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Abstract

Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to
extract functional and structural information. Among those are principal component analysis (PCA), which identifies the
most correlated groups of residues, and direct coupling analysis (DCA), a global inference method based on the maximum
entropy principle, which aims at predicting residue-residue contacts. In this paper, inspired by the statistical physics of
disordered systems, we introduce the Hopfield-Potts model to naturally interpolate between these two approaches. The
Hopfield-Potts model allows us to identify relevant ‘patterns’ of residues from the knowledge of the eigenmodes and
eigenvalues of the residue-residue correlation matrix. We show how the computation of such statistical patterns makes it
possible to accurately predict residue-residue contacts with a much smaller number of parameters than DCA. This
dimensional reduction allows us to avoid overfitting and to extract contact information from multiple-sequence alignments
of reduced size. In addition, we show that low-eigenvalue correlation modes, discarded by PCA, are important to recover
structural information: the corresponding patterns are highly localized, that is, they are concentrated in few sites, which we
find to be in close contact in the three-dimensional protein fold.
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Introduction

Thanks to the constant progresses in DNA sequencing

techniques, by now more than 4,400 full genomes are sequenced

[1], resulting in more than 3:6 107 known protein sequences [2],

which are classified into more than 14,000 protein domain families

[3], many of them containing in the range of 103{105

homologous (i.e. evolutionarily related) amino-acid sequences.

These huge numbers are contrasted by only about 92,000

experimentally resolved X-ray or NMR structures [4], many of

them describing the same proteins. It is therefore tempting to use

sequence data alone to extract information about the functional

and the structural constraints acting on the evolution of those

proteins. Analysis of single-residue conservation offers a first hint

about those constraints: Highly conserved positions (easily

detectable in multiple sequence alignments corresponding to one

protein family) identify residues whose mutations are likely to

disrupt the protein function, e.g. by the loss of its enzymatic

properties. However, not all constraints result in strong single-site

conservation. As is well-known, compensatory mutations can

happen and preserve the integrity of a protein even if single site

mutations have deleterious effects [5,6]. A natural idea is therefore

to analyze covariations between residues, that is, whether their

variations across sequences are correlated or not [7]. In this

context, one introduces a matrix Cij(a,b) of residue-residue

correlations expressing how much the presence of amino-acid ‘a’

in position ‘i’ on the protein is correlated across the sequence data

with the presence of another amino-acid ‘b’ in another position ‘j’.
Extracting information from this matrix has been the subject of

numerous studies over the past two decades, see e.g. [5,6,8–21] and

[7] for a recent up-to-date review of the field. In difference to these

correlation-based approaches, Yeang et al. [22], proposed a simple

evolutionary model which measures coevolution in terms of

deviation from independent-site evolution. However, a full

dynamical model for residue coevolution is still outstanding.

The direct use of correlations for discovering structural

constraints such as residue-residue contacts in a protein fold has,

unfortunately, remained of limited accuracy [5,6,9,11,13,16].

More sophisticated approaches to exploit the information included

in C are based on a Maximum Entropy (MaxEnt) [23,24] modeling.

The underlying idea is to look for the simplest statistical model of

protein sequences capable of reproducing empirically observed

correlations. MaxEnt has been used to analyze many types of

biological data, ranging from multi-electrode recording of neural

activities [25,26], gene concentrations in genetic networks [27],

bird flocking [28] etc. MaxEnt to model covariation in protein
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sequences was first proposed in a purely theoretical setting by

Lapedes et al. [29], and applied to protein sequences in an

unpublished preprint by Lapedes et al. [12]. It was used – even if

not explicitly stated – by Ranganathan and coworkers to generate

random protein sequences through Monte Carlo simulations, as a

part of an approach called Statistical Coupling Analysis (SCA)

[15]. Remarkably, many of those artificial proteins folded into a

native-like state, demonstrating that MaxEnt modeling was able to

statistically capture essential features of the protein family.

Recently, one of us proposed, in a series of collaborations, two

analytical approaches based on mean-field type approximations of

statistical physics, called Direct Coupling Analysis (DCA), to efficiently

compute and exploit this MaxEnt distribution ([17] uses message

passing [19], a computationally more efficient naive mean-field

approximation), related approaches developed partially in parallel

are [18,20,21]. Informally speaking, DCA allows for disentangling

direct contributions to correlations (resulting from native contacts)

from indirect contributions (mediated through chains of native

contacts). Hence, DCA offers a much more accurate image of the

contact map than C itself. The full potential of maximum-entropy

modeling for accurate structural prediction was first recognized in

[30] (quaternary structure prediction) and in [31] (tertiary

structure prediction), and further applied by [32–38]. It became

obvious that the extracted information is sufficient to predict folds

of relatively long proteins and transmembrane domains. In [36] it

was used to rationally design mutagenesis experiments to repair a

non-functional hybrid protein, and thus to confirm the predicted

structure.

Despite its success, MaxEnt modeling raises several concerns.

The number of ‘direct coupling’ parameters necessary to define

the MaxEnt model over the set of protein sequences, is of the order

of L2(q{1)2. Here, L is the protein length, and q~21 is the

number of amino acids (including the gap). So, for realistic protein

lengths of L~50{500, we end up with 106{108 parameters,

which have to be inferred from alignments of 103{105 proteins.

Overfitting the sequence data is therefore a major risk.

Another mathematically simpler way to extract information

from the correlation matrix C is Principal Component Analysis

(PCA) [39]. PCA looks for the eigenmodes of C associated to the

largest eigenvalues. These modes are the ones contributing most to

the covariation in the protein family. Combined with clustering

approaches, PCA was applied to identify functional residues in [8].

More recently PCA was applied to the SCA correlation matrix, a

variant of the matrix C expressing correlations between sites only

(and not explicitly the amino-acids they carry) and allowed for

identifying groups of correlated (coevolving) residues – termed

sectors – each controlling a specific function [40]. A fundamental

issue with PCA is the determination of the number of relevant

eigenmodes. This is usually done by comparing the spectrum of C
with a null model, the Marcenko-Pastur (MP) distribution,

describing the spectral properties of the sample covariance matrix

of a set of independent variables [41]. Eigenvalues larger than the

top edge of the MP distribution cannot be explained from

sampling noise and are selected, while lower eigenvalues – inside

the bulk of the MP spectrum, or even lower – are rejected.

In this article we show that there exists a deep connection

between DCA and PCA. To do so we consider the Hopfield-

Potts model, an extension of the Hopfield model introduced

three decades ago in computational neuroscience [42], to the

case of variables taking qw2 values. The Hopfield-Potts model

is based on the concept of patterns, that is, of special directions

in sequence space. These patterns show some similarities with

sequence motifs or position-specific scoring matrices, but

instead of encoding independent-site amino-acid preferences,

they include statistical couplings between sequence positions.

Some of these patterns are ‘attractive’, defining ‘ideal’ sequence

motifs which real sequences in the protein family try to mimic.

In distinction to the original Hopfield model [42], we also find

‘repulsive’ patterns, which define regions in the sequence space

deprived of real sequences. The statistical mechanics of the

inverse Hopfield model, studied in [43] for the q~2 case and

extended here to the generic qw2 Potts case, shows that it

naturally interpolates between PCA and DCA, and allows us to

study the statistical issues raised by those approaches exposed

above. We show that, in contradistinction with PCA, low

eigenvalues and eigenmodes are important to recover structural

information about the proteins, and should not be discarded. In

addition, we propose a maximum likelihood criterion for

pattern selection, not based on the comparison with the MP

spectrum. We study the nature of the statistically most

significant eigenmodes, and show that they exhibit remarkable

features in term of localization: most repulsive patterns are

strongly localized on a few sites, generally found to be in close

contact on the three-dimensional structure of the proteins. As

for DCA, we show that the dimensionality of the MaxEnt

model can be very efficiently reduced with essentially no loss of

predictive power for the contact map in the case of large

multiple-sequence alignments, and with an improved accuracy

in the case of small alignments containing too few sequences for

standard mean-field DCA to work. These conclusions are

established both from theoretical arguments, and from the

direct application of the Hopfield-Potts model to a number of

sample protein families.

A short reminder of covariation analysis
Data are given in form of a multiple sequence alignment (MSA), in

which each row contains the amino-acid sequence of one protein,

and each column one residue position in these proteins, which is

aligned based on amino-acid similarity. We denote the MSA by

A~fam
i Di~1,:::,L, m~1,:::,Mg with index i running over the L

columns of the alignment (residue positions/sites), and m over the

M sequences, which constitute the rows of the MSA. The amino-

acids am
i are assumed to be represented by natural numbers 1,:::,q

with q~21, where we include the 20 standard amino acids and the

alignment gap ‘-’.

In our approach, we do not use the data directly, but we

summarize them by the amino-acid occupancies in single columns

and pairs of columns of the MSA (cf. Methods for data

Author Summary

Extracting functional and structural information about
protein families from the covariation of residues in
multiple sequence alignments is an important challenge
in computational biology. Here we propose a statistical-
physics inspired framework to analyze those covariations,
which naturally unifies existing methods in the literature.
Our approach allows us to identify statistically relevant
‘patterns’ of residues, specific to a protein family. We show
that many patterns correspond to a small number of sites
on the protein sequence, in close contact on the 3D fold.
Hence, those patterns allow us to make accurate predic-
tions about the contact map from sequence data only.
Further more, we show that the dimensional reduction,
which is achieved by considering only the statistically most
significant patterns, avoids overfitting in small sequence
alignments, and improves our capacity of extracting
residue contacts in this case.
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preprocessing),

fi(a)~
1

M

XM
m~1

da,am
i

ð1Þ

fij(a,b)~
1

M

XM
m~1

da,am
i

db,am
j

, ð2Þ

with i,j~1,:::,L and a,b~1,:::,q. The Kronecker symbol da,b

equals one for a~b, and zero else. Since frequencies sum up to

one, we can discard one amino-acid value (e.g. a~q) for each

position without losing any information about the sequence

statistics. We define the empirical covariance matrix through

Cij(a,b)~fij(a,b){fi(a)fj(b) , ð3Þ

with the position index i running from 1 to L, and the amino-acid

index from 1 to q{1. The covariance matrix C can therefore be

interpreted as a square matrix with (q{1)L rows and columns.

We will adopt this interpretation throughout the paper, since the

methods proposed become easier in terms of the linear algebra of

this matrix.

Maximum entropy modeling and direct couplings. Non-

zero covariance between two sites does not necessarily imply the

sites to directly interact for functional or structural purposes [13].

The reason is the following [17]: When i interacts with j, and j

interacts with k, also i and k will show correlations even it they do

not interact. It is thus important to distinguish between direct and

indirect correlations, and to infer networks of direct couplings, which

generate the empirically observed covariances. This can be done

by constructing a (protein-family specific) statistical model

P(a1,:::,aL), which describes the probability of observing a

particular amino-acid sequence a1,:::,aL. Due to the limited

amount of available data, we require this model to reproduce

empirical frequency counts for single MSA columns and column

pairs,

fi(ai)~
X

fak Dk=ig
P(a1,:::,aL) ð4Þ

fij(ai,aj)~
X

fak Dk=i,jg
P(a1,:::,aL) , ð5Þ

i.e. marginal distributions of P(a1,:::,aL) are required to coincide

with the empirical counts up to the level of position pairs. Beyond

this coherence, we aim at the least constrained statistical description.

The maximum-entropy principle [23,24] stipulates that P is found by

maximizing the entropy

H½P�~{
X

a1,:::,aL

P(a1,:::,aL)log P(a1,:::,aL) , ð6Þ

subject to the constraints Eqs. (4) and (5). We readily find the

analytical form

P(a1,:::,aL)~
1

Z(feij(a,b),hi(a)g)

exp
1

2

X
i,j

eij(ai,aj)z
X

i

hi(ai)

( )
,

ð7Þ

where Z is a normalization constant. The MaxEnt model thus

takes the form of a (generalized) q-states Potts model, a celebrated

model in statistical physics [44], or a Markov random field in a

more mathematical language. The parameters eij(a,b) are the

direct couplings between MSA columns, and the hi(a) represent

the local fields (position-weight matrices) acting on single sites.

Their values have to be determined such that Eqs. (4) and (5) are

satisfied. Note that, without the coupling terms eij(a,b), the model

would reduce to a standard position-specific scoring matrix. It

would describe independent sites, and thus it would be intrinsically

unable to capture residue covariation.

From a computational point of view, however, it is not possible

to solve Eqs. (4) and (5) exactly. The reason is that the calculations

of Z and of the marginals require summations over all qL possible

amino-acid sequences of length L. With q~21 and typical protein

lengths of L~50{500, the numbers of configurations are

enormous, of the order of 1065{10650. The way out is an

approximate determination of the model parameters. The

computationally most efficient way found so far is an approxima-

tion, called mean field in statistical physics, leading to the

approach known as direct coupling analysis [19]. Within this mean-

field approximation, the values for the direct couplings are simply

equal to

eij(a,b)~(C{1)ij(a,b) Vi,j, Va,b~1, . . . ,q{1, ð8Þ

and eij(a,q)~eij(q,a)~0 for all a~1, . . . ,q: Note that the

couplings can be approximated with this formula in a time of

the order of L3(q{1)3, instead of the exponential time

complexity, qL, of the exact calculation. On a single desktop

PC, this can be achieved in a few seconds to minutes, depending

on the length L of the protein sequences.

The problem can be formulated equivalently in terms of

maximum-likelihood (ML) inference. Assuming P(a1,::,aL) to be a

pairwise model of the form of Eq. (7), we aim at maximizing the

log-likelihood

L feij(a,b),hi(a)gDA
� �

~
1

M

XM
m~1

log P(am
1 ,:::,am

L ) ð9Þ

of the model parameters feij(a,b),hi(a)g given the MSA A. This

maximization implies that Eqs. (4) and (5) hold. In the rest of the

paper, we will adopt the point of view of ML inference, cf. the

details given in Methods. Note that, without restrictions on the

couplings eij(a,b) ML and MaxEnt inference are equivalent, but

under the specific form for eij(a,b) assumed in the Hopfield-Potts

model, this equivalence will break down. More precisely, the ML

model will fit Eqs. (4) and (5) only approximately

Once the direct couplings eij(a,b) have been calculated, they

can be used to make predictions about the contacts between

residues, details can be found in the Methods Section. In [19], it

was shown that the predictions for the residue-residue contacts in

proteins are very accurate. In other words, DCA allows to find a

very good estimate of a partial contact map from sequence data

only. Subsequent works have shown that this contact map can be

completed by embedding it into three dimensions [31,33].

Pearson correlation matrix and principal component

analysis. Another way to extract information about groups of

correlated residues is the following. From the covariance matrix C

given in Eq. (3), we construct the Pearson correlation matrix C
through the relationship

Principal Component and Direct Coupling Analysis
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Cij(a,b)~
Xq{1

c,d~1

(Di)
{1(a,c) Cij(c,d) (Dj)

{1(d,b), ð10Þ

where the matrices Di are the square roots of the single-site

correlation matrices, i.e.

Cii(a,b)~
Xq{1

c~1

Di(a,c)Di(c,b): ð11Þ

This particular form of the Pearson correlation matrix C in Eq.

(10) results from the fact that we have projected the q-dimensional

space defined by the amino-acids a~1, . . . ,q onto the subspace

spanned by the first q{1 dimensions. Alternative projections lead

to modified but equivalent expressions of the Pearson matrix, cf.

Text S1 (Sec. S1.3). Informally speaking, the correlation Cij(a,b) is

a measure of comparison of the empirical covariance Cij(a,b) with

the single-site fluctuations taken independently. Hence, C is

normalized and coincides with the (q{1)|(q{1) identity matrix

on each site: Cii(a,b)~da,b.

We further introduce the eigenvalues and eigenvectors

(m~1,:::,L(q{1))

XL

j~1

Xq{1

b~1

Cij(a,b)v
m
jb~lmv

m
ia, ð12Þ

where the eigenvalues are ordered in decreasing order

l1§l2§ . . . §lL(q{1). The eigenvectors are chosen to form an

ortho-normal basis,

X
ia

nm
iann

ia~L dm,n, ð13Þ

for all m,n~1,:::,L(q{1). Principal component analysis consists in

a partial eigendecomposition of C, keeping only the eigenmodes

contributing most to the correlations, i.e. with the largest

eigenvalues. All the other eigenvectors are discarded. In this

way, the directions of maximum covariation of the residues are

identified.

PCA was used by Casari et al. [8] in the context of residue

covariation to identify functional sites specific to subfamilies of a

protein family given by a large MSA. To do so, the authors

diagonalized the comparison matrix, whose elements C(m,m’)
count the number of identical residues for each pair of sequences

(m,m’~1, . . . M ). Projection of sequences onto the top eigenvec-

tors of the matrix C allows to identify groups of subfamily-specific

co-conserved residues responsible for subfamily-specific functional

properties, called specificity-determining positions (SDP). Up to

date, PCA (or the closely related multiple correspondence analysis)

is used in one of the most efficient tools, called S3det, to detect

SDPs [45]. PCA was also used in an approach introduced by

Ranganathan and coworkers [6,40], called statistical coupling

analysis (SCA). In this approach a modified residue covariance

matrix, ~CCSCA, is introduced :

~CCSCA
ij (a,b)~wa

i Cij(a,b) wb
j ð14Þ

where the weights wa
i favor positions i and residues a of high

conservation. Amino-acid indices are contracted to define the

effective covariance matrix,

~CCSCA
ij ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a,b

~CCSCA
ij (a,b)2

s
: ð15Þ

The entries of ~CCSCA depend on the residue positions i,j only. In a

variant of SCA the amino-acid information is directly contracted at

the level of the sequence data. A binary variable is associated to each

site: it is equal to one in sequences carrying the consensus amino-

acid, to zero otherwise [40]. Principal component analysis can then

be applied to the L-dimensional ~CCSCA matrix, and used to define so-

called sectors, i.e. clusters of evolutionarily correlated sites.

Results

To bridge these two approaches – DCA and PCA – we introduce

the Hopfield-Potts model for the maximum likelihood modeling of

the sequence distribution, given the residue frequencies fi(a) and

their pairwise correlations fij(a,b). From a mathematical point of

view, the model corresponds to a specific class of Potts models, in

which the coupling matrix eij(a,b) is of low rank p compared to

L(q{1). It therefore offers a natural way to reduce the number of

parameters far below what is required in the mean-field approx-

imation of [19]. In addition, the solution of the Hopfield-Potts

inverse problem, i.e. the determination of the low rank coupling

matrix e, allows us to establish a direct connection with the spectral

properties of the Pearson correlation matrix C and thus with PCA.

Here, we first give an overview over the most important

theoretical results for Hopfield-Potts model inference, increasing

levels of detail about the algorithm and its derivation are provided

in Methods and Text S1. Subsequently we discuss in detail the

features of the Hopfield-Potts patterns found in three different

protein families, and finally assess our capacity to detect residue

contacts using sequence information alone in a larger test set of

protein families.

Inference with the Hopfield-Potts model
The main idea of this work is that, though the space of

sequences is L(q{1)–dimensional, the number of spatial direc-

tions being relevant for covariation is much smaller. Such a

relevant direction is called pattern in the following, and given by a

L|q matrix j~fji(a)g, with i~1,:::,L being the site indices, and

a~1,:::,q the amino acids. The log-score of a sequence (a1,:::,aL)
for one pattern j is defined as

S(a1,:::,aLDj)~
XL

i~1

ji(ai)

" #2

: ð16Þ

This expression bears a strong similarity with, but also a crucial

difference to a position-specific scoring matrix (PSSM): As in a

PSSM, the log-score depends on a sum over position and amino-

acid specific contributions, but its non-linearity (the square in Eq.

(16)) introduces residue-residue couplings, and thus is essential to

take covariation into account.

In the Hopfield-Potts model, the probability of an amino-acid

sequence (a1, . . . ,aL) depends on the combined log-scores along a

number p of patterns through

P(a1, . . . ,aL)~
1

Z
exp

1

2L

Xpz

m~1

S(a1, . . . ,aLjjz,m){

(

1

2L

Xp{

n~1

S(a1, . . . ,aLjj{,n)z
XL

i~1

hi(ai)

)
:

ð17Þ
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Patterns denoted with a z-superscript, jz,m with m~1,:::,pz, are

said to be attractive, while the patterns labeled with a {-superscript,

j{,n for n~1,:::,p{, are called repulsive. For the probability

P(a1,:::,aL) to be large, the log-scores S(a1,:::,aLDj) for attractive

patterns must be large, whereas the log-scores for repulsive

patterns must be small (close to zero). As we will see in the

following, the inclusion of such repulsive patterns is important:

Compared to the mixed model (17), a model with only attractive

patterns achieves a much smaller likelihood (at each given total

number of parameters) and a strongly reduced predictivity of

residue-residue contacts.

It is easy to see that Eq. (17) corresponds to a specific choice of

the couplings eij(a,b) in Eq. (7), namely

eij(a,b)~
1

L

Xpz

m~1

jz,m
i (a)jz,m

j (b){
1

L

Xp{

n~1

j{,n
i (a)j{,n

j (b), ð18Þ

where, without loss of generality, the qth component of the

patterns is set to zero, jz,m
i (q)~j{,n

i (q)~0, for compatibility with

the mean-field approach exposed above. Note that the coupling

matrix, for linearly independent patterns, has rank p~pzzp{,

and is defined from pL(q{1) pattern components only, instead of

O(L2(q{1)2) parameters for the most general case of coupling

matrices eij(a,b). When p~L(q{1), i.e. when all the patterns are

taken into account, the coupling matrix e has full rank, and the

Hopfield-Potts model is identical to the Potts model used to infer

the couplings in DCA in [19]. All results of mean-field DCA are

thus recovered in this limiting case.

The patterns are to be determined by ML inference, cf.

Methods and Text S1 for details. In mean-field approximation,

they can be expressed in terms of the eigenvalues and eigenvectors

of the Pearson correlation matrix C, which were defined in Eq.

(12). We find that attractive patterns correspond to the pz largest

eigenvalues (l1§l2§:::§lpz
§1),

jz,m
i (a)~ 1{

1

lm

� �1=2

~vvm
ia, m~1, . . . ,pz, ð19Þ

and repulsive patterns to the p{ smallest eigenvalues

(lL(q{1)ƒlL(q{1){1ƒ:::ƒlL(q{1)z1{p{ƒ1),

j{,n
i (a)~

1

lL(q{1)z1{n
{1

� �1=2

~vvL(q{1)z1{n
ia , n~1,:::, p{, ð20Þ

where, for all m~1,:::,L(q{1),

~vvm
ia~

Xq{1

b~1

(Di)
{1(a,b)v

m
ib: ð21Þ

The prefactor D1{1=lD1=2 vanishes for l~1. It is not surprising

that l~1 plays a special role, as it coincides with the mean of the

eigenvalues:

1

L(q{1)

XL(q{1)

m~1

lm~
1

L(q{1)

XL

i~1

Xq{1

a~1

Cii(a,a)~1: ð22Þ

In the absence of any covariation between the residues C becomes

the identity matrix, and all eigenvalues are unity. Hence all

patterns vanish, and so does the coupling matrix (18). The Potts

model (17) depends only on the local bias parameters hi(a), and it

reduces to a PSSM describing independent sites.

The eigenvectors of the correlation matrix with large eigenval-

ues lm&1 contribute most to the covariation observed in the MSA

(i.e. to the matrix C), but they do not contribute most to the

coupling matrix e. In the expression (18) for this matrix, each

pattern carries a prefactor D1{1=lmD: Whereas this prefactor

remains smaller than one for attractive patterns (lmw1), it can

become very large for repulsive patterns (lmv1), see Fig. 1 (right

panel). Thus, the contribution of a repulsive pattern to the e
matrix may be much larger than the contribution of any attractive

pattern.

Eqs. (19) and (20) a priori define L(q{1) different patterns,

therefore we need a rule for selecting the p ‘best’, i.e. most likely

patterns. We show in Methods that the contribution of a pattern to

the model’s log-likelihood L defined in Eq. (9) is a function of the

associated eigenvalue l only,

DL(l)~
1

2
(l{1{log l): ð23Þ

As is shown in Fig. 1 (left panel), large contributions arrive from both

the largest and the smallest eigenvalues, whereas eigenvalues close

to unity contribute little. According to ML inference, we have to

select the p eigenvalues with largest contributions. To this end, we

define a threshold value h such that there are exactly p patterns with

larger contributions DLwh to the log-likelihood; the L(q{1){p
patterns with smaller DL are omitted in the expression for the

couplings Eq. (18). In accordance with Fig. 1, we determine thus the

two positive real roots ‘+ (‘{v1v‘z) of the equation

DL(‘+)~h, ð24Þ

and include all repulsive patterns with lL(q{1)z1{nv‘{, calling

their number p{, and all attractive patterns with lmw‘z, denoting

their number by pz. The total number of selected patterns is thus

p~p{zpz.

Features of the Hopfield-Potts patterns
We have tested the above inference framework in great detail

using three protein families, with variable values of protein length

L and sequence number M:

N The Kunitz/Bovine pancreatic trypsin inhibitor domain (PFAM ID

PF00014) is a relatively short (L~53) and not very frequent

(M~2,143) domain, after reweighting the effective number of

diverged sequences is Meff ~1,024 (cf. Eq. (28) in Methods for

the definition). Results are compared to the exemplary X-ray

crystal structure with PDB ID 5pti [46].

N The bacterial Response regulator domain (PF00072) is of medium

length (L~112) and very frequent (M~62,074). The effective

sequence number is Meff ~29,408. The PDB structure used

for verification has ID 1nxw [47].

N The eukaryotic signaling domain Ras (PF00071) is the longest

(L~161) and has an intermediate size MSA (M~9,474),

leading to Meff ~2,717. Results are compared to PDB entry

5p21 [48].

In a second step, we have used the 15 protein families studied in

[33] to verify that our findings are not specific to the three above

families, but generalize to other families. A list of the 15 proteins

together with the considered PDB structures is provided in Text

S1, Section 4.
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To interpret the Hopfield patterns in terms of amino-acid

sequences, we first report some empirical observations made for

the patterns corresponding to the largest and smallest eigenvalues,

i.e. to the most likely attractive and repulsive patterns. We

concentrate our discussion in the main text on one protein family,

the Trypsin inhibitor (PF00014). Analogous properties in the other

two protein families are reported in Text S1.

The upper panel of Fig. 2 shows the spectral density. It is

characterized by a pronounced peak around eigenvalue 1. The

smallest eigenvalue is lPF00014
m *0:1, the largest is lPF00014

M *23.

Large eigenvalues are isolated from the bulk of the spectrum, small

eigenvalues are not.

To characterize the statistical properties of the patterns we

define, inspired by localization theory in condensed matter

physics, the inverse participation ratio (IPR) of a pattern j as

IPR(j)~

P
i,a

ji(a)4

(
P
i,a

ji(a)2)2
: ð25Þ

Possible IPR values range from one for perfectly localized patterns

(only one single non-zero component) to 1=(L(q{1)) for a

completely distributed pattern with uniform entries. IPR is

therefore used as a localization measure for the patterns: Its

inverse 1=IPR(j) is an estimate of the effective number Neff (j) of

pairs (i,a), on which the pattern has sizable entries ji(a). The

middle panel of Fig. 2 shows the presence of strong localization for

repulsive patterns (small eigenvalues) and for irrelevant patterns

(around eigenvalue 1). A much smaller increase in the IPR is also

observed for part of the large eigenvalues.

What is the typical contribution de(j) of a pattern j to the

couplings? Pattern j contributes deij(a,b)~
1

L
ji(a)jj(b) to each

coupling. Many contributions can be small, and others may be

larger. An estimate of the magnitude of those relevant contribu-

tions can be obtained from the sum of the squared contributions

normalized by the effective number Neff (j)2 of pairs (i,a),(j,b) on

which the patterns has large entries:

de(j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Neff (j)2

X
i,j,a,b

(deij(a,b))2

s
~IPR(j)|

1

L

X
i,a

ji(a)2: ð26Þ

The lower panel of Fig. 2 shows the typical contribution de of a pattern

as a function of its corresponding eigenvalue. Patterns with eigenvalues

close to 1 have very small norms; they essentially do not contribute to

the couplings. Highly localized patterns of large norm result in few and

large contributions to the couplings (l%1). Patterns associated to large

eigenvalues l&1 produce many weak contributions to the couplings.

Figure 1. Pattern selection by maximum likelihood and pattern prefactors. (Left panel) Contribution of patterns to the log-likelihood (full
red line) as a function of the corresponding eigenvalues l of the Pearson correlation matrix C. To select p patterns, a log-likelihood threshold h
(dashed black line) has to be chosen such that there are exactly p patterns with DL(lm)wh. This corresponds to eigenvalues in the left and right tail of

the spectrum of C. (right panel) Pattern prefactors D1{
1

l
D1=2 (full red line) as a function of the eigenvalue l. Patterns corresponding to l^1 have

essentially vanishing prefactors; patterns associated to large l (&1) have prefactors smaller than 1 (dashed black line), while patterns corresponding
to small l (%1) have unbounded prefactors.
doi:10.1371/journal.pcbi.1003176.g001
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Repulsive patterns. In the upper row of Fig. 3 we display

the three most localized repulsive patterns (smallest, 3rd and 4th

smallest eigenvalues) for the trypsin inhibitor protein (PF00014).

All three patterns have two very pronounced peaks, corresponding

to, say, amino-acid a in position i and amino-acid b in position j,

and some smaller minor peaks, resulting in IPR values above 0.3.

For each pattern, the two major peaks are of opposite sign:

ji(a)^{jj(b). As a consequence, amino-acid sequences carrying

amino-acid a in position i, but not b in position j (as well as

sequences carrying b in j but not a in i) show large log-scores

S^½ji(a)�2, cf. Eq. (16). Their probability in the Hopfield-Potts

model, given by (17), will be strongly reduced as compared to the

probability of sequences carrying either both amino-acids a and b

in, respectively, positions i and j, or none of the two (scores S close

to zero). Hence, we see that repulsive patterns do define repulsive

directions in the sequence space, which tend to be avoided by

sequences. A more thorough discussion of the meaning of

repulsive patterns will be given in the Discussion Section.

In all three panels of Fig. 3, the two large peaks have highest

value for the amino acid cysteine. Actually, for all of them, the

pairs of peaks identify disulfide bonds, i.e. covariant bonds between

two cysteines. They are very important for a protein’s stability and

therefore highly conserved. The corresponding repulsive patterns

forbid amino-acid configurations with a single cysteine in only one

out of the two positions. Both residues are co-conserved. Note also

that the trypsin inhibitor has only three disulfide bonds, i.e. all of

them are seen by the most localized repulsive patterns. The second

eigenvalues, which has a slightly smaller IPR, is actually found to

be a mixture of two of these bonds, i.e. it is localized over four

positions.

The observation of disulfide bonds is specific to the trypsin

inhibitor. In other proteins, also the ones studied in this paper, we

find similarly strong localization of the most repulsive patterns, but

in different amino acid combinations. As an example, the most

localized pattern in the response regulator domain connects a

position with an Asp residue (negatively charged), with another

position carrying either Lys or Arg (both positively charged), their

interaction is thus coherent with electrostatics. In all observed

cases, the consequence is a strong statistical coupling of these

positions, which are typically found in direct contact.

Attractive patterns. The strongest attractive pattern, i.e. the

one corresponding to the largest eigenvalue l1, is shown in the

Figure 2. Eigenvalues, localization and contributions to couplings for PF00014. (From top to bottom): (top panel) Spectral density as a
function of the eigenvalues l, note the existence of few very large eigenvalues, and a pronounced peak in l~1. (middle panel) Inverse participation
ratio of the Hopfield patterns as a function of the corresponding eigenvalue l. Large IPR characterizes the concentration of a pattern to few positions
and amino acids. (bottom panel) Typical contribution de to couplings due to each Hopfield pattern, defined in Eq. (26), as a function of the
corresponding eigenvalue l. Large contributions are mostly found for small eigenvalues, while patterns corresponding to l^1 do not contribute to
couplings.
doi:10.1371/journal.pcbi.1003176.g002
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leftmost panel of the lower row of Fig. 3. Its IPR is small (*0:003),

implying that it is extended over most of the protein (a pattern of

constant entries would have IPR 1=(L(q{1))^0:001). As is

shown in Text S1, strongest entries in j1
i (a) correspond to

conserved residues and these, even if they are distributed along the

primary sequence, tend to form spatially connected and function-

ally important regions in the folded protein (e.g. a binding pocket),

cf. left panel of Fig. 4. Clearly this observation is reminiscent of the

protein sectors observed in [40], which are found by PCA applied

to the before-mentioned modified covariance matrix. Note,

however, that sectors are extracted from more than one principal

component.

More characteristic patterns are found for the second and third

eigenvalues. As is shown in Fig. 3, they show strong peaks at the

extremities of the sequence, which become higher when

approaching the first resp. last sequence position. The peaks are,

for all relevant positions, concentrated on the gap symbol. These

patterns are actually artifacts of the multiple-sequence alignment:

Many sequences start or end with a stretch of gaps, which may

have one out of at least three reasons: (1) The protein under

consideration does not match the full domain definition of PFAM;

(2) the local nature of PFAM alignments has initial and final gaps

as algorithmic artifacts, a correction would however render the

search tools less efficient; (3) in sequence alignment algorithms, the

extension of an existing gap is less expensive than opening a new

gap. The attractive nature of these two patterns, and the equal sign

of the peaks, imply that gaps in equilibrium configurations of the

Hopfield-Potts model frequently come in stretches, and not as

isolated symbols. The finding that there are two patterns with this

characteristic can be traced back to the fact that each sequence has

two ends, and these behave independently with respect to

alignment gaps.

Theoretical results for localization in the limit case of

strong conservation. The main features of the empirically

observed spectral and localization properties of Fig. 2 can be found

back in the limiting case of completely conserved sequences, which

is amenable to an exact mathematical treatment. To this end, we

consider L perfectly conserved sites, i.e. a MSA made from the

repetition of a unique sequence. As is shown in Text S1, Section 2,

the corresponding Pearson correlation matrix C has only three

different eigenvalues:

N a large and non-degenerate eigenvalue, lz, which is a function

of q and L (and of the pseudocount used to treat the data, see

Methods), whose corresponding eigenvector is extended;

N a small and (L{1)-fold degenerate eigenvalue, l{~(L{lz)=
(L{1). The corresponding eigenspace is spanned by vectors

which are perfectly localized in pairs of sites, with components of

opposite signs;

N the eigenvalue l~1, which is L(q{2)-fold degenerate. The

eigenspace is spanned by vectors, which are localized over

single sites.

Figure 3. Attractive and repulsive patterns for PF00014. (Upper panels) The most localized repulsive patterns (corresponding to the first, third
and fourth smallest eigenvalues and inverse participation ratios 0:49,0:34,0:32 respectively) are strongly concentrated in pairs of positions. (lower
panels) The most attractive patterns (corresponding to the three largest eigenvalues); the top pattern is extended, with inverse participation ratio
0:003, while the second and third patterns,with inverse participation ratios 0:033,0:045 respectively, have essentially non-zero components over the
gap symbols only which accumulate on the edges of the sequence. Note the x-coordinates iza=(q{1); its integer part is the site index, i, and the
fractional part multiplied by q{1 is the residue value, a.
doi:10.1371/journal.pcbi.1003176.g003
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For a realistic MSA, i.e. without perfect conservation, degen-

eracies will disappear, but the features found above remain

qualitatively correct. In particular, we find in real data a

pronounced peak of eigenvalues around 1, corresponding to

localized eigenmodes (Fig. 2). In addition, low-eigenvalue modes

are found to be strongly localized, and the the order of magnitude

of l{^0:09 is in good agreement with the smallest eigenvalues,

^0:1, reported for the three analyzed domain families. Finally,

the largest eigenmodes are largely extended, as found in the limit

case above. Note that the eigenvalues found in the protein spectra,

e.g. l1^23 for PF00014, are however smaller than in the limit

case, lz^48, due to only partial conservation in the real MSA.

Residue-residue contact prediction with the Hopfield-
Potts model

The most important feature of DCA is its ability to predict pairs

of residues, which are distantly positioned in the sequence, but

which form native contacts in the protein’s tertiary structure, cf.

the right panel of Fig. 4. Here, our contact prediction is based on

the sampling-corrected Frobenius norm of the (q{1)–dimensional

statistical coupling matrices eij , cf. Methods, which in [49] has

been shown to outperform the direct-information measure used in

[17]. This measure assigns a single scalar value for the strength of

the direct coupling between two residue positions.

The contact map predicted from the 50 strongest direct

couplings for the PF00014 family is compared to the native

contact map in Fig. 5. In accordance with [19], a residue pairs is

considered to be a true positive prediction if its minimal atom

distance is below 8 Å in the before mentioned exemplary protein

crystal structures. This relatively large cutoff was chosen since

DCA was found to extract a bimodal signal with pairs in the range

below 5 Å (turquoise in Fig. 5) and others with 7–8 Å (grey in

Fig. 5); both peaks contain valuable information if compared to

typical distances above 20 Å for randomly chosen residue pairs.

To include only non-trivial contacts, we require also a minimum

separation Di{jDw4 of at least 5 residues along the protein

sequence. Remarkably the quality of the predicted contact map

with the Hopfield-Potts model with p~128 patterns is essentially

the same as with DCA, corresponding to p~L(q{1)~1060
patterns. In both cases predicted contacts spread rather uniformly

over the native contact map, and 96% of the predicted contacts

are true positives. This result is corroborated by the lower panels

of Fig. 6, which show, for various values of the number p of

patterns, the performance in terms of contact predictions for the

three families studied here. The plots show the fraction of true-

positives (TP), i.e. of native distances below 8 Å, in between the x
pairs of highest couplings, as a function of x [19].

The three upper panels in Fig. 6 show the ratio between the

selected pattern contributions to the log-likelihood,P
fmDlm=[½‘{,‘z�g DL(lm), and its maximal value obtained by includ-

ing all L(q{1) patterns,
PL(q{1)

m~1 DL(lm). A large fraction of

patterns can be omitted without any substantial loss in log-

Figure 4. The principal component and predicted contacts visualized on the 3D structure of the trypsin inhibitor protein domain
PF00014. (A) The 10 positions (residue ID 5,12,14,22,23,30,35,40,51,55) of largest entries in the most attractive Hopfield pattern (largest eigenvalue
of C, corresponding to the principal component) are shown in blue, they correspond also to very conserved sites. Note that, while they are distant
along the protein backbone, they cluster into spatially connected components in the folded protein. (B) The 50 residue pairs with strongest couplings
(ranked according to the Frobenius norms Eq. (40), with at least 5 positions separation along the backbone, are connected by lines. Only two out of
these pairs are not in contact (blue links), all other 48 are thus true-positive contact predictions (red links). Many contacts link pairs of not conserved
positions. Note that links are drawn between C-alpha atoms, whereas contacts are defined via minimal all-atom distances, making some red lines to
appear rather long even if corresponding to native contacts.
doi:10.1371/journal.pcbi.1003176.g004
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likelihood, but with a substantially smaller number of parameters.

It is worth noting that, in Fig. 6, we do not find any systematic

benefit of excluding patterns for the contact prediction, but the

predictive power decreases initially only very slowly with

decreasing pattern numbers p. For all three proteins, even with

*128 patterns, very good contact predictions can be achieved,

which are comparable to the ones with L(q{1)~1060{3220
patterns using the full DCA inference scheme of [19]. Almost

perfect performance is reached, when the contribution of selected

patterns to the log-likelihood is only at 60{80% of its maximal

value. This could be expected from the fact that patterns

corresponding to eigenvalues close to unity hardly contribute to

the couplings, cf. lower panel in Fig. 2.

These findings are not restricted to the three test proteins, as is

confirmed by the left panel of Fig. 7. In this figure, we average the

TP rates for p~8,32,128,512 and L(q{1) (i.e. full mean-field

DCA) for the 15 proteins studied in [33], which had been selected

for their diversity in protein length and fold type. Further more,

the discussion of the localization properties of repulsive patterns is

corroborated by the results reported in Fig. 7, right panel. It

compares the performance of the Hopfield-Potts model to predict

residue-residue contacts, for the three cases where p~100 patterns

are selected either according to the maximum likelihood criterion

(patterns for eigenvalues lv‘{ and for lw‘z), or where only the

strongest attractive (lw‘z) or only the strongest repulsive (lv‘{)

patterns are taken into account. It becomes evident that repulsive

patterns provide more accurate contact information, TP rates are

almost unchanged between the curve of the p~100 most likely

patterns, and the smaller subset of repulsive patterns. On the

contrary, TP rates for contact prediction are strongly reduced

when considering only attractive patterns, i.e. in the case

corresponding most closely to PCA. This finding illustrates one

of the most significative differences between DCA and PCA:

Contact information is provided by the eigenvectors of the Pearson

correlation matrix C in the lower tail of the spectrum.

As is discussed in the previous section, patterns with the largest

contribution to the log-likelihood are dominated by (and localized

in) conserved sites. Attractive patterns favor these sites to jointly

assume their conserved values, whereas repulsive patterns avoid

configurations where, in pairs of co-conserved sites, only one

variable assumes its conserved value, but not the other one.

However, we have also seen that an accurate contact prediction

Figure 5. Contact map for the PF00014 family. Filled squares represent the native contact map on the 3D fold (PDB 5pti, with turquoise squares
signaling all-atom distances below 5 Å, and grey ones distances between 5 Å and 8 Å). The 50 top predicted contacts with minimal separation of 5
positions along the sequence (Di{jD§5) are shown with empty squares: true-positive predictions (distance v8Å) are colored in red, and false-positive
predictions in blue. Predictions are made with the Hopfield-Potts model with p~128 patterns (bottom right corner) and with p~L(q{1)~1060
patterns (DCA, top left corner). For both values of p there are 48 true-positive and 2 false-positive predictions.
doi:10.1371/journal.pcbi.1003176.g005
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requires at least *100 patterns, i.e. it goes well beyond the

patterns given by strongly conserved sites. In Fig. 4 we show, for

the exemplary case of the Trypsin inhibitor, both the 10 sites of

highest entry in the most attractive pattern jz,1 (corresponding to

conserved sites), and the first 50 predicted intra-protein contacts

using the full mean-field DCA scheme (results for p~512 are

almost identical). It appears that many of the correctly predicted

contacts are not included in the set of the most conserved sites.

From a mathematical point of view, this is understandable - only

variable sites may show covariation. From a biological point of

view, this is very interesting, since it shows that highly variable

residue in proteins are not necessarily functionally unimportant in

a protein family, but they may undergo strong coevolution with

other sites, and thus be very important for the structural stability of

the protein, cf. also the Fig. S5 in Text S1 where the degree of

conservation [50] is depicted for the highest-ranking DCA

predicted contacts. In this figure we show that residues included

in predicted contacts are found for all levels of conservation. It has,

however, to be mentioned that in the considered MSA, there are

no 100% conserved residues, the latter would not show any

covariation. A small level of variability is therefore crucial for our

approach.

A remark is necessary concerning the right panel of Fig. 4:

Whereas conserved sites (which carry also the largest entries of the

pattern with maximum eigenvalue) are collected in one or two

spatially connected regions in the studied proteins, this is not

necessarily true for all proteins. In particular complex domains

with multiple functions and/or multiple conformations may show

much more involved patterns. It is, however, beyond the scope of

this paper to shed light onto the details of the biological

interpretation of the principal components of C.

In which cases does the dimensional reduction achieved by

selecting only a relatively small number of patterns provide an

actual advantage over the standard mean-field DCA approach

with p~L(q{1) patterns? We have seen that for relatively large

MSAs, where DCA gives very accurate results, the approach

presented here achieves a strong dimensional reduction almost

without loss in predictive power, but it did not improve the contact

map prediction, cf. Figs. 5 and 6. However, when we reduce the

number of sequences in the MSA, DCA undergoes a strong

reduction in accuracy of prediction, see the full lines in Fig. 8

where DCA is applied to sub-alignments of the PF00014 domain

family. Repeating the same experiment with a finite number of

patterns (p~16 in Fig. 8), the MSA-size dependence is strongly

reduced. For very small alignments of only 10–30 sequences, the

Hopfield-Potts model is still able to extract contacts with an

astonishing TP rate of 70–80%, whereas DCA produces almost

random results (TP rate ca. 30%). The success of the Hopfield-

Potts approach for small MSA is not specific to the PF00014

domain, and holds for other protein families, see Fig. S15 in Text

Figure 6. Contact predictions for the three considered protein families. The upper panels show the fraction of the interaction-based
contribution to the log-likelihood of the model given the MSA, defined as the ratio of the log-likelihood with p selected patterns over the maximal
log-likelihood obtained by including all L(q{1) patterns, as a function of the number p of selected patterns, it reaches one for p~(q{1)L
corresponding to the Potts model used in DCA. The lower panels show the TP rates as a function of the predicted residue contacts, for various
numbers p of selected patterns, where selection was done using the maximum-likelihood criterion. p~(q{1)L gives the contact predictions
obtained by DCA approach. Only non-trivial contacts between sites i,j such that Di{jDw4 are considered in the calculation of the TP rate.
doi:10.1371/journal.pcbi.1003176.g006
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S1. Hopfield-Potts patterns are therefore an efficient means to

reduce overfitting effects found in DCA, and to improve the signal-

to-noise ratio.

Discussion

In this paper we have proposed a method to analyze the

correlation matrix of residue occurrences across multiple-sequence

alignments of homologous proteins, based on the inverse Hopfield-

Potts model. Our approach offers a natural interpolation between

the spectral analysis of the correlation matrix, carried out in

principal component analysis (PCA), and maximum entropy

approaches which aim at reproducing those correlations within a

global statistical model (e.g. DCA). The inverse Hopfield-Potts

model requires to infer ‘‘directions’’ of particular importance in

the sequence space, called patterns: The distribution of sequences

belonging to a protein family tends to accumulate along attractive

patterns (related to eigenmodes of the correlation matrix with large

eigenvalues) and to get depleted around repulsive patterns (related

to the low-eigenvalue modes). These patterns have some similarity

with position-specific scoring matrices frequently used in the

statistical modeling of sequences, but in contrast to the indepen-

dence of different positions in PSSM, Hopfield-Potts patterns

account for inter-position couplings, as needed for coevolutionary

analysis.

Contrary to principal component analysis, which discards low-

eigenvalue modes, we have shown that repulsive patterns are

essential to characterize the sequence distribution, and in

particular to detect structural properties (residue-residue contacts)

of proteins from sequence data. In addition, we have shown how

to infer not only the values of the patterns but also their statistical

relevance from the sequence data. To do so, we have calculated

the contribution of each pattern to the total likelihood of the

Hopfield-Potts model given the data, establishing thus a clear

criterion for pattern selection. The results of the application of the

inverse Hopfield-Potts model to real sequence data confirm that

most eigenmodes (with eigenvalues close to unity) can be discarded

without affecting considerably the contact prediction (see Fig. 5

and Fig. 6). This makes our approach much less parameter-

intensive that the full direct coupling analysis DCA. We have

found empirically that it is sufficient to take into account the

patterns contributing to *60{80% of the log-likelihood to

achieve a very good contact map prediction in the case of large

multiple-sequence alignments. In the case of reduced MSA size,

we found that the dimensional reduction due selecting only the

most likely patterns improves the signal-to-noise ratio of the

inferred model, and therefore reaches a better contact prediction

than mean-field DCA, down to very small numbers of sequences,

see Fig. 8 and Fig. S15 in Text S1. Moreover the Hopfield-Potts

approach can be very advantageous in terms of computational

time. While DCA requires the inversion of the correlation matrix,

which takes O(L3(q{1)3) time, computing the p patterns

(corresponding to the largest and smallest eigenvalues) can be

Figure 7. Contact predictions across 15 protein families. (Left panel) TP rates for the contact prediction with variable numbers p of Hopfield-
Potts patterns, averaged over 15 distinct protein families. (right panel) TP rates for the contact prediction using only the repulsive (green line) resp.
attractive (red line) patterns, which are contained in the p~100 most likely patterns (black line), averaged over 15 protein families. It becomes
obvious that the contact prediction remains almost unchanged when only the subset of repulsive patterns is used, whereas it drops substantially by
keeping only attractive patterns.
doi:10.1371/journal.pcbi.1003176.g007
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done in O(pL2(q{1)2) time only. The reduction in computational

time can thus be very important for large proteins.

We have also studied the position-specific nature of patterns,

taking inspiration from localization theory in condensed matter

physics and random matrix theory (Fig. 3 and Figs. S8 and S12 in

Text S1). Briefly speaking, a pattern is said to be localized if it is

concentrated on a few sites of the sequence, and extended (over

the sequence) otherwise. We have found that the principal

attractive pattern (corresponding to the largest eigenvalue) is

extended, with entries of largest absolute value in the most

conserved sites (Figs. S3, S4, S9 & S13 in Text S1). Other strongly

attractive patterns can be explained from the presence of extended

gaps in the alignment, mostly found at the beginning or at the end

of sequences. The other patterns of large likelihood contributions

are repulsive, i.e. they correspond to small eigenvalues, usually

discarded by principal component analysis. Interestingly, these

patterns appear to be strongly localized, that is, strongly

concentrated in very few positions, which despite their separation

along the sequence are found in close contact in the 3D protein

structure. To give an example, in the Trypsin inhibitor protein,

they are localized in position pairs carrying Cysteine, and being

linked by disulfide bonds. Other amino-acid combinations were

also found in the other protein families studied here, e.g. patterns

connecting residues of opposite electrical charge. Taking into

account only a number p of such repulsive patterns results in a

predicted contact map of comparable quality to the one using

maximum-likelihood selection, whereas the same number p of

attractive patterns performs substantially worse (Fig. 7 and Fig. S7

& S11in Text S1). The dimensional reduction of the Hopfield-

Potts model compared to the Potts model (used in standard DCA)

is thus even more increased as many relevant patterns are localized

and contain only a few (substantially) non-zero components. As a

consequence the couplings found with the Hopfield-Potts model

are sparser than their DCA counterparts (Fig. S6 in Text S1).

It is important to stress that also distinct patterns, whether

attractive or repulsive, can have large components on the same

sites and residues. A general finding, supported by a theoretical

analysis in the Results section, is that the more repulsive patterns

are, the stronger they are localized, and the more conserved are

the residues supporting them. Highly conserved sites therefore

appear both in the most attractive pattern and, when covarying

with other residues, in a few localized and repulsive patterns

reflecting those covariations. As the number of patterns to be

included to reach an accurate contact prediction is a few hundreds

for the protein families considered here, the largest components of

the weakly repulsive patterns, i.e. with the eigenvalues smaller

than, but close to the threshold h, correspond to weakly conserved

residues. In consequence many predicted contacts connect low-

conservation residues. This statement is apparent from Fig. 4 and

Figs. S10 and S14 in Text S1, which compare the sets of conserved

sites and the pairs of residues predicted to be in contact by our

analysis.

Figure 8. Noise reduction due to pattern selection in reduced data sets. (Full lines) TP rates of mean-field DCA for sub-MSAs of family
PF00014 with M~10,30,100,300 sequences; each curve is averaged over 200 randomly selected sub-alignments. Whereas for M~100 and M~300
the accuracy of the first predictions is close to one, mean-field DCA does not extract any reasonable signal for M~10 and M~30. (dashed lines) The
same sub-MSA are analyzed with the Hopfield-Potts model using p~16 patterns (maximum-likelihood selection). Whereas this selection reduces the
accuracy for M§100, it results in increased TP rates for Mƒ30. Dimensional reduction by pattern selection has lead to an efficient noise reduction.
doi:10.1371/journal.pcbi.1003176.g008
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Why are repulsive patterns so successful in identifying contacts,

in difference to attractive patterns? To answer this question,

consider the simple case of a pattern j localized in two residues

only, say it should prefer the co-occurrence of amino-acid a in

position i, and of amino acid b in position j. We further assume

that the two non-zero components ji(a) and jj(b) have the same

amplitude and differ only by sign, i.e. ji(a)~{jj(b). Now we

consider a sequence of amino-acids (a1, . . . ,aL) and ask whether it

will have a large log-score S for pattern j, see Eq. (16). The

outcome is given in the third column of Table 1. The log-score

therefore corresponds to a XOR (exclusive or) between the

presence of the two amino-acids a and b on their respective

positions i and j in the sequence. If the pattern were attractive (cf.

fourth column), it would favor sequences where exactly one of the

two specified amino-acids is present. For a repulsive pattern (cf.

fifth column), low log-score sequences are favored, i.e. either both a
and b are present in positions i and j, or none of the two.

In case we assumed equal sign components, i.e. ji(a)~jj(b), we

would have found Table 2. This choice is poor in terms of

enforcing covariation in the sequence: An attractive (resp.

repulsive) pattern strongly favors (resp. disfavors) the simultaneous

presence of amino acids a and b in positions i and j, but the

likelihood is monotonous in the number of correctly present amino

acids.

As a conclusion, we find that strong covariation can be

efficiently enforced only by a repulsive pattern with opposite

components (fifth column in Table 1). The acceptance of the

(NO,NO) configuration is desirable, too: It signals the possibility of

compensatory mutations, i.e. favorable double mutations changing

both a and b in positions i and j to alternative amino acids. It is

easy to generalize the above patterns to patterns having more than

one favored amino-acid combination, e.g. favored pairings (a,b)
and (c,d) can be enforced by a repulsive pattern with

ji(a)~{ji(c)~{jj(b)~jj(d). This theoretical argument ex-

plains why localized repulsive patterns critically encode for

covariation. Remarkably the condition that the few, large

components of repulsive patterns should sum up to zero agrees

well with our findings in real MSAs, cf Fig. 3 and Figs. S8 and S12

in Text S1. Furthermore, it would be interesting to better

understand the relationship between such localized patterns and

specificity-determining positions [8,45]: SDP are co-conserved in

subfamilies of the full MSA, but vary from one family to another.

The most repulsive patterns are localized in residues, which are

strongly conserved throughout the full alignment. We have also

used S3det [45] to predict SDPs and to compare them to our 30

highest-scoring contact predictions, and we have not observed any

particular signal. It would be interesting to extend the Hopfield-

Potts approach to subfamilies and to investigate, if SDPs

correspond to repulsive patterns in these subfamilies.

Last but not least, let us emphasize the importance of the

prefactor D1{
1

l
D1=2 of the pattern, cf. Eqs. (19) and (20), where l is

the eigenvalue corresponding to the pattern. While this factor is at

most equal to 1 for attractive patterns, it can take arbitrarily large

values for repulsive patterns (Fig. 1, right panel). Moreover,

repulsive patterns can be highly localized: they strongly contribute

to a few couplings eij(a,b), e.g. to one coupling between a single

pair of positions i and j for patterns perfectly localized in two sites

only (cf. Fig. 2, lower panel, and Fig. 3). Consequently those

contributions are of particular importance in the ranking of

couplings, which our contact prediction is based on. On the

contrary, attractive patterns, even with sizeable norms, produce

many weaker contributions to the couplings (cf. Fig. 2, lower

panel), and do not alter their relative rankings a much as repulsive

patterns do. This explains why contact prediction based on

repulsive patterns only is much more efficient than when based on

attractive patterns only (cf. Fig. 7).

Some aspects of the approach presented in this paper deserve

further studies, and may actually lead to substantial improvements

of our ability to detect residue contacts from statistical sequence

analysis. The probably most important question is the capability of

our approach to suppress noise in small MSAs, and to extract

contact information in cases where mean-field DCA fails. This

question is closely related to the determination of an optimal value

for the pattern number p using sequence information alone.

Second, the non-independence of sequences in the alignment, e.g.

due to phylogenetic correlations, should be taken into account in a

more accurate way than done currently by sequence reweighting.

Third, the precise role of the – heuristically determined – large

pseudo-count used to calculate the Pearson correlation matrix

should also be elucidated. Fourth, while the use of the Frobenius

norm for the coupling eij(a,b) (with the average-product correc-

tion, see Methods) has proven to be an efficient criterion for

contact prediction, it remains unclear if there exist other contact

estimators with better performance. In this context it would also be

interesting to find a threshold for these contact scores, which

separates a signal-rich from a noise-dominated region. And last

but not least, it would be interesting to integrate prior knowledge

about proteins, like e.g. amino-acid properties or predicted

secondary structure, into the purely statistical inference approach

presented here.

The MATLAB program necessary for the analysis of the data,

the computation of the patterns, and the contact prediction is

available as part of the Supporting Information. Users of the

program are kindly requested to cite the present work.

Methods

Data preprocessing
Following the discussion of [19], we introduce two modifications

into the definition Eq. (2) of the frequency counts fi(a) and fij(a,b):

N Pseudocount regularization: Some amino-acid combinations (a,b)
do not exist in column pairs (i,j), even if a is found in i, and b

Table 1. Effect of a pattern with two non-zero and opposite components ji(a)~{jj(b).

ai~a? aj~b?

S(a1, . . . ,aL Dj)

ji(a)2 Favored by attractive pattern? Favored by repulsive pattern?

NO NO 0 NO YES

YES NO 1 YES NO

NO YES 1 YES NO

YES YES 0 NO YES

doi:10.1371/journal.pcbi.1003176.t001
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in j. This would formally lead to infinitely large coupling

constants, and the covariance matrix C becomes non

invertible. This divergence can be avoided by introducing a

pseudocount ~nn, which adds to the occurrence counts of each

amino acid in each column of the MSA.

N Reweighting: The sampling of biological sequences is far from

being identically and independently distributed (i.i.d.), it is

biased by the phylogenetic history of the proteins and by the

human selection of sequenced species. This bias will introduce

global correlations. To reduce this effect, we decrease the

statistical weight of sequences having many similar ones in the

MSA. More precisely, the weight of each sequence is defined

as the inverse number of sequences within Hamming distance

dHvxL, with an arbitrary but fixed x [ (0,1):

wm~
1

DDfnD1ƒnƒM; dH ½(an
1,:::,an

L),(am
1 ,:::,am

L )�ƒxLgDD ð27Þ

for all m~1,:::,M. The weight equals one for isolated

sequences, and becomes smaller the denser the sampling

around a sequence is. Note that x~0 would account to

removing double counts from the MSA. The total weight

Meff ~
XM
m~1

wm ð28Þ

can be interpreted as the effective number of independent

sequences.

With these two modifications, frequency counts become

fi(a)~
1

Meff z~nn

~nn

q
z
XM
m~1

wm da,am
i

" #
ð29Þ

fij(a,b)~
1

Meff z~nn

~nn

q2
z
XM
m~1

wmda,am
i

db,am
j

" #
: ð30Þ

Values ~nn^Meff and x^0:2 were found to work optimally across

many protein families [19], we use these values. Besides these

modifications, the Hopfield-Potts-model learning is performed as

explained before.

The number of independent model parameters
Amino-acid frequencies are not independent numbers. For

instance, on each site i, the q amino-acid frequencies add up to

one,

Xq

a~1

fi(a)~1, ð31Þ

and two-site distributions have single-site distributions as margin-

als,

Xq

a~1

fij(a,b)~fj(b): ð32Þ

As a consequence, not all of the constraints (4) and (5) are

independent, and the Potts model as given in Eq. (7) has more free

parameters than needed to fulfill the constraints. Families of

distinct parameter values result in the same model P(a1,:::,aL) (in

physics language, this corresponds to a gauge invariance: any

function gi(a) can be added to eij(a,b) and, simultaneously, be

subtracted from hi(a), without changing the values of P). As in

[19], we remove this freedom by setting

eij(a,q)~eij(q,a)~hi(q)~0 ð33Þ

for all positions i,j and all amino acids a. Within this setting, each

choice for the parameter values corresponds to a different outcome

for P(a1,:::,aL). The parameters to be computed are therefore the

couplings eij(a,b) and the fields hi(a) with 1ƒa,bƒq{1 only.

An different choice for the gauge is proposed in Text S1,

Section 3, and leads to quantitatively equivalent predictions for the

pattern structures and the contact map.

Mean-field theory for determining the Hopfield-Potts
patterns

The MaxEnt approach underlying DCA can be rephrased in a

Bayesian framework. Assume the model to be given by Eq. (7), and

assume the sequences in the MSA to be independently and

identically sampled from P. The probability of the alignment for

given model parameters (couplings and fields) is then given by

P ADfeij(a,b),hi(a)g
� �

~ P
M

m~1
P(am

1 ,:::,am
L ): ð34Þ

Plugging in Eq. (7) and defining the log-likelihood of the model

parameters given the MSA A, we find

L feij(a,b),hi(a)gjA
� �

~
1

M
log P Ajfeij(a,b),hi(a)g

� �
~

1

2

X
i,j

X
a,b

eij(a,b)fij(a,b)z
X
i,a

hi(a)fi(a){log Z(feij(a,b),hi(a)g)
ð35Þ

Table 2. Effect of a pattern with two non-zero and equal components ji(a)~jj(b).

ai~a? aj~b?

S(a1, . . . ,aL Dj)

ji(a)2 Favored by attractive pattern? Favored by repulsive pattern?

NO NO 0 NO YES

YES NO 1 NO YES

NO YES 1 NO YES

YES YES 4 YES NO

doi:10.1371/journal.pcbi.1003176.t002
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One can readily see that the parameters feij(a,b),hi(a)g
maximizing L are solutions of Eqs. (4) and (5). The corresponding

value for the maximum of L coincides with the opposite of the

entropy, {H½P�, for the MaxEnt distribution given by Eq. (7).

Following the study of the Ising model case (q~2) in [43],

mean-field theory can be used to derive an approximate

expression for the log-likelihood L (35) when the couplings are

chosen to obey Hopfield’s prescription, Eq. (18). Calculations are

presented in Text S1, Section 1. After optimization over the fields,

we are left with the log-likelihood for the patterns only,

L½fjgjA�~L0z
1

2L

X
ij,ab

Cij(a,b)(
X

mƒpz

jz,m
i (a)jz,m

j (b)

{
X

nƒp{

j{,n
i (a)j{,n

j (b))z
1

2

X
mƒpz

log

1{
1

L

X
i,ab

jz,m
i (a)Cii(a,b)jz,m

i (b)

" #
z

1

2

X
nƒp{

log 1z
1

L

X
i,ab

j{,n
i (a)Cii(a,b)j{,n

i (b)

" #
ð36Þ

where L0~
P

i

Pq
a~1 fi(a)log fi(a). So we find the trivial result

that, for p~0 (no couplings), the log-likelihood is the negative of

the sum of all single-column entropies, L0. The optimal patterns,

i.e. those optimizing the log-likelihood L are given by Eqs. (19) and

(20). The total log-likelihood corresponding to this selection reads:

L(p)~L0z
X

fmDlm=[½‘{ ,‘z�g
DL(lm), ð37Þ

where function DL is defined in Eq. (23), and the bounds ‘{,‘z
are defined in the Results Section.

The solution given in Eqs. (19) and (20) is defined up to a

rotation in the pattern space, i.e. up to multiplication of all patterns

with an indefinite orthogonal (p|p)–matrix, O, in O(pz, p{).
Indeed, the patterns ji(a) and their rotated counterparts

ĵji(a)~(O:j)i(a) define the same set of couplings eij(a,b) through

Eq. (18). Note that this invariance is specific to the Hopfield

model, and should not be mistaken for the gauge invariance of the

Potts model discussed in the Results Sections. We eliminate this

arbitrariness according to the following procedure, detailed in

Text S1: Our selection corresponds to the case where patterns are

added one after the other, starting with the best possible single

pattern, followed by the second best (orthogonal to the first one

when single-site correlations Cii(a,b) are factored out) etc.

Contact prediction from couplings
Intuitively, residue position pairs with strong direct couplings

are our best predictions for native contacts in the protein structure.

To measure ‘coupling strength’, we need, however, to map the

inferred q|q coupling matrices eij onto a scalar parameter, for

each 1ƒivjƒL. Whereas previous works on DCA have mainly

used the so-called direct information [17,19], it was recently

observed that a different score actually improves the contact

prediction starting from the same model parameters feij(a,b)g
[49]. To this end, we introduce the Frobenius norm

Fij~Ee’ijE2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

a,b~1

~eeij(a,b)2

vuut ð38Þ

of the linearly transformed coupling matrices

~eeij(a,b)~eij(a,b){eij(:,b){eij(a,:)zeij(:,:), ð39Þ

where ‘?’ denotes average over all amino acids and the gap in the

concerned position. According to the above discussion, this

corresponds to another gauge of the Hopfield-Potts model, more

precisely to the gauge minimizing the Frobenius norm of each

coupling matrix [17]. Further more, the norm is adjusted by an

average product correction (APC) term, introduced in [16] to suppress

effects from phylogenetic bias and insufficient sampling. Incorpo-

rating also this correction, we get our final scalar score:

FAPC
ij ~Fij{

F:jFi:

F::
, ð40Þ

where the ‘?’ now indicates a position average.

Sorting column pairs (i,j) by decreasing values of FAPC

calculated using standard mean-field DCA was shown to give

accurate predictions for residue contacts in various proteins, i.e. in

the case where all possible patterns are included (p~L(q{1)) in Eq.

(18). The Results Section shows how the performance in contact

prediction varies when the number of patterns is p%L(q{1).
Note that this criterion gives a coupling score to each pair of

residue positions. The method itself does not provide a cutoff value

for this score, below which predictions should not considered any

more. Results are therefore typically provided as parametric plots

depending on the number of predicted contacts as a free

parameter.
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