome sequence
motif mimicry. However, in the human genome a subset of genes
have evolved very similar motif distributions to those observed for
the viruses studied here. Many genes with strongly negative forces
on CpG, correspond to genes of the innate immune system,
providing a quantitative definition for detecting a gene that is part
of the innate immune response to infections by these viruses.
Indeed it is likely that diverse classes of viruses trigger different
innate immune responses and we will detect different host genes
by mimicry using different viruses.
Although innate immunity is one source of explanation for the

observed effects, it is not the only one. Common RNA structural
motifs could also provide an explanation for why some nucleotide
motifs are subject to positive and negative forces, as well as other
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protein–RNA interactions involved in other processes besides
innate immunity. There is a growing body of evidence that codon
use, tRNA concentrations, and other rate-limiting translational
factors will impact the sequence motifs used by a virus (33–36). As
these methods are applied to other genomes besides viruses, a
wider set of phenomena may underlie these forces.
Moreover, there is the issue of the larger set of forces that

appear relative to the human codon bias, as opposed to the viral
bias. We offer two possible explanations for this effect. First, it
may be that codon use for the different cell types in which a given
virus replicates is not the same as the average human codon bias.
Certainly, tRNA use may vary between cell types. To remedy this,
one would ideally use a cell-specific codon bias in future appli-
cations. Moreover, some viruses are known to manipulate host
tRNA use to their advantage, which would induce selective forces,
and may be responsible for the general dispersion of forces rela-
tive to the human codon bias, but not the viral codon bias. For
instance, HIV-1 was postulated to modulate actively the tRNA
pool under which it replicates, to maximize replication efficiency
for its A-rich genome (33). Indeed relative to the human codon
bias, ApA is the motif in HIV-1 with the greatest positive force on
it. An enhancement of A-rich dinucleotides relative to the human
codon bias may well reflect such a tendency, and the observance of
a similar dispersion of dinucleotide forces in influenza B may show
that such phenomena are a common viral strategy.
The model permits one to predict locations where a dinucle-

otide is more or less likely to occur along a sequence due to a
given force, and to demonstrate regions where many occurrences
of a motif localize, as was the case for UpU motifs in gag, as-
sociated with the timing and levels its protein. In addition the

model can be constructed to show how these forces evolve. With
only a time-scale parameter, we can fit through the dynamical
model the evolution of CpG forces during the history of influenza
A H1N1 segments and use this parameter to predict how long it
will take for the virus to attain the level of force found in in-
fluenza B. The model showed an excellent fit of the predicted
data points to the actual results as the H1N1 virus evolved be-
tween 1918 and 2007. It therefore provides an estimate for how
long it may take an avian strain to equilibrate in a human host, as
well as provides an estimate for the degree to which CpG forces
contribute to its overall evolutionary rate.
The ideas presented here give a language for taking into account

nonprotein coding features in a quantitative evolutionary theory.
The approach is very general, can be used to study longermotifs, and
can be generalized for many other types of sequence constraints. In
doing so we hope to uncover other forms of latent information
hidden beneath known constraints in genomes, and use this infor-
mation as a tool for biological discovery. The generality of the ap-
proach comes from statistical physics, where forces describing the
ordering of a system have a natural framework for characterization.
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I. Entropy of Sequences in the Absence of Selective Force
In the absence of selective force, our model for random codon
sequences is very simple. Consider a sequence of L amino acids
A= fa1; a2; . . . ; aLg. The probability of the ith codon, ci, in the
associated nucleotidic sequence is given by piðciÞ= pðcijaiÞ, where
pðcjaÞ is the (Human or segment) codon bias. The probability of
the sequence C= fc1; c2; . . . ; cLg is simply the product of the
probabilities of its codons ci. We readily compute the entropy σ0
of sequences with this model:

σ0 = −
XL

i=1

X

ci

piðciÞlog piðciÞ

=
X

a

Na

�
−
X

c

pðcjaÞlog pðcjaÞ
� [S1]

where Na is the number of occurrences of amino acid a in A.
Note that, by definition, σ0 coincides with the average entropy
σavðxs = 0Þ, and is the height of the maximum of the entropy
curve σavðxsÞ.
A simple upper bound to σ0 is σupper0 =L · log6, as amino acids

are at most sixfold degenerate. A slightly more complicated
upper bound would maximize the entropy expression for σ0 for
the same amino acid sequence but with a codon bias where all
codon for a given amino acid are equiprobable. In that case it is
straightforward to show that σupper0 =

P
aNa logðdegðaÞÞ, where, as

before, deg(a), is the degeneracy of amino acid a. For instance,
for the influenza B isolate analyzed in Fig. 1, the real value
maximum entropy is 4,342.6. The upper bound for this sequence
is 7,869.4 by the first method and 4,913.3 by the second.

II. Transfer Matrix Method
We calculate the normalization constant ZðxsÞ, Eq. 2, using the
transfer matrix formalism. We call K the number of nucleotides
in motif m: m= fm1;m2; . . . ;mKg. Let C= fc1; c2; . . . ; cLg be
a sequence of L codons; equivalently, C can be seen as a se-
quence of 3×L nucleotides. Let ci;ℓ denote the ℓth nucleotide in
codon i, with ℓ= 1; 2; 3. We denote by C½n : n+K − 1� the sub-
sequence of K nucleotides in C, starting at position n and ending
up at position n+K − 1. The number of occurrences of the motif
m in C can be written as the following sum:

NmðCÞ=
X3L−K+1

n=1

δ
�
C½n : n+K − 1�;m� [S2]

where δ denotes the Kronecker function: δðX ;XÞ= 1, and
δðX ;Y Þ= 0 if X ≠Y .
The subsequence C½n : n+K − 1� spreads over at most Kc =

IntððK + 1Þ=3Þ+ 1 contiguous codons ci in C, where Int denotes
the integer part. Consider for instance the case of dinucleo-
tide motifs m, for which K = 2 and Kc = 2 according to the
formula above. The two nucleotides of such a motif can indeed
be found

• at positions 1,2 of a single codon, say, ci; then we have
m1 = ci;1, m2 = ci;2.

• at positions 2,3 of codon ci; then we have m1 = ci;2, m2 = ci;3.
• at position 3 of codon ci and position 1 of codon ci+1; then we
have m1 = ci;3, m2 = ci+1;1.

For the sake of simplicity, we start by assuming that K = 2; the
case of longer motifs will be briefly discussed later on. According
to the discussion above we can write

NmðCÞ=
XL−1

i=1

Fðm; ci; ci+1Þ; [S3]

where

Fðm; ci; ci+1Þ= δ
�
m1; ci;1

�
δ
�
m2; ci;2

�
+ δ
�
m1; ci;2

�
δ
�
m2; ci;3

�

+ δ
�
m1; ci;3

�
δ
�
m2; ci+1;1

�
[S4]

for all i= 1; . . . ;L− 2 and

Fðm; cL−1; cLÞ= δ
�
m1; cL−1;1

�
δ
�
m2; cL−1;2

�

+ δ
�
m1; cL−1;2

�
δ
�
m2; cL−1;3

�

+ δ
�
m1; cL−1;3

�
δ
�
m2; cL;1

�

+ δ
�
m1; cL;1

�
δ
�
m2; cL;2

�

+ δ
�
m1; cL;2

�
δ
�
m2; cL;3

�
: [S5]

The expression for F in the bulk of the sequence ði≤L− 1Þ
avoids double counting of the motif occurrences.
We now rewrite ZðxsÞ as a sum over the possible codons cor-

responding to the same amino acids as in the viral sequence C0:

ZðxsÞ=
X

C

�
∏
L

i=1
piðciÞ

�
exp

"
xs
XL−1

i=1

Fðm; ci; ci+1Þ
#

[S6]

=
X

C

∏
L−1

i=1
ðpiðciÞ  exp

�
xs Fðm; ci; ci+1Þ

�Þ pLðcLÞ; [S7]

where piðciÞ is the codon bias for codon ci (synonymous to the ith
codon of sequence C0). Let us now define L transfer matrices Mi,
i= 1; . . . ;L. The dimension of matrix Mi is deg(ai) × deg(ai+1),
where deg(a) is the codon degeneracy for amino acid a. The entries
of Mi are given by, for all i= 1; . . . ;L− 2,

Miðci; ci+1Þ= piðciÞexp
�
xs Fðm; ci; ci+1Þ

�
; [S8]

and

ML−1ðcL−1; cLÞ= piðcL−1Þexp
�
xs   Fðm; cL−1; cLÞ

�
pðcLÞ: [S9]

Then, we observe that

ZðxsÞ=
X

c1;c2;...;cL− 2;cL− 1

M1ðc1; c2ÞM2ðc2; c3Þ . . .ML−2ðcL−2; cL−1Þ

×ML−1ðcL−1; cLÞ
=
X

c1 ;cL

ðM1 ×M2 × . . . ×ML−2 ×ML−1Þðc1; cLÞ;

[S10]

where × denotes the matrix product in the formula above. This
formula shows that Z can be computed in a time growing linearly
with L only. This is huge gain compared with the original expres-
sion of Z, Eq. 2, which sums up an exponentially large-in-L
number of codon configurations.
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In practice we define the deg(aL)-dimensional vector vL, with
entries vLðcLÞ= 1 for all codons cL coding for amino acid aL. Then
we compute the vector

vL−1ðcL−1Þ=
X

cL

ML−1ðcL−1; cLÞvLðcLÞ: [S11]

Then, we sum over all possible values for the ðL− 1Þth codon,
cL−1:

vL−2ðcL−2Þ=
X

cL− 1

ML−2ðcL−2; cL−1ÞvL−1ðcL−1Þ: [S12]

The process is iterated until the first codon

v1ðc1Þ=
X

c2

M1ðc1; c2Þv2ðc2Þ: [S13]

Finally, we obtain the value of the normalization constant through

ZðxsÞ=
X

c1

v1ðc1Þ: [S14]

For large values it is easier, and often practically necessary, to
work with the logarithm of the partition function, rather than with
the partition function itself.
When the motif is of longer length, and overlap with Kc con-

tiguous codons, expression S3 has to be modified. In general one
can write

NmðCÞ=
XL−1

i=1

Fðm; ci; ci+1; . . . ; ci+Kc−1Þ; [S15]

where function F is an obvious extension of [S4] and [S5]. The
transfer matrix method exposed above can still be used, but at
a price of introducing larger transfer matrices Mi.

III. Numerical Computation of the Legendre Transform
An important problem is to find the value of the selective force xs,
corresponding to the number NmðC0Þ of occurrences of the motif
m in the virus sequence C0. Let us call xsðC0Þ this force. One way
to find xsðC0Þ is to compute the average number of occurrences,
NavðxsÞ, for many values of xs on a grid and try to be as close as
possible to the data, i.e., choose xs such that NavðxsÞ ’ NmðC0Þ. A
much faster procedure is the following.
Consider the function (for a given C0)

GðxsÞ= logZðxsÞ− xsNmðC0Þ: [S16]

Two important facts about G are

• the first derivative of G vanishes when xs takes the value
xsðC0Þ we are looking for, because

d
dxs

GðxsÞ=NavðxsÞ−NmðC0Þ [S17]

• G is a convex function of xs, as its second derivative is positive:

d2

dx2s
GðxsÞ= d

dxs
NavðxsÞ=

X

C

PðCjxsÞNmðCÞ2 −
 
X

C

PðCjxsÞNmðCÞ
!2

=
X

C

PðCjxsÞðNmðCÞ−NavðxsÞÞ2 ≥ 0:

[S18]

Hence, G has a single minimum in xs = xsðC0Þ, and we can find it
very quickly with standard optimization techniques, e.g., the
Newton–Raphson algorithm. The procedure is here below.

i) Start with xs = 0.
ii) Compute the first and second derivatives of G in xs, that

is, respectively d1 =NavðxsÞ−NmðC0Þ and d2 =P
C PðCjxsÞNmðCÞ2 −NavðxsÞ2.

iii) Compute the new value of xs [which would be equal to xsðC0Þ
if G were a parabolic function]

xs → xs −
d1
d2
: [S19]

iv) Iterate step ii until convergence is achieved.

As the parabolic approximation is generally good, the pro-
cedure generally converge very fast, in a few iterations.

IV. Illustrations on Very Short Sequences of Amino Acids
We illustrate the notion of entropy on two simple ad hoc se-
quences with L= 2 amino acids, Pro-Pro and Pro-Cys, and one
sequence with L= 3 amino acids, Pro-Pro-Cys. For all three se-
quences the motif considered is m = CT.

A. Case of Pro-Pro. Proline is a fourfold degenerate amino acid,
corresponding to codons c = CCA, CCC, CCG, CCT. For the
sake of simplicity we assume that each codon has probability 1=4.
The entropy of the random codon model in the absence of force
is σ0 = log 16= 4 log 2. The transfer matrix M1 is given by [S9],
with the result

M1 =
1
16

0
BB@

1 1 1 exs
1 1 1 exs
1 1 1 exs
exs exs exs e2xs

1
CCA: [S20]

The normalization constant is (refer to [S10]),

ZðxsÞ=
X

c1 ;c2

M1ðc1; c2Þ= 1
16
�
9+ 6exS + e2xs

�
=

1
16
ð3+ exsÞ2: [S21]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= d
dxs

logZðxsÞ= 2exs

3+ exs

σavðxsÞ= σ0 + logZðxsÞ− xsNavðxsÞ= 2 logð3+ exsÞ− 2xsexs

3+ exs
:

[S22]

In Fig. S1 we plot the entropy σav vs. the number Nav of occur-
rences of CT. The maximum of the entropy, σav = 4 log 2, always
corresponds to the unconstrained case xs = 0 (there are indeed
e4 log 2 = 16 possible nucleotidic sequences); the corresponding
average number of occurrences of the motif m=CT is 0.5 as
expected, as each one of the two codons can contain CT with
probability 1=4.
By varying the parameter xs, equal to minus the slope of σav as

function of Nav, we scan the entire entropy curve. Note that for
Nav = 0, i.e., xs → −∞, we obtain σav = 2 log 3; there are indeed
e2 log 3 = 9 nucleotidic sequences compatible with Pro-Pro without
CT. For Nav = 2, i.e., xs → +∞, we obtain σav = 0; there is e0 = 1
sequence compatible with Pro-Pro and including the motif twice,
namely CCTCCT.
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Remark that for Nav = 1 we obtain σav ’ 2:472; eσav is larger
than 6, the number of sequences compatible with Pro-Pro with
one CT. This is because our calculation gives the entropy of
sequences that contain on average (and not exactly) Nav repeti-
tions of the motif m. For large values of L we expect that Nav will
coincide with NmðCÞ (up to small relative fluctuations). For ex-
treme (minimal or maximal) values of the number of occur-
rences of the motifs fluctuations vanish even for small L. For
instance, if the number of motifs vanishes on average then all
sequences C with nonzero probability PðCÞ must be free of the
motif. This is why the entropies of sequences containing the
motif exactly 0 or 2 times coincide with the outcome of our
calculation.

B. Case of Pro-Cys. Cysteine is twofold degenerate, with corre-
sponding codons TGT and TGC. The motif CT can now be found
in the second and third positions of the Pro codon, or at the third
position of the Pro codon and the first position of the Cys codon.
We assume that there all four Pro codons are equally likely, and so
are the two Cys codons. The entropy of the random codon model
in the absence of force is σ0 = log 8= 3 log 2. The transfer matrix
is a 4× 2 matrix, given by

M1 =
1
8

0
BB@

1 1
1 1
exs exs
exs exs

1
CCA: [S23]

The normalization constant is (refer to [S10])

ZðxsÞ=
X

c1;c2

M1ðc1; c2Þ= 1
2
ð1+ exsÞ: [S24]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= exs

1+ exs
;  σavðxsÞ= 2 log 2+ logð1+ exsÞ− xsexs

1+ exs
: [S25]

The entropy σav when plotted vs. the average number of motifs
Nav is a bell-shaped curve with maximum in σav = log 8, equal to
the logarithm of the total number of nucleotidic sequences as
expected. The corresponding average number of motifs is 0.5,
as four sequences (CCTTGT, CCTTGC, CCCTGT, CCCTGC)
contain the motif once, whereas the four remaining sequences
are free of the motif. The latter four sequences are selected
when xs → −∞, corresponding to σav = log 6 and Nav = 0. Con-
versely, for xs → +∞, we select the four sequences with one
motif, and obtain σav = log 2 and Nav = 1.

C. Case of Pro-Pro-Cys. The entropy of sequences in now σ0 =
log 32= 5 log 2 (all codons compatible with A are assumed to be
equally likely). There are two transfer matrices, defined ac-
cording to [S8] and [S9]:

M1 =
1
4

0
BB@

1 1 1 1
1 1 1 1
1 1 1 1
exs exs exs exs

1
CCA;  M2 =

1
8

0
BB@

1 1
1 1
exs exs
exs exs

1
CCA: [S26]

Note that matrix the M1 above is different from its counterpart
[S20] defined for the sequence Pro-Pro, due to the difference
between F in the bulk of the sequence and at its end, compare
[S4] and [S5].

The product of the two transfer matrices is given by

M1 ×M2 =
1+ exs

16

0
BB@

1 1
1 1
1 1
exs exs

1
CCA; [S27]

and the normalization constant is

ZðxsÞ=
X

c1;c2

ðM1 ×M2Þðc1; c2Þ= ð1+ exsÞð3+ exsÞ
8

: [S28]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= exs

1+ exs
+

exs

3+ exs

σavðxsÞ= 2 log 2+ logð1+ exsÞ+ logð3+ exsÞ− xsexs

1+ exs
−

xsexs

3+ exs
:

[S29]

The entropy σav is plotted vs. the average number of motifs Nav
in Fig. S2. There are eσavð−∞Þ = 12 sequences with no copy of the
motif ðNav = 0Þ: those corresponds to three codons CCA, CCC,
CCG for the first Pro amino acid, the two codons CCA, CCG for
the second Pro, and the two codons for Cys. We also see that
there are eσavð+∞Þ = 4 sequences with two copies of the motifs,
which start with CCT followed by one of the four sequences
coding for Pro-Cys with one CT listed above.

V. Case of Multiple Motifs
To calculate the entropy associated with the number of occurrences
of several motifs, one can extend the preceding definitions. As
an example, for two dinucleotides the partition function will vary

over two parameters ðxð1Þs ; xð2Þs Þ corresponding to dinucleotide

motifs mð1Þ = ðmð1Þ
1 ;mð1Þ

2 Þ and mð2Þ = ðmð2Þ
1 ;mð2Þ

2 Þ. The partition
function naturally becomes

Z
�
xð1Þs ; xð2Þs

	
=
X

C

�
∏
L

i=1
piðciÞ

�
exp

"
xð1Þs

XL−1

i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1

i=1

F
�
mð2Þ; ci; ci+1

	#
:

[S30]

This normalization constant can be calculated using the transfer
matrix method as in the single motif case. The transfer matrices
are defined through

Miðci; ci+1Þ= piðciÞexp
"
xð1Þs

XL−1

i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1

i=1

F
�
mð2Þ; ci; ci+1

	#
; [S31]

for all i= 1; . . . ;L− 2, and

ML−1ðcL−1; cLÞ= pL−1ðcL−1Þexp
"
xð1Þs

XL−1

i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1

i=1

F
�
mð2Þ; ci; ci+1

	#
pLðcLÞ: [S32]
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Once Z has been calculated, we obtain the entropy through a
Legendre transform with respect to the two forces xð1Þs and xð2Þs :

σav
�
xð1Þs ; xð2Þs

	
= σ0 + logZ

�
xð1Þs ; xð2Þs

	
− xð1Þs Nð1Þ

av

�
xð1Þs ; xð2Þs

	

− xð2Þs Nð2Þ
av

�
xð1Þs ; xð2Þs

	
[S33]

where

Nð1Þ
av

�
xð1Þs ; xð2Þs

	
=

∂
∂xð1Þs

logZ
�
xð1Þs ; xð2Þs

	
[S34]

and likewise for Nð2Þ
av ðxð1Þs ; xð2Þs Þ. Then

Nð1Þ
av

�
xð1Þs ; xð2Þs

	
=

∂

∂xð1Þs

logZ
�
xð1Þs ; xð2Þs

	
; [S35]

together with a similar expression for the average number of
motifs mð2Þ. The second derivatives of Z give access to the co-
variance matrix of Nð1Þ and Nð2Þ.
The above formula can be straightforwardly extended to the

case of more than two forces and motifs. Assume we have Km ≥ 2
motifs, mðjÞ, with j= 1; . . . ;Km. Then xs is a Km dimensional
vector, and so is NavðxsÞ. In particular the entropy of sequences is
now given by

σav
�
xs
�
= σ0 + logZ

�
xs
�
− xs ·Nav

�
xs
�

[S36]

where · denotes the dot product over the Km components of xs
and Nav, and

Nav
�
xs
�
=

∂
∂xs

logZ
�
xs
�
: [S37]

The partition function Z can be computed with the transfer
matrix as in the Km = 2 case above. In addition, the numerical
procedure of SI Text, section III to calculate xs can be extended
to the multidimensional case of more than one force parameter
as follows. We now define G through

G
�
xs
�
= logZ

�
xs
�
−
XKm

j=1

xðjÞs NmðjÞ ðC0Þ: [S38]

The gradient of G in xs is a Km − dimensional vector d1, and its
Hessian matrix d2 is the Km ×Km semidefinite positive matrix of
the second derivatives. The only change in the algorithm of SI
Text, section III is the updated rule for the forces:

xs → xs − d−12 × d1; [S39]

where d−12 denotes the matrix inverse of d2.

VI. Local Density of Motifs
Let us call piðcijxsÞ the probability that the ith codon on a ran-
domly drawn sequence under force xs is ci. This quantity can be
computed with the transfer matrix formalism of SI Text, section

II. For simplicity we restrict ourselves to the case of motifs with
two nucleotides ðK =Kc = 2Þ.
To do so we first apply the procedure described by formulae

S11 and S12. We start from vLðcLÞ= 1 for all degðaLÞ codons at
site L, and calculate vL−1ðcL−1Þ using transfer matrix ML−1 and
Eq. S11. Through successive applications of the transfer matrices
ML−2; . . . ;Mi+1 we obtain the vector viðciÞ at site i.
Next the same procedure is followed, starting from site i= 1,

through successive multiplications by the transfer matrices from
left to right. More precisely, we define w1ðc1Þ= 1 for all degðaLÞ
codons at site 1. We then compute

w2ðc2Þ=
X

c1

w1ðc1ÞM1ðc1; c2Þ: [S40]

This procedure is iterated until we compute

wiðciÞ=
X

ci− 1

wi−1ðci−1ÞMi−1ðci−1; ciÞ: [S41]

Finally we obtain the probability of codon ci through

piðcijxsÞ=wiðciÞviðciÞ
ZðxsÞ : [S42]

This probability is correctly normalized, according to [S10]. Spe-
cial care must be brought to the cases i= 1; i=L, that is, to the
extremities of the sequence to ensure a proper counting of the
number of motif occurrences in the sequence.
The generalization to the joint probability pi;i+1ðci; ci+1jxsÞ of

contiguous codons ci; ci+1 is straightforward. The outcome is

pi;i+1ðci; ci+1jxsÞ=wiðciÞMiðci; ci+1Þvi+1ðci+1Þ
ZðxsÞ : [S43]

To compute the probability pbðmjxsÞ that motif m appears in the
sequence, starting on base b, two cases must be considered:

• If b is a multiple of 3, plus 1 or 2, then the motif is in posi-
tions 1,2 or 2,3 of a codon, say, ci. We can use the single-
codon probability piðcijxsÞ to calculate pbðmjxsÞ, e.g., for b=
3ði− 1Þ+ 1,

pbðmjxsÞ=
X

ν

piðci = fm1;m2; νgjxsÞ; [S44]

where the sum runs over all nucleotides ν such that fm1;m2; νg is
a valid codon (synonymous to the ith codon of C0).

• If b is a multiple of 3, then the motif is in position 3 of codon
ci, and in position 1 of ci+1 for some i. We can use the two-
codon probability pi;i+!ðci; ci+1jxsÞ to calculate pbðmjxsÞ:

pbðmjxsÞ=
X

ν1 ;ν2;μ1 ;μ2

pi;i+1ðci = fν1; ν2;m1g; ci+1 = fm2; μ1; μ2gjxsÞ;

[S45]

where b= 3i.
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Fig. S1. Entropy σav of sequences with amino acid sequence Pro-Pro vs. average number Nav of occurrences of the motif m = CT. The curve was obtained from
a parametric representation ðNavðxsÞ,σavðxsÞÞ, and by varying xs from −∞ to +∞.
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Fig. S2. Entropy σav of sequences with amino acid sequence Pro-Pro-Cys vs. average number Nav of occurrences of the motif m = CT. The curve was obtained
from a parametric representation ðNavðxsÞ,σavðxsÞÞ (refer to [S29]) and by varying xs from −∞ to +∞.

Greenbaum et al. www.pnas.org/cgi/content/short/1402285111 5 of 7

www.pnas.org/cgi/content/short/1402285111


Fig. S3. A comparison of the selective forces when calculated using the segment and human codon biases for the 16 dinucleotides for the (A) PB1 and (B) PA
genes in influenza. These quantities are calculated for the 1918 H1N1 segments, and the H1N1 segments from 2007 and for influenza B. In the later two cases
the median values are shown.
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Fig. S4. A comparison of the median selective forces when calculated using the segment and human codon biases for the 16 dinucleotides for the (A) gag and
(B) env genes. These quantities are calculated for HIV1, SIV chimpanzee (SIVcpz), HIV2, and SIV sooty mangabee (SIVsm).
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