
Supplementary Material, Hekstra et al.

Section Page
S1 Matrix fraction decomposition S-1
S2 Specification of prior probabilities S-2
S3 Linear model for time series with different measurement schedules S-5
S4 Analysis of preliminary “coarse” experiments S-14
S5 Optimal sampling schedule S-16
S6 Description of artificial data S-21
S7 Supplementary figure S-21

Note: references are also listed as part of the main text.

S1 Matrix fraction decomposition

We can rewrite the dynamics in eq. 2 as dx = fdt−Axdt+ η
√

dt. We are interested in

obtaining an analytical expression for the covariance matrix of xs, C =
〈
xx>

〉
after

propagating the dynamics for a time interval ∆t. (Note that we will omit the explicit

dependence on the system index, s.) To this end, we first derive a differential equation for C

itself.

Since f only affects the average dynamics, we will omit it without loss of generality: it

does not affect the dynamics of the covariance matrix. Since dx = x(t+ dt)− x(t),

x(t+ dt) = (I−Adt)x(t) + η
√

dt.

We multiply both sides by their transpose and take expectation values, yielding〈
xx>

〉
=(I−Adt)

〈
xx>

〉
(I−Adt)> +

〈
ηη>

〉
dt+

(I−Adt)
〈
xη>

〉√
dt+

〈
ηx>

〉
(I−Adt)>

√
dt,

where we have suppressed the time-dependence of
〈
xx>

〉
for clarity. This expression

simplifies since cross-terms
〈
ηx>

〉
= 0 and terms of order (dt)2 vanish. Defining C ≡

〈
xx>

〉
and with dC = C(t+ dt)−C(t), we arrive at

dC = −ACdt−CA>dt+ Sddt. (S1-1)

This differential equation can be solved by a method called matrix fraction decomposition

[8]. The first step is to propose that C can be written as a “ratio” of two matrices:
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C = D · E−1. Application of the chain rule of differentiation for matrices yields:

dC = dD · E−1 −DE−1(dE)E−1 . (S1-2)

We equate equations (S1-1) and (S1-2), divide by dt and right-multiply by E:

Ḋ−DE−1Ė = −AD−DE−1A>E + SdE,

which is solved by a pair of differential equations:(
Ḋ
Ė

)
=

(
−A Sd

0 A>

)(
D
E

)
, (S1-3)

Up to this point, we have left D(t) and E(t) unspecified. A convenient choice is to describe

the initial condition as D(t) = C(t) and E(t) = I. We hence arrive at:(
D(t+ ∆t)
E(t+ ∆t)

)
= exp

[(
−A Sd

0 A>

)
∆t

](
C(t)

I

)
. (S1-4)

and C(t+ ∆t) = D(t+ ∆t) · E(t+ ∆t)−1. Now, equation 2.7 can be evaluated.

Γn ≡ Cov (xn+1,s |xns,θ ), being conditional on the preceding xns, is the solution for

C(t) = 0.

Using the vec operator, which converts a matrix into a column vector consisting of its

stacked columns, one can write the asymptotic covariance matrix as [5]:

vec(C(t→∞)) = A−1vec(Sd) (S1-5)

with A = I⊗A + A⊗ I, provided the dynamics are, asymptotically, stationary (that is all

eigenvalues of A have absolute size < 1).

S2 Specification of prior probabilities

We need to specify prior distributions for the trend parameters φ and the model parameters:

the interaction matrix A, the dynamical noise covariance matrix Sd and the measurement

noise variances Sm
k . There is a substantial literature on the choice of priors. We base our

choices loosely on a few principles commonly used. Many other approaches have been

proposed in the literature and it is straightforward to replace the choices made here with

alternatives.

First, we propose that model parameters are a priori independent. That is, we can

determine separate priors for A,Sd and Sm
k and multiply them. The prior on the trend, may

depend on the values of the model parameters.
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Secondly, we seek approximately “non-informative” priors [2]. Such priors result in a

Bayesian likelihood function which is only translated (shifted), not reshaped, for different

data sets of the same size. This principle leads to locally uniform priors for so-called

“location parameters”, such as the mean of a distribution, and for “scale parameters”, such

as a standard deviation, it leads to prior distributions locally uniform in the logarithm of the

parameter.

Finally, priors are often constrained to be “conjugate” priors. A prior distribution for a

parameter is conjugate if the posterior and the prior distribution have the same functional

dependence on that parameter. This constraint is mostly a matter of convenience, although

it can be used to express a notion of the amount of information in the prior distribution

relative to the data [6]. Additional parameters characterizing prior distributions are known

as hyperparameters.

Prior distribution on A. The parameters Aij are approximately location parameters

(this becomes exact in the limit of weak interactions Aij), suggesting a Gaussian prior

distribution, which is nearly a conjugate distribution for weak interactions. From

experiments, one cannot meaningfully infer couplings stronger than 1/(∆t)min, setting a

natural scale for the Aij. That is, we take

P (A) =

(
∆tmin√

2π

)K2

exp

(
−1

2
∆t2minTr(AA>)

)
, (S2-1)

where K is the number of species.

Prior distribution on Sm. Our measurements of local density are based on direct counts

of individual organisms. Hence counting statistics place a natural lower limit on the

measurement variances (time points with the highest numbers of counts give minimum error

estimates of ∼ 1% for C. reinhardtii and E. coli, and ∼ 3% for T. thermophila). We chose a

conventional prior distribution on the Sm
k , the inverse Wishart distribution, which allows us

to impose a soft lower bound on Sm
k , and which decays approximately exponentially for large

logSm
k .

P ({Sm
k }) =

K∏
k=1

(
ψk
2sk

)m/2
e−ψk/2sk

skΓ1

(
m
2

) (S2-2)

where for simplicity, sk = Sm
k , and Γ1 represents the Gamma function. We set m = 1 and

ψk =
2

3
Sm
k,min for each species.

Prior distribution on Sd. Our basic consideration for the diagonal elements {Sd
kk} is the

same as for the Sm
k : there is a lower bound on the dynamical noise, as a divergence
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Sd
kkT < Sm

k,min cannot be meaningfully inferred (hence Sd
kk,min = Sm

k,min/T ). Indeed, we

parametrize Sd for the purpose of specifying its prior by {Sd
kk, ρ

d
kl}, with k 6= l. We again use

the inverse Wishart distribution to describe the Sd
kk, with m = 1 and ψkk =

2

3
Sd
kk,min. We

simply use a uniform prior on [-1,1] for each ρd
kl. That is,

P (Sd) = P ({Sd
kk, ρ

d
kl}) =

1

2
K(K−1)

2

K∏
k=1

(
ψkk
2skk

)m/2
e−ψkk/2skk

skkΓ1

(
m
2

) (S2-3)

with skk = Sd
kk. Note that this prior is not entirely proper, since it attaches some weight to

matrices Sd which are not proper covariance matrices. For alternative choices, see e.g. ref.

[1].

Prior distribution on φ. We will motivate our choice of prior distribution for the trend

parameters φ in the limit of weak interactions, Akl ≤ 1/T , although the prior can be used

equally well in the presence of stronger interactions. When interactions are weak, φ ≈ f (see

main text) and φ can directly be considered the derivative of the common trend of the

densities, F (t) =
∫ t

0
f(t′)dt′. That is, the expected average dynamics, 〈x(t)〉 = x0 + F (t).

The prior distribution on φ describes in this case how much curvature we expect in the

average dynamics. Specifically, our prior distribution assumes that trends displaying more

curvature are a priori less likely. The curvature of F (t) is approximately given by,

curvature ≈
∑
m,k

(φm+1,k − φmk)2

∆tm+1 + ∆tm
(S2-4)

Where, if each replicate ecosystem was sampled at the same schedule, tm = tn; otherwise the

tm form the union of all tns: {tm} =
⋃
s{tns} as in Fig. S-1. If one has an expected pattern

for the trend, φ0 = {φ0
mk}, eq. (S2-4) can be modified to the curvature around the expected

trend:

curvature ≈
∑
m

(
(φm+1,k − φ0

m+1,k)− (φmk − φ0
mk

)2

∆tm+1 + ∆tm
(S2-5)

In our analysis we set φ0 = 0. Since φ is a vector of location parameters, a Gaussian

distribution is a suitable, conjugate prior distribution. We thus take as our initial prior

simply:

P (φ) ∝ exp

(
−µ

2

2

∑
m,k

(
(φm+1,k − φ0

m+1,k)− (φmk − φ0
mk)
)2

∆tm+1 + ∆tm

)
(S2-6)

However, this criterion is by itself insufficient to formulate a proper prior distribution for φ,

since it leaves one degree of freedom per species unconstrained. To address this, we multiply

eq. (S2-6) by a factor tying each φmk weakly to its expected value, φ0
mk, with a standard
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deviation σ0T/∆tm ≥ σ0 and σ0 = 0.4 for each species, based on the size of growth rate

fluctuations observed over the data. Putting these components together yields:

P (φ) =
exp

(
−µ2

2
(φ− φ0)>D(φ− φ0)

)
√

(2π)(M−1)K |µ2D−1|
(S2-7)

with

Dmk,m′k′ =


1(m>1)

∆tm−1+∆tm
+

1(m<M−1)

∆tm+∆tm+1
+
(

∆tm
σ0T

)2

for k = k′ ∧m = m′

−1
∆tm+∆tm′

for k = k′ ∧m = (m′ ± 1)

0 for k 6= k′ ∨ (|m−m′| > 1)

(S2-8)

Finally, when considering a “unit information prior” on φ, we limit the influence of the prior

distribution to the equivalent of a single time series. Doing so induces a dependence of the

trend prior distribution on the model parameters (but no direct dependence on the data).

Analogous to ref. [6], that is:

P (θ,φ) = P (θ) · P (φ|θ) = P (θ) · P (φ|µ(θ)) (S2-9)

indicating that any dependence of the trend prior distribution on the model parameters is

mediated by µ. We explain this approach in the main text.

S3 Linear model for time series with different measurement

schedules

The analysis of the (linear) Gompertz model in the main text assumed that all systems were

measured at the same schedule. In general, as well as for our data, each replicate system can

have its own set of measurement time points {tns}. These time points do not need to be

evenly spaced (that is, each ∆tns = tn+1,s − tns can be different), and different systems can

be measured a different number of times (that is, each system has its own Ns). We describe

here inference for this more general case, following the approach in the main text. For a

detailed motivation of each step, we refer the reader to the main text.

In addition, we will (i) discuss how to fit different trends to different subsets of the

available systems, (ii) describe how to extract the posterior distribution for the underlying

“true” dynamics and the common trend, (iii) propose a way to quantify the effective number

of degrees of freedom in the trend, and (iv) derive a criterion for when the optimal µ is finite

or infinite when optimized directly.
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As a reminder, the state space model for the Gompertz model takes the form

ẋs = f(t)−Axs(t) + ηs (S3-1a)

yns = xs(tn) + ξns (S3-1b)

We will use the shorthand xns for xs(tn) from here on and omit explicit mention of the time

dependence of f and x.

The probability of the data given the model, P (y|θ, µ) plays a central role in both a

likelihood approach and a Bayesian approach. It takes the form

P (y | θ;µ) =

∫
dφ

∫
dx (P (y |x) · P (x |φ,θ ) · P (φ |θ, µ)) . (S3-2)

with

P (x |φ,θ ) =
S∏
s=1

Ns−1∏
n=1

P (xn+1,s|xns,φ,θ)

= exp
{
−1

2

S∑
s=1

Ns−1∑
n=1

(
xn+1,s −Bnsxns − φns∆tns

)>
Γ−1
ns

(
xn+1,s −Bnsxns − φns∆tns

)
− 1

2
K
∑
s

(Ns − 1) log(2π)− 1

2

S∑
s=1

Ns−1∑
n=1

log|Γns|
}

(S3-3)

where Bns = exp (−A∆tns), φns = 1
∆tns

tn+1,s∫
tns

e−A(tn+1,s−t′)f(t′)dt′ and Γns is given by eq. 2.7

(with Γ−1
ns = (Γns)

−1) and described in more detail in Appendix S1. Measurement error is

described by

P (y |x,θ ) =
S∏
s=1

Ns∏
n=1

K∏
k=1

P (ykns|xkns, Sm
k )

= exp
{
−1

2

S∑
s=1

Ns∑
n=1

(
yns − xns

)>
Sm−1

(
yns − xns

)
− 1

2
KNS log(2π)− 1

2
NS log|Sm|

}
(S3-4)

where NS =
∑S

s=1Ns, and Sm is a matrix with the Sm
k on its diagonal and 0 otherwise

(alternative choices are easily accommodated).

The description of the common trend is a bit more complicated when different systems
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s = 1

s = 2

s = S

t1 t2 t3 ... tNs

slices
...

tn...

t1 t2 t3 ... tMtm...

Figure S-1: In the case of different measurement schedules for different systems s, measurement
intervals of individual replicates (tn, tn+1) are subdivided in the analysis by the time points
at which other systems are measured (tm,m = 1, . . . ,M), to allow formulation of a single
common trend. Horizontal lines represent measurement schedules for individual ecosystems,
with measurement time points indicated by vertical bars. The bottom line represents the
union of measurement schedules needed for specification of the trend parameters.

have different measurement schedules. We illustrate this in Figure S-1. The common trend

needs to be defined on all time points, which we will label tm, with m = 1, . . . ,M . In other

words, the tm are the union of all tns: {tm} =
⋃
s{tns}. Following eq. (S2-7), and placing all

factors in the exponent, we have

P (φ|θ;µ) = exp
{
−µ

2

2

K∑
k,k′

M−1∑
m,m′

(φmk − φ0
mk)Dmk,m′k′(φm′k′ − φ0

m′k′)

− K(M − 1)

2
log(2π) +

1

2
log |µ2D|

} (S3-5)

To relate φn and φm, we first define

ψ(s)
nm = e−A(tn+1,s−tm+1)

1(m⊂(n,s)) (S3-6)

where “m ⊂ (n, s)” means that tm lies within the interval [tn, tn+1), 1() is the indicator

function which is 1 when its argument is true and 0 otherwise, and each ψ
(s)
nm is a K ×K
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submatrix of ψ(s). Now,

φns∆tns =

tn+1,s∫
tns

e−A(tn+1,s−t′)f(t′)dt =
∑

m⊂(n,s)

tm+1∫
tm

e−A(tn+1,s−t′)f(t′)dt

=
∑

m⊂(n,s)

e−A(tn+1,s−tm+1)

tm+1∫
tm

e−A(tm+1−t′)f(t′)dt

=
∑

m⊂(n,s)

ψ(s)
nmφm∆tm =

M−1∑
m=1

ψ(s)
nmφm∆tm

(S3-7)

In order to integrate over x, we collect terms of the type xns(·)xn′s into Q
(s)
nn′ , terms of

the type x>ns(·) into uns, and constant terms into C(s) and C(0). That is,

P (y | θ;µ) =

∫
dφ

∫
dx exp

{
−1

2

∑
s

(
xs
>Q(s)xs − us>xs − xs>us + C(s)

)
− 1

2
C(0)

}
,

(S3-8)

where

Q
(s)
n,n′ = δnn′1(n>1)Γ

−1
n−1,s − δn−1,n′1(n>1)βn−1,s − δn+1,n′1(n<N)β

>
ns + δnn′1(n<N)αns + δnn′(S

m)−1

uns = 1(n>1)Γ
−1
n−1,sφn−1,s∆tn−1,s − 1(n<N)β

>
nsφns∆tns + (Sm)−1yns

C(s) =
N−1∑
n=1

∆tnsφ
>
nsΓ

−1
nsφns∆tns +

Ns∑
n=1

y>ns(S
m)−1yns +

Ns−1∑
n=1

log |Γns|

+Ns log |Sm|+K(2Ns − 1) log(2π)

C(0) = µ2

M−1∑
m=1

M−1∑
m′=1

(φm − φ0
m)
>
Dmm′(φm′ − φ0

m′)− log |µ2D|+K(M − 1) log(2π)

αns = B>nsΓ
−1
nsBns with Bns = exp(−A∆tns)

βns = Γ−1
nsBns

(S3-9)

where Sm is a matrix with the Sm
k on its diagonal; and each Dmm′ is a K ×K submatrix of

D. After integration over x as in the main text, we expand, use eq. (S3-7) to replace the φns
by φm, and collect terms of type φm(·)φm′ into Rmm′ , of type −φ>m(·) into vm, and

constants into C ′. That is,

P (y|θ, µ) =

∫
dφ exp

{
−1

2

(
φ>Rφ− v>φ− φ>v + C ′

)}
(S3-10)
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where

Rmm′ = µ2Dmm′ +
S∑
s=1

Ns−1∑
n=1

∆tmψ
(s)
nm

>
Γ−1
nsψ

(s)
n,m′∆tm′

−
S∑
s=1

Ns−1∑
n=1

Ns−1∑
n′=1

{
1(n<Ns)1(n′<Ns)∆tmψ

(s)
nm×{

Γ−1
nsQ(s)−1

n+1,n′+1Γ
−1
n′s − Γ−1

nsQ(s)−1

n+1,n′β
>
n′s − βnsQ(s)−1

n,n′+1Γ
−1
n′s + βnsQ

(s)−1

nn′β
>
n′s

}
×

ψ
(s)
n′m′∆tm′

}
vm = µ2

M−1∑
m′=1

Dmm′φ
0
m′ +

∑
n,n′,s

1(n<Ns)∆tmψ
(s)
nm

>(
Γ−1
n Q(s)−1

n+1,n′ − βnQ(s)−1

nn′

)
(Sm)−1yn′s

C ′ = µ2

M−1∑
m=1

M−1∑
m′=1

φ0
m

>
Dmm′φ

0
m′ +

S∑
s=1

Ns−1∑
n=1

log |Γns|+NS log |Sm|+
S∑
s=1

log |Q(s)|

+
S∑
s=1

N∑
n=1

y>ns(S
m)−1yns −

S∑
s=1

N,N∑
n,n′=1

y>ns(S
m)−1Q(s)−1

nn′(S
m)−1yn′s − log |µ2D|

+K
∑
s

(Ns − 1) log(2π) +K(M − 1) log(2π)

(S3-11)

where ψ
(s)
nm

>
= (ψ

(s)
nm)>. The final expression for the log-likelihood is as in the main text:

L = −2 logP (y|θ) = C ′ + log |R| − v>R−1v −K(M − 1) log(2π) (S3-12)

In a Bayesian approach, one simply adds the contributions of the prior distributions:

LB = L − 2 logP (A,Sd,Sm) (S3-13)

with the prior distributions defined in Appendix S2.

Multiple trends. In case one wants to use different trends for different sets of systems,

one simply defines ψ
(s,τ)
nm = e−A(tn+1,s−tm+1)

1(m⊂(n,s))1(s⊂Sτ ), with Sτ the set of systems

described by trend τ . For multiple trends, one also obtains R
(τ)
mm′ , v

(τ)
m and C ′(τ) for each

trend τ by replacing ψ
(s)
nm by ψ

(s,τ)
nm and D by D(τ) in their definitions above. Then

L =
∑

τ L(τ).

Extraction of underlying dynamics and common trend. Once the log-likelihood

function, LB or L has been maximized, one has a set of optimal parameters, and, within a

Bayesian approach an estimate of the joint posterior distribution of the model parameters.
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But, one can also be interested in obtaining estimates of the underlying logarithmic densities

for each system, xs, and the common trend, 〈x〉. We calculate the common trend as the

expected average dynamics.

〈x(tm)〉 = e−A(tm−t1) · 〈x(t1)〉+

tm∫
t1

e−A(tm−t′)f(t′)dt′

= e−A(tm−t1) · 〈x(t1)〉+
m−1∑
m′=1

tm′+1∫
tm′

e−A(tm−tm′+1+tm′+1−t′)f(t′)dt′

= e−A(tm−t1) · 〈x(t1)〉+
m−1∑
m′=1

e−A(tm−tm′+1)

tm′+1∫
tm′

e−A(tm′+1−t′)f(t′)dt′

= e−A(tm−t1) · 〈x(t1)〉+
m−1∑
m′=1

e−A(tm−tm′+1)φm′∆tm′

= e−A(tm−t1) · 〈x(t1)〉+
m−1∑
m′=1

Ψmm′φm′

(S3-14)

where Ψmm′ = e−A(tm−tm′+1)∆tm′ , similar to the above definition of ψnm (eq. (S3-6)). For the

purpose of Figure 2A, we estimated 〈x(t1)〉 by linear regression (it plays no role in

parameter estimation). Neglecting error in the initial condition, x(t1), we have as the

posterior covariance matrix for the expected average dynamics

Cov(〈x(tm)〉 , 〈x(tm′)〉) = Cov(
m−1∑
m′′=1

Ψm,m′′φm′′ ,
m′−1∑
m′′′=1

Ψm′,m′′′φm′′′)

= ΨCov(φ, φ)Ψ> = ΨR−1Ψ>

(S3-15)

In order to obtain the marginal distribution of the underlying densities in individual

ecosystems, xkns, one should integrate over the φ first. We do this by noting that one can

put the likelihood function in a Gaussian form for x and φ at the same time. That is,

l ∝ exp

{
−1

2

((
x
φ

)> [ Q(xx) Q(xφ)

Q(xφ)> Q(φφ)

](
x
φ

)
−
(
x
φ

)>(u(x)

u(φ)

)
−
(
u(x)

u(φ)

)>(
x
φ

)
+ C

)}
.

(S3-16)

with

Q(xx) =


Q(1) 0 · · · 0

0 Q(s) . . . 0
...

. . . . . .
...

0 · · · 0 Q(S)

 (S3-17)
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where Q(s) (s = 1, . . . , S) is defined in eq. (S3-9), and

Q(xφ)
ns,m = −1(n>1)Γ

−1
n−1,sψ

(s)
n−1,m∆tm + 1(n<N)β

>
nsψ

(s)
n,m∆tm

Q
(φφ)
m,m′ = µ2Dmm′ +

S∑
s=1

Ns−1∑
n=1

(
ψ(s)
nm

)>
∆tnsΓ

−1
ns ∆tnsψ

(s)
n,m′

u(x)
ns = (Sm)−1yns

u(φ)
m = µ2

M−1∑
m′=1

Dmm′φ
0
m′

(S3-18)

where uns is defined in eq. (S3-9) as well. The value of C is not important here. Standard

results for jointly multivariate normal distributions are that x has as its marginal covariance

matrix after integration over φ:

Σ(xx) =
(
Q(xx) −Q(xφ)Q(φφ)−1

Q(xφ)>
)−1

(S3-19)

and as its (marginal) expectation value:

µ(x)
ns =

(
Σ(xx)

(
u(x) −Q(xφ)Q(φφ)−1

u(φ)
))

ns
(S3-20)

for each n and s.

Effective number of parameters in the trend. As described above, we obtain a

posterior distribution for the common trend characterized (eqns. (S3-14), (S3-15). Here, we

examine the number of degrees of freedom in the common trend, 〈x(t)〉 given by eq. (S3-14),

that make a substantial contribution to its description. Naively, each species’ trend is

described by M parameters (the φmk and an intercept). However, structure in the data and

the “smoothing” effect of the prior distribution make most of the trend parameters irrelevant

(for example, a straight line can be described just as well by 200 parameters as by 2). More

precisely, the estimates of the φmk become strongly correlated at large µ.

For this analysis, we examine the expected power (square size) of fluctuations in the

common trend. Such power will arise from measurement error, limited sampling, and true

temporal variation of the average dynamics. We ask how many degrees of freedom are

needed to describe any power in excess of what is expected from measurement error alone.

To do so, we first decompose the fluctuations by projection onto an orthonormal base, say

V =
(
v(1) · · ·v(q) · · ·v(M)

)
with each v(q) a column vector (q = 1, . . . ,M) with M entries.

The v(q) satisfy v(q)>v(q′) = δqq′ . A well-known example of such decomposition of

fluctuations is the discrete Fourier transformation, for which v
(q)
m = exp(−2πi qm

M
) (for

constant ∆t). We will examine fluctuations in 〈x(tm)〉 − 〈x(tm)〉 where the bar indicates an

S-11



additional average over time (we will add this degree of freedom back again at the end). For

simplicity, we present the analysis for a single species; the joint analysis is a trivial

modification. We will hence suppress the species index, k in most places.

For the common trend, its projection on the qth vector in the orthonormal base is:

Xq =
∑
m

v(q)
m

(
cm +

∑
m′

Ψmm′(φm′ − 〈φm′〉+ 〈φm′〉 − φ)

)
(S3-21)

with cm =
(

(exp(−A(tm − t1))− exp(−A(tm − t1)))x(t1)
)
k
. Corresponding to each

decomposition of the fluctuations is a decomposition of power in the fluctuations (in the case

of Fourier transforms, this is the power spectrum). The power in the fluctuations, averaged

over the posterior distribution, is now given by

〈
XqX

∗
q

〉
=
∑
m,m′′′

v(q)
m

(
cmcm′′′ +

∑
m′,m′′

Ψmm′Cov(φm′ , φm′′)Ψ
>
m′′m′′′

+
∑
m′,m′′

Ψmm′
(
〈φm′〉 − φ

) (
〈φm′′〉 − φ

)
Ψ>m′′m′′′

)
v

(q)
m′′′ (S3-22)

where ∗ indicates the complex conjugate if necessary, and Ψ as in eq. (S3-14). We define

Mmm′′′ = cmcm′′′+
∑
m′,m′′

Ψmm′Cov(φm′ , φm′′)Ψ
>
m′′m′′′+

∑
m′,m′′

Ψmm′
(
〈φm′〉 − φ

) (
〈φm′′〉 − φ

)
Ψ>m′′m′′′

(S3-23)

The power in fluctuations of a particular mode is hence
∑

m,m′′′ v
(q)
mMmm′′′v

(q)
m′′′ for each

vector v(q) in our basis. (Note that for our data the second term in eq. (S3-23) dominates

the analysis. One could thus perform the analogous analysis of the φmk with nearly identical

results.) Let the v(q) be arranged in a predescribed order from the most “trend-like” (i.e.

slowly varying) to the most “noise-like” (e.g. most variable with m). We consider partial

sums Cq =
∑M

q′=q+1

〈
XqX

∗
q

〉
, that is, over the most noise-like modes. We are interested in

how many modes (the v(q)) need to be included in order to accommodate the expected

amount of power in the common trend due to measurement noise, ε = Tr(Sm)
∑

m 1/Nm,

where Nm is the number of replicate systems for which a measurement was made at time tm.

We define a number qc such that Cqc < ε < Cqc+1. Now the effective number of degrees of

freedom is 1 + qc(k) for an analysis per species.

We have performed this analysis for a number of choices of orthonormal basis as a

function of the smoothing parameter, µ. The result for perhaps the simplest choice, using

the eigenvectors of M is shown in Figure S-2A. In Figure S-2B we show a decomposition

using as a basis the eigenvectors of D. Because of the structure of D, this can be thought of
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Figure S-2: Scaling of the number of effective degrees of freedom in the description of the
common trend with the smoothing parameter, µ for C. reinhardtii (green); E. coli (red); T.
thermophila (blue) using (A) the eigenvectors ofM and (B) the eigenvectors of D. UIP: unit
information prior; ML: maximum likelihood estimate of µ.

as a discrete Fourier transform accommodating unevenly spaced measurements.

Optimal smoothing parameter, µ. In the main text we assert that if one optimizes µ

together with the model parameters (rather than keeping it fixed or using a unit information

prior), the optimal value, µ∗ can be infinite. To examine this more closely, assume, for

simplicity, that the other parameters are known. Following Table 2, we have

Ly(µ,θ) = − log |µ2D|+ log |R| − v>R−1v + . . .

= − log |µ2D|+ log |R′ + µ2D| − v>(R′ + µ2D)
−1
v + . . .

(S3-24)

where R′ = R− µ2D is the prior-independent part of R. We will look for optimal µ

assuming it is large (in which case large-µ assumptions are self-consistent). In this limit, we

can use the following two approximations:

log |R′ + µ2D| = log |µ2D(I + 1
µ2

D−1R′)|

= log |µ2D|+ log |(I + 1
µ2

D−1R′)|

≈ log |µ2D|+ 1 + 1
µ2

Tr(D−1R′)

(S3-25)

and (
R′ + µ2D

)−1
=
(
µ2D(I + 1

µ2
D−1R′)

)−1

=
(
I + 1

µ2
D−1R′

)−1(
µ2D

)−1

≈
(
I− 1

µ2
D−1R′

)
1
µ2

D−1

(S3-26)
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Introducing τ = 1
µ2

, we obtain an expression for the log-likelihood function which is a simple

quadratic function of τ :

Ly(µ,θ) = τTr(D−1R′)− v>
{(

I− τD−1R′
)
τD−1

}
v

= τ 2(v>D−1R′D−1v) + τ
(
Tr(D−1R′)− v>D−1v

)
+ C

(S3-27)

with C collecting terms independent of τ (or µ). The optimum, µ∗, is finite, provided τ ∗ > 0.

That is,

τ ∗ =
v>D−1v − Tr(D−1R′)

2v>D−1R′D−1v
> 0 (S3-28)

That is, v>D−1v > Tr(D−1R′) (the denominator in eq. (S3-28) is necessarily positive). This

condition is more likely to be fulfilled when more replicate systems are available since

v>D−1v grows quadratically in the number of systems while Tr(D−1R′) grows only linearly

in S. As a result, one can estimate Sc/S = Tr(D−1R′)/v>D−1v. If the number of

measurement points per time series can be varied too, one can read (NS)c/(NS) rather than

Sc/S.

We note that for the example descibed in the main text (§3.3, of a single species at

constant ∆t, D−1/Tr(D−1) ≈ 1), with 1 a square matrix of ones.

Within the model, the inferred value of Sc over its true value follows from eq. 3.8.

S4 Analysis of preliminary “coarse” experiments

Duplicate single-species and two-species ecosystems were prepared as for three-species

ecosystems [3], except that we used clear screw-thread vials (Fisherbrand, nominal volume: 4

mL, total internal volume: 4.9 mL) with screw caps with teflon-lined silicon septum. At each

time point, ∼100µL was sampled by syringe through the septum after gentle homogenization

by repeated inversion (unlike the three-species data which were obtained by fluorescence

selective plane illumination microscopy [3]). T. thermophila and C. reinhardtii counts were

determined by haemocytometry, E. coli densities by plating on Luria-Bertani agar.

We will use the following notation: ykn = logNkn is the logarithmic density. For

simplicity, we will omit the system index s. Instead, every sum over time points is, implicity,

also a sum over replicate systems (here S = 2 in each case). To distinguish the different

species combinations, we will indicate them with superscripts. That is, y
[ij]
in is the logarithmic

density of species i at time point n in a two-species system containing species i and j.

The advantage of having one- and two-species data is that we can extract the trend for

isolated species, and then estimate the interaction coefficients from two-species data. That
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is, we will model the single-species dynamics as:

dy
[i]
i

dt
= fi(t)− Aiiy[i]

i (t) (S4-1)

We use the single species data to determine the trend parameters, i.e.,

fi(t) =
dy

[i]
i

dt
+ Aiiy

[i]
i (t) (S4-2)

The available data are fairly coarse, and we take a pragmatic approach. First, the data do

not permit a meaningful separation of measurement and dynamical noise. We will use the

single-species data to predict the two-species data, as a function of the unknown Aij

dx
[ij]
i

dt
= fi(t)− Aiiy[ij]

i (t)− Aijy[ij]
j (t)

=
dy

[i]
i

dt
− Aii(y[ij]

i (t)− y[i]
i (t))− Aijy[ij]

j (t)

, (S4-3)

where x
[ij]
i are the predicted dynamics of i in a two-species i, j system. After replacing

derivatives by finite differences,

∆x
[ij]
in

∆tn
' fi(tn)− Aiiy[ij]

in − Aijy
[ij]
jn

=
∆y

[i]
in

∆tn
− Aii(y[ij]

in − y
[i]
in)− Aijy[ij]

jn

, (S4-4)

we simultaneously estimate all interaction coefficients by minimizing (with respect to each

interaction coefficient) the sums of squares (SSi) of deviations between predicted and

observed increments for each species, i,

SSi =
∑
n

(∆y
[ij]
in

∆tn
− ∆x

[ij]
in

∆tn

)2
+
∑
n

(∆y
[ik]
in

∆tn
− ∆x

[ik]
in

∆tn

)2
(S4-5)

That is, we get a system of linear equations ∂SSi
∂Aij

= 0 which is readily solved.

In the same experiment, we also obtained duplicate time series for the full three-species

system. We use those to examine whether the estimated Aij also adequately describe the

three-species dynamics. That is, our predicted three-species dynamics are:

∆x
[ijk]
i

∆t
= fi(t)− Aiix[ijk]

i (t)− Aijx[ijk]
j (t)− Aikx[ijk]

k (t)

=
∆y

[i]
i

∆t
− Aii(x[ijk]

i (t)− y[i]
i (t))− Aijx[ijk]

j (t)− Aikx[ijk]
k (t)

(S4-6)
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where the x
[ijk]
i (t) are obtained by propagation of eq. (S4-6).

The results of fitting the Gompertz model to the data are shown in Figure S-3.

S5 Optimal sampling schedule

We seek to calculate the Fisher Information matrix for the single-species model with no

interactions described in the text. In this case,

L = −2 logP (y|θ) = log |Q| −N log(2π) + C − u>Q−1u

= log |Q|+ y>
( I

Sm
− Q−1

(Sm)2

)
y +

∑
n

log(Sd∆tn) +N log(Sm)
(S5-1)

As before, we note that the last two terms (
∑

n log(Sd∆tn) +N log(Sm)) yield 0 second

derivatives in log(Sd) and log(Sm). In addition, Q can be written as Q = Q̃
Sd + I

Sm , where Q̃

depends on the measurement schedule but not on model parameters.

To limit the amount of algebra and highlight the problem structure, we introduce the

following two matrices

G = SdQ = Q̃ + γI

F = Sm
( I

Sm
− Q−1

(Sm)2

)
= I− γG−1

(S5-2)

so

L = log |G|+ 1

Sm

〈
y>Fy

〉
(S5-3)

where both F and G are functions of γ = Sd/Sm, but do not otherwise depend on Sd or Sm.

We omitted additional terms linear in logSm and logSd. The Fisher Information matrix is:

Iij =

〈
∂2L
∂θi∂θj

〉
(S5-4)

where the expectation value is over possible realizations of the data; θi is in our case logSd

or logSm since we are interested in relative errors. The expectation value is, eventually,

evaluated at the true value of the parameters, log Sd∗ or logSm∗. Integration and

differentiation in eq. (S5-4) can be interchanged under mild conditions, that is,

Iij =
∂2 〈L〉
∂θi∂θj

=
∂2

∂θi∂θj

{
log |G|+ 1

Sm

〈
y>Fy

〉}
=

∂2

∂θi∂θj

{
log |G|+ Sm∗

Sm
Tr(FF∗−1)

} (S5-5)
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Figure S-3: (A, B and C) One and two-species data for C. reinhardtii (green), E. coli
(red) and T. thermophila (blue). Observations for single-species systems are shown as thin
solid lines, observations for two-species systems as thick solid lines. Dotted lines: predicted
dynamics in two-species cultures as in eq. (S4-4). (D) Observed dynamics in duplicate
three-species ecosystems in the same experiment. Predictions based on single and two-species
systems as in eq. (S4-6) shown as dotted lines. The red arrow indicates the effect mentioned in
the main text: E. coli does better in the three-species systems than expected based on the one
and two-species data. Gray dashed lines: approximate detection limit for haemocytometry
for C. reinhardtii and T. thermophila.
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where F∗ is evaluated at the true parameter values Sm∗ and Sd∗. We have used that the

expectation
〈
y>Fy

〉
= m>Fm+ Tr(FΣ) for a multivariate Gaussian over y with mean m

and covariance matrix Σ ([7]; here m = 0 and Σ = Sm∗F∗−1).

Finite N and T . For finite N and T we will first calculate the derivatives in eq. (S5-5)

and then calculate the resulting terms (which will have the form of matrix traces) for each

element of I. We will need the following relations, stated here for a general parameter θ and

matrix Q [7]:

∂ log θ =
∂θ

θ
⇔ ∂

∂ log θ
= θ

∂

∂θ
(S5-6)

∂ log |Q|
∂θ

= Tr(Q−1∂Q

∂θ
) (S5-7)

∂Q−1

∂a
= −Q−1∂Q

∂a
Q−1 (S5-8)

Since we have reparametrized the likelihood function in terms of Sm and γ (by using F and

G, we need to reformulate the partial derivatives using the chain rule:

∂

∂ logSm

∣∣∣
(Sm,Sd)

= Sm ∂

∂Sm
+ Sm ∂γ

∂Sm

∂

∂γ
= Sm ∂

∂Sm
− γ ∂

∂γ

∂

∂ logSd

∣∣∣
(Sm,Sd)

= Sd ∂

∂Sd
+ Sd ∂γ

∂Sd

∂

∂γ
= γ

∂

∂γ

(S5-9)

where the partial derivatives on the right apply only to explicit dependencies. We note that

first derivatives of matrices F and G are 0 with respect to Sm. The first derivative of G with

respect to γ is the identity matrix, I. Furthermore,
∂F

∂γ
= −G−1F. The first derivatives of

the expected log-likelihood are now:

∂ 〈L〉
∂ logSm

= −γTr(G−1)− Sm∗

Sm
Tr(FF∗−1) +

Sm∗

Sm
γTr(G−1FF∗−1)

∂ 〈L〉
∂ logSd

= γTr(G−1)− Sm∗

Sm
γTr(G−1FF∗−1)

(S5-10)
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and the second derivatives:

∂2 〈L〉
∂ logSm 2

= γTr(G−1)− γ2Tr(G−2) +
Sm∗

Sm
Tr(FF∗−1)− 3

Sm∗

Sm
γTr(G−1FF∗−1)

+ 2
Sm∗

Sm
γ2Tr(G−2FF∗−1)

∂2 〈L〉
∂ logSm∂ logSd

= − γTr(G−1) + γ2Tr(G−2) + 2
Sm∗

Sm
γTr(G−1FF∗−1)

− 2
Sm∗

Sm
γ2Tr(G−2FF∗−1)

∂2 〈L〉
∂ logSd 2

= γTr(G−1)− γ2Tr(G−2)− Sm∗

Sm
γTr(G−1FF∗−1)

+ 2
Sm∗

Sm
γ2Tr(G−2FF∗−1)

(S5-11)

These derivatives simplify when evaluated at the true parameter values (F = F∗ and

Sm = Sm∗):
∂2 〈L〉

∂ logSm 2
=N − 2γTr(G−1) + γ2Tr(G−2) = Tr(F2)

∂2 〈L〉
∂ logSm∂ logSd

= γTr(G−1)− γ2Tr(G−2) = γTr(G−1F)

∂2 〈L〉
∂ logSd 2

= γ2Tr(G−2)

(S5-12)

Since each trace is the sum over eigenvalues of its argument, we can rewrite this. To do this,

we first denote the eigenvalues of Q̃ by λ
(Q̃)
n , with n = 1, . . . , N . For the eigenvalues of G,

G−1 and F, we have

λ(G)
n =λ(Q̃)

n + γ

λ(G−1)
n =

1

λ
(Q̃)
n + γ

λ(F)
n = 1− γ

λ
(Q̃)
n + γ

=
λ

(Q̃)
n

λ
(Q̃)
n + γ

(S5-13)

Rewriting the traces in eq. (S5-12) using the eigenvalues in eq. (S5-13), we arrive at the

Fisher information matrix for logSd and logSm:

I =
N∑
n=1

1

(λn + γ)2

(
λn

2 γλn

γλn γ2

)
(S5-14)

where λn = λ
(Q̃)
n . These results apply to any measurement schedule.
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Asymptotic results. In the limit of infinite N and T , we can also obtain the Fisher

Information matrix provided the measurement schedule is periodic. We make use of the

periodicity of the measurement intervals, ∆t`, to diagonalize Q̃ and determine its

eigenvalues. Technically speaking, the problem is identical to the determination of an

electronic wave function in a periodic potential on a one-dimensional lattice, a well-studied

problem in quantum condensed matter physics. For a periodic measurement schedule, we

can associate with each integer j ∈ [1;N ] the external block index k ∈ [0, N
L
− 1] and the

internal block index ` ∈ [1;L] such that j = kL+ `. That is, ∆t`+L = ∆t` for all ` (see

Figure 8C for an illustration).

Bloch’s theorem (after Felix Bloch) stipulates that the eigenvectors, v, of Q̃ are of the

form v(k,`) = V` exp(ikϕ), where ϕ is a real-valued phase to be determined later, provided

the L–dimensional vector, V with components V` is an eigenvector of Q̃(ϕ), a submatrix of

Q̃ modified at the corner elements:

[
Q̃(ϕ)

]
`,`′

=


1

∆t`
+ 1

∆t`+1
if ` = `′ ≤ L− 1

1
∆tL

+ 1
∆t1

if ` = `′ = L

− 1
∆t`

if ` = `′ + 1

− 1
∆t`+1

if ` = `′ − 1

− δ`,Lδ`′,1
e−iϕ

∆t1
− δ`,1δ`′,L

eiϕ

∆t1
(S5-15)

Let λ be an eigenvalue of Q̃(ϕ); λ is real since Q̃(ϕ) is a Hermitian matrix. Let us note

V` = ρ` exp(i α`) where ρ` and α` are real-valued numbers. As the complex conjugate of vk,`

is an eigenvector of Q̃(−ϕ) with the same eigenvalue λ. We therefore look for eigenvectors of

Q equal to w(k,`) = A+ vk,` + A− v
∗
k,`. The boundary conditions are v−1,L = vN

L
,1 = 0, which

gives

ϕm =
πm+ αL − α1

N
L

+ 1
, A+ = exp[i(ϕ− αL)], A− = − 1

A+

. (S5-16)

Parameter m can take any integer value between 0 and N
L

. Finally, we find

w(k,`) = ρ` sin[(k + 1)ϕm + α` − αL].

The above reasoning holds for any of the L eigenvalues λ of Q(ϕ). We therefore denote

the eigenvalues by λ`(ϕ). In the N →∞ limit, the phase ϕm can take any value comprised

between 0 and π. We may thus replace the sum over discrete m with a continuous integral

over ϕ. As a result, the asymptotic expression analogous to eq. (S5-14) is:

I0 =
1

L

L∑
`=1

1

π

∫ π

0

dϕ

(γ + λ`(ϕ))2

(
λ`(ϕ)2 γ λ`(ϕ)

γ λ`(ϕ) γ2

)
. (S5-17)

Remarks We conclude with a few remarks:

(1) As in the main text, we have set the average measurement interval, ∆t = T/N to 1,

that is, it defines the unit of time. More generally, one should read Sd∆t, rather than Sd.
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(2) Matrices Q, Q̃, F and G commute. They have the same eigenvectors but different

eigenvalues (eq. (S5-13)).

(3) In the known absence of a trend, the benefit of having replicate systems is simply

I =
∑

s Is.

S6 Description of artificial data

We verified convergence of the proposed method on a number of artificial data sets. For the

results presented in Figure 2, we generated artificial data by simulation according to the

Gompertz model presented in the main text with the following parameters.

A =

(
0.1593 −0.0623 0.0163
−0.1326 0.0684 −0.0049
−0.0135 0.0305 0.0213

)
(S6-1)

and

Sd =

(
0.012 0 0

0 0.024 0
0 0 0.0083

)
(S6-2)

and Sm
k = 0.001 for all species. Simulations spanned T = 256 units of time on Ngrid = 8192

number of grid points. With a simulation time step dt = T/Ngrid, the update equation reads

[4]:

x(t+ dt) = x(t)− dtAx+
√

Sdζ
√

dt (S6-3)

where
√

Sd has the same eigenvectors as Sd, but its eigenvalues are the square roots of those

of Sd. ζ has a standard Gaussian distribution (N (0, I)). The simulation was started from its

equilibrium density and trends added at the end to verify that estimates of the interaction

coefficients were not affected by the presence of a trend. Specifically we added

0.5 sin(0.4πtn/T ) to x1(tn) and −0.35 cos(0.9πtn/T ) to x3(tn), and no trend added for x2.

S7 Supplementary figures

Figure S-4 (next page). Likelihood profiles and contribution of prior. Log-likelihood

function (−2 logP (y|θ)) in blue and contribution of the prior (−2 logP (θ)) in black for our

experimental data, both with their minimum subtracted, as a function of each model

parameter (indicated in top-left corners; ρdij = Sd
ij/
√
Sd
iiS

d
jj). Shown in red: quadratic fit to

the log-likelihood function.
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