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Abstract We present a procedure to solve the inverse Ising problem, that is, to find the inter-
actions between a set of binary variables from the measure of their equilibrium correlations.
The method consists in constructing and selecting specific clusters of spins, based on their
contributions to the cross-entropy of the Ising model. Small contributions are discarded to
avoid overfitting and to make the computation tractable. The properties of the cluster expan-
sion and its performances on synthetic data are studied. To make the implementation easier
we give the pseudo-code of the algorithm.

Keywords Ising model · Statistical inference · Inverse problems · Inverse susceptibility ·
Cluster expansion

1 Introduction

The Ising model is a paradigm of statistical physics, and has been extensively studied to
understand the equilibrium properties and the nature of the phase transitions in various sys-
tems in condensed matter [1]. In its usual formulation, the Ising model is defined over a set
of N binary variables σi , with i = 1,2, . . . ,N . The variables, called spins, are submitted to
a set of N local fields, hi , and of 1

2 N(N − 1) pairwise couplings, Jij . The observables of
the model, such as the average values of the spins or of the spin-spin correlations over the
Gibbs measure,

〈σi〉, 〈σkσl〉, (1)
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are well-defined and can be calculated from the knowledge of those interaction parameters.
We will refer to the task of calculating (1) given the interaction parameters as to the direct
Ising problem.

In many experimental cases, the interaction parameters are unknown, while the values of
observables can be estimated from measurements. A natural question is to know if and how
the interaction parameters can be deduced from the data [2–8]. When the coupling matrix is
known a priori to have a specific and simple structure, this question can be answered with
an ordinary fit. For instance, in a two-dimensional and uniform ferromagnet, all couplings
vanish but between neighbors on the lattice, and Jij = J for contiguous sites i and j . In
such a case, the observable such as the average correlation between neighboring spins, c,
depends on a single parameter, J . The measurement of c gives a direct access to a value
of J . However, data coming from complex systems arising in biology, sociology, finance,
. . . can generally not be interpreted with such a simple Ising model, and the fit procedure
is much more complicated for two reasons. First, in the absence of any prior knowledge
about the interaction network, the number of interaction parameters Jij to be inferred scales
quadratically with the system size N , and can be very large. Secondly, the quality of the
data is a crucial issue. Experimental data are plagued by noise, coming either from the
measurement apparatus or from imperfect sampling. The task of fitting a very large number
of interaction parameters from ‘noisy’ data has received much attention in the statistics
community, under the name of high-dimensional inference [14].

To be more specific, the inverse Ising problem is defined as follows. Assume that a set of
B configurations σ τ = {σ τ

1 , σ τ
2 , . . . , σ τ

N }, with τ = 1,2, . . . ,B are available from measure-
ments. We compute the empirical 1- and 2-point averages through

pi = 1

B

B∑

τ=1

σ τ
i , pkl = 1

B

B∑

τ=1

σ τ
k σ τ

l . (2)

The inverse Ising problem consists in finding the values of the N local fields, hi , and of
the 1

2N(N − 1) interactions, Jij , such that the individual and pairwise frequencies of the
spins (1) defined from the Gibbs measure coincide with their empirical counterparts, pi and
pkl . While the Gibbs measure corresponding to the Ising model is by no means the unique
measure allowing one to reproduce the data pi and pkl , it is the distribution with the largest
entropy doing so [10]. In other words, the Ising model is the least constrained model capable
of matching the empirical values of the 1- and 2-point observables. This property explains
the recent surge of interest in defining and solving the inverse Ising problem in the context
of the analysis of biological, e.g. neurobiological [2–5, 11] and proteomic [6, 7] data.

As a result of its generality, the inverse Ising problem has been studied in various fields
under different names, such as Boltzmann machine learning in learning theory [12, 13] or
graphical model selection in statistical inference [14, 16, 17]. While the research field is
currently very active, the diversity of the tools and, sometimes, of the goals make somewhat
difficult to compare the results obtained across the disciplines. Several variants of the inverse
Ising problem can be defined:

• A: find the interaction network from a set of spin configurations σ τ . It is generally as-
sumed in the graphical model community that the Ising model is exact, that is, that the
underlying distribution of the data is truly an Ising model with unknown interaction pa-
rameters J. The question is to find which interactions Jij are non-zero (or larger than some
Jmin is absolute value), and how many configurations (value of B) should be sampled to
achieve this goal with acceptable probability.
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• B: find the interactions Jij and the fields hi from the frequencies pi,pij only. Those fre-
quencies should be reproduced within a prescribed accuracy, ε, not too small (compared
to the error on the data) to avoid overfitting. Note that in general the Ising model is not the
true underlying model for the data here; it is only the model with maximal entropy given
the constraints on 1- and 2-point correlations.

• C: same as B, but in addition we want to know the entropy (at fixed individual and pair-
wise frequencies), which measures how many configurations σ really contribute to the
Gibbs distribution of the Ising model. Computing the entropy is generally intractable for
the direct Ising problem, unless correlations decay fast enough [18].

Variants B and C are harder than A: full spin configurations give access to all K-spin correla-
tions, a knowledge which can be used to design fast network structure inference algorithm.
Recently, a procedure to solve problem C was proposed, based on ideas and techniques
coming from statistical physics [9]. The purpose of the present paper is to discuss its perfor-
mances and limitations.

It is essential to be aware of the presence of noise in the data, e.g. due to the imperfect
sampling (finite number B of configurations). A potential risk is overfitting: the network of
interactions we find at the end of the inference process could reproduce the mere noisy data,
rather than the ‘true’ interactions. How can one disentangle noise from signal in the data?
A popular approach in the statistics community is to require that the inferred interaction
network be sparse. The rationale for imposing sparsity is two-fold. First, physical lattices
are very sparse, and connect only close sites in the space; it is possible but not at all obvious
that networks modeling other e.g. biological data enjoy a similar property. Secondly, an
Ising model with a sparse interaction network reproducing a set of correlations is a sparing
representation of the statistics of the data, and, in much the same spirit as the minimal
message length approach [15], should be preferred to models with denser networks. The
appeal of the approach is largely due to the fact that imposing sparsity is computationally
tractable.

The criterion required by our procedure is not that the interaction network should be
sparse, but that the inverse Ising problem should be well-conditioned. To illustrate this no-
tion, consider a set of data, i.e. of frequencies pi,pkl , and assume one has found the solution
hi, Jkl to the corresponding inverse Ising problem. Let us now slightly modify one or a few
frequencies, say, p12 → p′

12 = p12 + δp12, and solve again the corresponding inverse Ising
problem, with the results h′

i , J
′
kl . Let δJkl = J ′

kl −Jkl and δhi = h′
i −hi measure the response

of the interaction parameters to the small modification of p12 alone. Two extreme cases are:

• Localized response: the response is restricted to the parameters involving spins 1 and 2
only, i.e. δh1, δh2, δJ12 �= 0; it vanishes for all the other parameters.

• Extended response: the response spreads all over the spin system, and all the quantities
δhi, δJkl are non-zero.

Intermediate cases will generically be encountered, and are symbolized in Fig. 1(a)&(b).
For instance, if the response is non-zero over a small number of parameters only, which
define a ‘neighborhood’ of the spins 1,2, we will consider it is localized. Obviously, the
notion of ‘smallness’ cannot be rigorously defined here, unless the system size N can be
made arbitrarily large and sent to infinity.

Drawing our inspiration from the vocabulary of numerical analysis, we will say that the
inverse Ising problem is well-conditioned if the response is localized. For a well-conditioned
problem, a small change of one or a few variables essentially affects one or a few interaction
parameters. On the contrary, most if not all interaction parameters of a ill-conditioned in-
verse Ising problem are affected by an elementary modification of the data. This notion must
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Fig. 1 Schematic representation of a well-conditioned (a) and an ill-conditioned (b) inverse Ising problems.
The gray areas symbolize the set of spins (full dots) whose interactions (links) and fields are affected by a
change of the frequency p12 of spins 1 and 2. The response is localized in (a) and extended in (b). Exper-
iments usually measure a restricted part of the system (dashed contour) only (c). Increasing the size of the
measured sub-system, e.g. by including the frequencies of the extra-variables 3 and 4, will modify most of
the inferred interaction parameters if the problem is ill-conditioned

be distinguished from the concept of ill-posed problem. As we will see in Sect. 2, the inverse
Ising problem is always well-posed, once an appropriate regularization is introduced: given
the frequencies, there exists a unique set of interaction parameters reproducing those data,
regardless of how hard it is to compute.

Not all inverse Ising problems are well-conditioned. However, it is our opinion that only
those ones should be solved. The reason is that, in generic experimental situations, only
a (small) region of the system is accessible. Solving the inverse problem attached to this
sub-system makes sense only if the problem is well-conditioned. If it is ill-conditioned,
extending even by a bit the sub-system would considerably affect the values of most of
the inferred parameters (Fig. 1(c)). Hence, the interaction parameters would be very much
dependent on the part of the system which is not measured! Such a possibility simply means
that the inverse problem, though mathematically well-posed, is not meaningful.

Interestingly, the response of the interactions to a change of a few correlations can be
localized, while the response of the correlations to a change of a few interactions is extended.
An example is given by ‘critical’ Ising models, where correlations extend over the whole
system. However, the corresponding inverse Ising problem may be well-conditioned.

The presence of noise in the data considerably affects the status of the inverse Ising prob-
lem. As we will see later, even well-conditioned problems in the limit of perfect sampling
(B → ∞) become ill-conditioned as soon as sampling is imperfect (finite B). The same
statement holds for the sparsity-based criterion mentioned above: when data are generated
by a sparse interaction network, the solution to the inverse Ising model is not sparse as a
consequence of imperfect sampling. Only the presence of an explicit and additional regu-
larization forces the solution to be sparse. In much the same way, the procedure we present
hereafter builds a well-conditioned inverse Ising problem, which prevents overfitting of the
noise. This procedure is based on the expansion of the entropy at fixed frequencies in clusters
of spins, a notion closely related to the neighborhoods appearing in the localized responses.

The plan of the article is as follows. In Sect. 2 we give the notations and precise defini-
tions of the inverse Ising problem, and briefly review some of the resolution procedures in
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the literature. In Sect. 3, we explain how the entropy can be expanded as a sum of contribu-
tions, one for each cluster (or sub-set) of spins, and give the pseudo-codes and explanations
necessary for the implementation of the algorithm. The properties of the entropy expansion,
and of its possible truncations are discussed in Sect. 4. Applications to artificial data are dis-
cussed at length in Sect. 5. Finally, Sect. 6 presents some perspectives and conclusions. To
improve the readability of the paper most technical details have been relegated to technical
Appendices A–G.

2 The Inverse Ising Problem: Formulations and Issues

2.1 Maximum Entropy Principle Formulation

We consider a system of N binary variables, σi = 0,1, where i = 1,2, . . . ,N . The average
values of the variables, pi , and of their correlations, pkl , are measured, for instance through
the empirical average over B sampled configurations of the system, see Eqs. (2). As the
correlations pkl are obtained from the empirical measure, the problem is realizable [19, 20].
Let p = {pi,pkl} denote the data. The Maximum Entropy Principle (MEP) [10] postulates
that the probabilistic model P (σ ) should maximize the entropy S of the distribution P under
the constraints∑

σ

P (σ ) = 1,
∑

σ

P (σ )σi = pi,
∑

σ

P (σ )σkσl = pkl. (3)

In practice these constraints are enforced by the Lagrange multipliers λ and J = {hi, Jkl}.
The maximal entropy is1

S(p) = min
λ,J

max
P(σ )

[
−

∑

σ

P (σ ) logP (σ ) + λ

(∑

σ

P (σ ) − 1

)

+
∑

i

hi

(∑

σ

P (σ )σi − pi

)
+

∑

k<l

Jkl

(∑

σ

P (σ )σkσl − pkl

)]
. (4)

The maximization condition over P shows that the MEP probability corresponds to the
Gibbs measure PJ of the celebrated Ising model,

PJ[σ ] = e−HIsing[σ |J]

Z[J] (5)

where the energy function is

HIsing[σ |J] = −
∑

i

hiσi −
∑

k<l

Jklσkσl (6)

and Z[J] = ∑
σ exp(−HIsing[σ |J]) denotes the partition function. The values of the cou-

plings and fields2 are then found through the minimization of

SIsing[J|p] = logZ[J] −
∑

i

hipi −
∑

k<l

Jklpkl (7)

over J. The minimal value of SIsing coincides with S defined in (4).

1We have to minimize here rather than maximize since the true Lagrange multipliers take imaginary values,
the couplings and fields being their imaginary part.
2The vocable ‘field’, should strictly speaking, be used when the variables σi are spins taking ±1 values. For
0,1 variable, the use of the denomination ‘chemical potential’ would be more appropriate. We keep to the
simpler denomination ‘field’ hereafter.
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The cross-entropy SIsing has a simple interpretation in terms of the Kullback-Leibler
divergence between the Ising distribution PJ[σ ] and the empirical measure over the ob-
served configurations, Pobs[σ ]. Assume B configurations of the N variables, σ τ , with
τ = 1,2, . . . ,B , are sampled. We define the empirical distribution through

Pobs[σ ] = 1

B

B∑

τ=1

δσ ,σ τ , (8)

where δ denotes the N -dimensional Kronecker delta function. It is easy to check from (7)
that

SIsing[J|p] = −
∑

σ

Pobs[σ ] logPJ[σ ] = −
∑

σ

Pobs[σ ] logPobs[σ ] + D(Pobs‖PJ), (9)

where D denotes the KL-divergence. Hence, the minimization procedure over J ensures that
the ‘best’ Ising measure (as close as possible to the empirical measure) is found.

2.2 Regularization and Bayesian Formulation

We consider the Hessian of the cross-entropy SIsing, also called Fisher information matrix,
which is a matrix of dimension 1

2N(N + 1), defined through

χ = ∂2SIsing

∂J∂J
=

(
χi,i′ χi,k′l′
χkl,i′ χkl,k′l′

)
. (10)

The entries of χ are obtained upon repeated differentiations of the partition function Z[J],
and can be expressed in terms of averages over the Ising Gibbs measure 〈·〉J,

χi,i′ = 〈σiσi′ 〉J − 〈σi〉J〈σi′ 〉J,

χi,k′l′ = 〈σiσk′σl′ 〉J − 〈σi〉J〈σk′σl′ 〉J, (11)

χkl,k′l′ = 〈σkσlσk′σl′ 〉J − 〈σkσl〉J〈σk′σl′ 〉J.

Consider now an arbitrary 1
2N(N + 1)-dimensional vector x = {xi, xkl}. The quadratic form

x† · χ · x =
〈(∑

i

xi

(
σi − 〈σi〉J

) +
∑

k<l

xkl

(
σkσl − 〈σkσl〉J

))2〉

J
(12)

is semi-definite positive. Hence, SIsing is a convex function.
However the minimum is not guaranteed to be unique if χ has zero modes, nor to be fi-

nite. To circumvent those difficulties, one can ‘regularize’ the cross-entropy SIsing by adding
a quadratic term in the interaction parameters, which forces χ to become definite positive,
and ensures the uniqueness and finiteness of the minimum of SIsing. In many applications,
no regularization is needed for the fields hi . The reason can be understood intuitively as fol-
lows. Consider a data set where all variables are independent, with small but strictly positive
means pi . Then, the empirical average products, pkl , may vanish if the number B of sampled
configurations is not much larger than (pkpl)

−1. This condition is often violated in practical
applications, e.g. the analysis of neurobiological or protein data [2, 3, 6, 11]. Hence, poor
sampling may produce infinite negative couplings. We therefore add the following regular-
ization term to SIsing,

γ
∑

k<l

J 2
klpk(1 − pk)pl(1 − pl). (13)
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The precise expression of the regularization term is somewhat arbitrary, and is a matter
of convenience. The dependence on the pi ’s in (13) will be explained in Sect. 3.2. Other
regularization schemes, based on the L1 norm rather than on the L2 norm are possible, such
as

γ
∑

k<l

|Jkl |
√

pk(1 − pk)pl(1 − pl). (14)

The above regularization is especially popular among the graphical model selection commu-
nity [16]. It favors sparse coupling networks, i.e. with many zero interactions, while keeping
the cost-function (cross-entropy plus regularization term) convex and, thus, easy to mini-
mize.

The introduction of a regularization is natural in the context of Bayesian inference. The
Gibbs probability PJ[σ ] defines the likelihood of a configuration σ . The likelihood of a
set of B independently drawn configurations σ τ is given by the product of the likelihoods
of each configuration. The posterior probability of the parameters (fields and couplings) J
given the configurations σ τ , τ = 1,2, . . . ,B , is, according to Bayes’ rule,

Ppost

[
J
∣∣{σ τ

}] ∝
B∏

τ=1

PJ
[
σ τ

]
P0[J], (15)

up to an irrelevant J-independent multiplicative factor. In the equation above, P0 is a prior
probability over the couplings and fields, encoding the knowledge about their values in the
absence of any data. Taking the logarithm of (15), we obtain, up to an additive J-independent
constant,

logPpost

[
J
∣∣{σ τ

}] = −BSIsing[J|p] + logP0[J]. (16)

Hence, the most likely value for the parameters J is the one minimizing SIsing[J|p] −
1
B

logP0[J]. The regularization terms (13) and (14) then correspond to, respectively, Gaus-
sian and exponential priors over the parameters. In addition, as the prior is independent of
the number B of configurations, we expect the strength γ to scale as 1

B
. The optimal value

of γ can be also determined based on Bayesian criteria [11, 41].
We emphasize that the Bayesian framework changes the scope of the inference. While

the MEP aims to reproduce the data, the presence of a regularization term leads to a com-
promise between two different objectives: finding an Ising model whose observables (one-
and two-point functions) are close to the empirical values and ensuring that the interaction
parameters J have a large prior probability P0. In other words, a compromise is sought be-
tween the faithfulness to the data and the prior knowledge about the solution. The latter is
especially important in the case of poor sampling (small value of B or data corrupted by
noise). For instance, the regularization term based on the L1-norm (14) generally produces
more couplings equal to zero than its L2-norm counterpart (13). This property is desirable
to achieve a compression (compact representation) of the data. It is also justified when one
a priori knows that the interaction graph is sparse. Hence, the introduction of a regulariza-
tion term can be interpreted as an attempt to approximately solve the inverse Ising problem
while fulfilling an important constraint about the structure of the solution. We will discuss
the nature of the structural constraints corresponding to our adaptive cluster algorithm in
Sect. 4.4.

Knowledge of the inverse of the Fisher information matrix, χ−1, allows for the computa-
tion of the statistical fluctuations of the inferred fields and couplings due to a finite number
B of sampled configurations. According to the asymptotic theory of inference, the posterior
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probability Ppost[J|{σ τ }] over the fields and couplings becomes, as B gets very large, a nor-
mal law centered in the minimum of SIsing[J|p]. The covariance matrix of this normal law
is simply given by 1

B
χ−1. Consequently the standard deviations of the fields hi and of the

couplings Jkl are, respectively,

δhi =
√

1

B

(
χ−1

)
i,i

, δJkl =
√

1

B

(
χ−1

)
kl,kl

. (17)

In order to remove the zero modes of χ and have a well-defined inverse matrix χ−1, the Ising
model entropy SIsing (7) can be added a regularization term, e.g. (13), which guarantees that
χ is positively defined.

The Fisher information matrix, χ , can also be used to estimate the statistical deviations
of the observables coming from the finite sampling. If the data were generated by an Ising
model with parameters J, we would expect, again in the large B setting, that the frequencies
pi,pkl would be normally distributed with a covariance matrix equal to 1

B
χ . Hence, the

typical uncertainties over the 1- and 2-point frequencies are given by

δpi =
√

1

B
χi,i =

√ 〈σi〉J(1 − 〈σi〉J)

B
,

δpkl =
√

1

B
χkl,kl =

√ 〈σkσl〉J(1 − 〈σkσl〉J)

B
.

(18)

In practice, we can replace the Gibbs averages above with the empirical averages pi and
pkl to obtain estimates for the expected deviations. These estimates will be used to decide
whether the inference procedure is reliable, or leads to an overfitting of the data in Sect. 5.

2.3 Methods

The inverse Ising problem has been studied in statistics, under the name of graphical model
selection, in the machine learning community under the name of (inverse) Boltzmann ma-
chine learning, and in the statistical physics literature. Different methods have been devel-
oped, with various applications. Some of the methods are briefly discussed below.

A direct calculation of the partition function Z[J] generally requires a time growing
exponentially with the number N of variables, and is not feasible when N exceeds a few
tens. Inference procedures therefore tend to avoid the computation of Z[J]:
• A popular algorithm is the Boltzmann learning procedure, where the fields and couplings

are iteratively updated until the averages 〈σi〉J’s and 〈σkσl〉J’s, calculated from Monte
Carlo simulations, match the imposed values [13]. The number of updatings can be very
large in the absence of a good initial guess for the parameters J. Furthermore, for each
set of parameters, thermalization may require prohibitive computational efforts for large
system sizes N , and problems with more than a few tens of spins can hardly be tackled.
Finally, learning data exactly leads to overfitting in the case of poor sampling.

• The Pseudo-Likelihood-based algorithm by Ravikumar et al. [16, 17] is an extension to
the binary variable case of Meinshausen and Bühlmann’s algorithm [22] and is related
to a renormalization approach introduced by Swendsen [21]. The procedure requires the
complete knowledge of the configurations {σ τ } (and not only of the one- and two-point
functions p). The starting point is given by well-known Callen’s identities for the Ising
model,

〈σi〉J =
〈

1

1 + exp
(−∑

j Jij σj − hi

)
〉

J

 1

B

B∑

τ=1

1

1 + exp
(−∑

j Jij σ
τ
j − hi

) (19)
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where the last approximation consists in replacing the Gibbs average with the empirical
average over the sampled configurations. Imposing that the Gibbs average 〈σi〉J coincides
with pi is equivalent to minimizing the following pseudo-likelihood over the field hi ,

Si,PL

[
hi, {Jij , j �= i}] = 1

B

B∑

τ=1

log

[
1 + exp

(∑

j

Jij σ
τ
j + hi

)]
− hipi −

∑

j (�=i)

Jijpij .

(20)

The minimization equations over the couplings Jij , with j �= i (and fixed i), correspond
to Callen identities for two-point functions. Informally speaking, the pseudo-likelihood
approach simplifies the original N -body problem into N independent 1-body problem,
each one in a bath of N − 1 quenched variables. Note that the couplings Jij and Jji

(found by minimizing Sj,PL) will generally not be equal. However, as far as graphical
model selection is concerned, what matters is whether Jij and Jji are both different from
zero.

The pseudo-entropy Si,PL is convex, and can be minimized after addition of a L1-
norm regularization term [14, 16, 23]. The procedure is guaranteed to find strong enough
couplings3 in a polynomial time in N , provided that the data were generated by an Ising
model (which is usually not the case in practical applications) and that a quantity closely
related to the susceptibility χ (10) is small enough. The latter condition holds for weak
couplings and may break down for strong couplings [17]. For a review of the literature in
the statistics community, see [14].

In specific cases, however, the partition function can be obtained in polynomial time.
Two tractable examples are:

• Mean-field models, which are characterized by dense but weak interactions. An example
is the Sherrington-Kirkpatrick model where every pair of spins interact through couplings
of the order of N−1/2 [28]. The entropy S[p] coincides asymptotically with

SMF(p) = 1

2
log detM(p), where Mij (p) = pij − pipj√

pi(1 − pi)pj (1 − pj )
, (21)

which can be calculated in O(N3) time [12, 31]. Expression (21) has been obtained from
the high temperature expansion [24–26] of the Legendre transform of the free energy, and
is consistent with the so-called TAP equations [27]. The derivative of SMF with respect to
p gives the value of the couplings and the fields,

(JMF)kl =−∂SMF

∂pkl

= − (M−1)kl√
pk(1 − pk)pl(1 − pl)

,

(hMF)i =−∂SMF

∂pi

=
∑

j (�=i)

(JMF)ij

(
cij

pi − 1
2

pi(1 − pi)
− pj

)
,

(22)

where cij = pij − pipj is the connected correlation. From a practical point of view, ex-
pression (21) is a good approximation for solving the inverse Ising problem [29–31] on
dense and weak interaction networks, but fails to reproduce dilute graphs with strong
interactions.

3The minimal strength of the couplings which can be ‘detected’ depend on the quality of the sampling, and
scales as

√
logN/B , see Sect. 4.3.2.
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• Ising models on tree-like structures, i.e. with no or few interaction loops. Message pass-
ing methods are guaranteed to solve the associated inverse Ising problems. For trees, the
partition functions can be calculated in a time linear in N . Sparse networks of strong
interactions with long-range loops, such as Erdös-Renyi random graphs, can also be suc-
cessfully treated in polynomial time by message-passing procedures [6, 32–34]. However,
these methods generally break down in the presence of strongly interacting groups (clus-
ters) of spins.

When an exact calculation of the partition function is out-of-reach, accurate estimates
can be obtained through cluster expansions. Expansions have a rich history in statistical
mechanics, e.g. the virial expansion in the theory of liquids [35, 36]. However, cluster ex-
pansions suffer from several drawbacks. First, in cluster variational methods [32, 37], the
calculation of the contributions coming from each cluster generally involves the resolution
of non-trivial and self-consistent equations for the local fields, which seriously limits the
maximal size of clusters considered in the expansion. Secondly, the composition and the
size of the clusters is usually fixed a priori, and does not adapt to the specificity of the data
[11]. The combinatorial growth of the number of clusters with their size entails strong lim-
its upon the maximal sizes of the network, N , and of the clusters, K . Last of all, cluster
expansions generally ignore the issue of overfitting.

Recently, we have proposed a new cluster expansion, where clusters are built recursively,
and are selected or discarded, according to their contribution to the cross-entropy S [9]. This
selection procedure allows us to fully account for the complex interaction patterns present in
experimental systems, while preventing a blow-up of the computational time. The purpose
of this paper is to illustrate this method and discuss its advantages and limitations.

3 Cluster Expansion of the Cross-Entropy and Algorithm

3.1 Principle of the Expansion

In this section, we propose a cluster expansion for the entropy S(p). A cluster, 
, is defined
here as a non-empty subset of (1,2, . . . ,N). To illustrate how the expansion is built we
start with the simple cases of systems with a few variables (N = 1,2), in the absence of the
regularization term (13).

Consider first the case of a single variable, N = 1, with average value p1. The entropy
S(p1) can be easily computed according to the definitions given in Sect. 2, with the result

S(1)(p1) = min
h1

SIsing[h1|p1] = min
h1

[
log

(
1 + eh1

) − h1p1

]

= −p1 logp1 − (1 − p1) log(1 − p1). (23)

We recognize the well-known expression for the entropy of a 0–1 variable with mean value
p1. For reasons which will be obvious in the next paragraph, we will hereafter use the
notation �S(1)(p1) to denote the same quantity as S(1)(p1). The subscript (1) refers to the
index of the (unique) variable in the system.

Consider next a system with two variables, with mean values p1,p2 and two-point aver-
age p12. The entropy S(1,2)(p1,p2,p12) can be explicitly computed:

S(1,2)(p1,p2,p12)

= min
h1,h2,J12

SIsing[h1, h2, J12|p1,p2,p12]
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= min
h1,h2,J12

[
log

(
1 + eh1 + eh2 + eh1+h2+J12

) − h1p1 − h2p2 − J12p12

]

= −(p1 − p12) log (p1 − p12) − (p2 − p12) log(p2 − p12)

− p12 logp12 − (1 − p1 − p2 + p12) log (1 − p1 − p2 + p12). (24)

We now define the entropy �S(1,2) of the cluster of the two variables 1,2 as the difference
between the entropy S(1,2)(p1,p2,p12) calculated above and the two single-variable contri-
butions �S(1)(p1) and �S(1)(p2) coming from the variables 1 and 2 taken separately:

�S(1,2)(p1,p2,p12) = S(1,2)(p1,p2,p12) − �S(1)(p1) − �S(2)(p2). (25)

In other words, �S(1,2) measures the loss of entropy between the system of two isolated
variables, constrained to have means equal to, respectively, p1 and p2, and the same system
when, in addition, the average product of the variables is constrained to take value p12.
Using expressions (23) and (24), we find

�S(1,2)(p1,p2,p12)

= −(p1 − p12) log

(
p1 − p12

p1 − p1p2

)
− (p2 − p12) log

(
p2 − p12

p2 − p1p2

)

− p12 log

(
p12

p1p2

)
− (1 − p1 − p2 + p12) log

(
1 − p1 − p2 + p12

1 − p1 − p2 + p1p2

)
. (26)

The entropy of the cluster (1,2) is therefore equal to the Kullback-Leibler divergence be-
tween the true distribution of probability over the two spins and the one corresponding to
two independent spins with averages p1 and p2. It vanishes for p12 = p1p2.

Formula (25) can be generalized to define the entropies of clusters with larger sizes
N ≥ 3. Again p = {pi,pkl} denotes the data. For any non-empty subset 
 including
1 ≤ K ≤ N variables, we define two entropies:

• the subset-entropy S
(p), which is the entropy of the subset of the K variables for fixed
data. It is defined as the right hand side of (4), when the variable indices, i, k, l are re-
stricted to 
. Note that, when the subset 
 includes all N variables, S
(p) coincides with
S(p).

• the cluster-entropy �S
(p), which is the remaining contribution to the subset-entropy
S
(p), once all other cluster-entropies of smaller clusters have been substracted. The clus-
ter entropies are then implicitly defined through the identity

S
(p) =
∑


′⊂


�S
′(p), (27)

where the sums runs over all 2K − 1 non-empty clusters 
′ of variables in 
.

Identity (27) states that the entropy of a system (for fixed data) is equal to the sum of the
entropies of all its clusters. Figure 2 sketches the cluster decomposition of the entropy for a
system of N = 4 variables.

For 
 = (1), Eq. (27) simply expresses that S(1)(p1) = �S(1)(p1). For 
 = (1,2),
Eq. (27) coincides with (25). For 
 = (1,2,3), we obtain the definition of the entropy of
a cluster made of a triplet of variables:

�S(1,2,3)(p1,p2,p3,p12,p13,p23)

= S(1,2,3)(p1,p2,p3,p12,p13,p23) − �S(1)(p1) − �S(2)(p2) − �S(3)(p3)

− �S(1,2)(p1,p2,p12) − �S(1,3)(p1,p3,p13) − �S(2,3)(p2,p3,p23). (28)
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Fig. 2 Decomposition of the
cross-entropy S(p) for a system
of 4 spins, indicated with
different colors, as the sum of
cluster contributions. Each
cluster-entropy �S
(p) depends
only on the one- and two-point
frequencies of the variables in the
cluster: it can be calculated in a
recursive way, see main text.
Dotted clusters are decomposed
into a diagrammatic expansion in
Fig. 26 (Color figure online)

The analytical expression of the cluster-entropy �S(1,2,3) is given in Appendix A.
The examples above illustrate three general properties of cluster-entropies:

• the entropy of the cluster 
, �S
 , depends only on the frequencies pi,pij of the variables
i, j in the cluster 
 (and not on all the data in p).

• the entropy of a cluster with, say, K variables, can be recursively calculated from the
knowledge of the subset-entropies S
′(p) of all the subsets 
′ ∈ 
 with K ′ ≤ K variables.
According to Möbius inversion formula,

�S
(p) =
∑


′⊂


(−1)K ′−KS
′(p). (29)

• the sum of the entropies of all 2N − 1 clusters of a system of N spins is the exact entropy
of the system, see (27) with 
 = (1,2, . . . ,N).

In practice, to calculate S(p), one first computes the partition function Z[J] by summing
over the 2K configurations σ and, then, minimizes SIsing[J|p] (7) over the interaction pa-
rameters J. The minimization of a convex function of 1

2 K(K + 1) variables can be done in
time growing polynomially with K . Moreover the addition of the regularization term (13)
can be easily handled. The limiting step is therefore the calculation of Z, which can be done
exactly for clusters with less than, say, K = 20 spins.

Hence, only a small number of the 2N − 1 terms in (27) can be calculated. In the present
work we claim that, in a wide set of circumstances, a good approximation to the entropy
S(p) can be already obtained from the contributions of well-chosen clusters of small sizes,

S(p) 

∑


∈L

�S
(p). (30)

We will explain in Sect. 3.3 how the list of selected clusters, L, is established.

3.2 The Reference Entropy S0

So far we have explained how the entropy S(p) can be expanded as a sum of contribu-
tions �S
(p) attached to the clusters 
. In this section we present the expansion against a
reference entropy, S0(p), and two possible choices for the reference entropy.
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The idea underlying the introduction of a reference entropy is the following. Assume one
can calculate a (rough) approximation S0(p) to the true entropy S(p). Then, the difference
S(p) − S0(p) is smaller than S(p), and it makes sense to expand the former rather than
the latter. We expect, indeed, the cluster-entropies to be smaller when the reference entropy
S0(p) is substracted from the true entropy. We substitute the original definition (27) with the
new definition

S(p) = S0(p) +
∑


⊂(1,2,...,N)

�S
(p). (31)

With this new definition, the values of the cluster-entropies �S
 depend on the choice of S0;
the previous definition (27) is found back when S0 = 0. The procedure for the calculation
of the cluster-entropies �S
(p) is the same as in Sect. 3.1, upon replacement of S(p) with
S(p) − S0(p). The three properties of the cluster expansion listed above still hold.

Our final estimate for the entropy will be, compare to (30),

S(p) 
 S0(p) +
∑


∈L

�S
(p). (32)

Hence, the cluster expansion is a way to calculate a correction to the approximation S0 to
the true entropy S. Obviously, the introduction of a reference entropy is useful in practice
only if S0(p) can be quickly calculated for the entire system of size N . In other words, the
computational effort required to obtain S0 should scale only polynomially with N . A nat-
ural choice for the reference entropy is S0 = SMF (21), the mean-field entropy discussed in
Sect. 2.3. As the calculation of SMF requires the one of the determinant of the matrix M(p),
it can be performed in a time scaling as N3 only. In addition, we expect SMF to be a sensible
approximation to S for systems with rather weak interactions. Corrections coming from the
strongest interactions will be taken care of by the cluster expansion.

The above choice for S0 is supported by the diagrammatic expansion of the entropy S(p)

in powers of the connected correlations cij = pij − pipj (high-temperature expansion), see
Appendix B. The expansion is arranged as sum of diagrams over K spins, with K running
from 1 to N , weighted by the product of the correlations cij (elevated to a power �ij ≥ 1)
between its spins 1 ≤ i < j ≤ K . The main result is that SMF sums up the leading diagrams
for each K , that is, the diagram where each connected correlation appears once (�ij = 1 for
all i < j ). Removing S0 = SMF from S therefore makes the residual cluster-entropies �S


generally smaller than in the S0 = 0 case.
Regularized versions of the Mean Field entropy can be derived as follows. We use the

MF expression for the cross-entropy at fixed couplings Jkl and frequencies pi , see (7) and
[25], to rewrite

SIsing

({pi}, {Jkl}
) = −1

2
log det

(
Id − J ′) − 1

2
Trace

(
J ′ · M(p)

)

where J ′
kl = Jkl

√
pk(1 − pk)pl(1 − pl), (33)

M(p) is defined in (21), and Id denotes the N -dimensional identity matrix. The diagonal
elements of matrix J should be regarded as auxiliary variables. We consider first the L2-
norm regularization (13). The entropy at fixed data p is

S0(p, γ ) = min
{J ′

kl
}

[
−1

2
log det

(
Id − J ′) − 1

2
Trace

(
J ′ · M(p)

) + γ

4
Trace

((
J ′)2)

]
. (34)

The optimal interaction matrix J ′ is the root of the equation
(
Id − J ′)−1 − M(p) + γ J ′ = 0. (35)
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Hence, J ′ has the same eigenvectors as M(p), a consequence of the dependence on pi we
have chosen for the quadratic regularization term in (13). Let jq denote its qth eigenvalue,
and m̂q = (1 − jq)

−1. Then,

S0(p, γ ) = 1

2

N∑

q=1

(log m̂q + 1 − m̂q), (36)

where m̂q is the largest root of m̂2
q − m̂q(mq − γ ) = γ , and mq is the qth eigenvalue of

M(p). Note that m̂q = mq when γ = 0, as expected.
In the case of a L1-norm regularization, the entropy at fixed data p becomes

S0(p, γ ) = min
{J ′

kl
}

[
−1

2
log det

(
Id − J ′) − 1

2
Trace

(
J ′ · M(p)

) + γ
∑

k<l

∣∣J ′
kl

∣∣
]
. (37)

No analytical expression exists for the optimal J ′. However, it can be found in a polynomial
time using convex optimization techniques. The minimization of (37) is known in the statis-
tics literature as the estimate of the precision matrix with a constraint of sparsity. Several
numerical procedures to compute J ′ efficiently are available [14].

3.3 Adaptive Algorithm for the Inverse Ising Problem

We now present our algorithm for solving the inverse Ising problem. The combinatorial
explosion of the number of clusters over N sites impedes any brute force computation ap-
proach, as soon as N is larger than a few tens. Our algorithm follows an alternative approach,
in which only a few cluster entropies are computed, which we now briefly present. A more
thorough discussion and justification of the procedure will be given in Sect. 4.

Informally speaking the entropy of a cluster measures the contribution to the cross-
entropy, which could not be predicted from its sub-clusters taken separately. For instance,
�S(i,j) measures the change of entropy when imposing the correlation cij = pij − pipj be-
tween the spins i and j , in addition to imposing their average values pi and pj (Sect. 3.1).
We expect that large cluster-entropies are associated to clusters of strongly interacting vari-
ables. Loosely speaking, ranking the entropies according to their magnitude allows us to
progressively unveil the interaction network. In practice, we discard all cluster-entropies
smaller than a threshold . Relevant clusters, i.e. with an entropy larger than  are built up
through a recursive and selective procedure we present below.

3.3.1 Procedure to Construct and Select Clusters

The construction procedure is based on the principle that clusters with large entropies corre-
spond to neighborhoods on the interaction network to be inferred. Suppose that two clusters

 and 
′ have both large entropies, and share most of their spins. Then, the union 
 ∪ 
′
is a good candidate for a bigger cluster. If the entropy of the union cluster is large, a new
part of the interaction network will be unveiled. Conversely, if it is small, no new interaction
path with respect to the one discovered from 
 and 
′ separately exists. Hence, combining
strongly overlapping clusters should allow us to progressively deepen our knowledge of the
local structure of the interaction graph.

The above heuristics is formalized as follows:

A1. Initial step: build the list of all clusters of size one: L1 = {(i): i = 1,2, . . . ,N}. All the
other lists LK for K ≥ 2 are empty.
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A2. Iteration: assume the current size of clusters is K ≥ 1, i.e. LK is not empty while LK+1

is empty. For every pair 
1,
2 in LK :

A21. Construction: build 
 = 
1 ∪ 
2

A22. Selection: if 
 is of size K + 1 and if |�S
(p)| ≥ , then select 
 and add it to
LK+1.

A3. Recursion: if at least one cluster has been selected, then add 1 to K , and go to step 2
to pursue the construction process. If no cluster has been selected, the construction
process is over.

The first condition in A22 is about the size of 
. The union of two clusters of size K has
size K +1 if and only if they have exactly K −1 common spins. 
1 = (i1, i2 . . . iK−1, x) and

2 = (i1, i2, . . . , iK−1, y) can be merged into 
 = (i1, i2, . . . , iK−1, x, y); the ordering of x,
y, and of the il’s is irrelevant here.

3.3.2 Calculation of �S
(p)

Step A22 requires the calculation of the cluster-entropy �S
(p) for each selected cluster 


(of size K). In order to do so we make use of the formula

�S
(p) = S
(p) − (S0)
(p) −
∑


′⊂

(
′ �=
)

�S
′(p), (38)

which can be easily deduced from (27). The procedure is as follows:

B1. calculate the subset-entropy S
(p) through the minimization of SIsing(J|p) (7) with re-
spect to the fields and couplings. The partition function Z[J] is computed as the sum
over the 2K configurations of the spins in 
.

B2. substract the reference entropy (S0)
(p). For the mean-field reference entropy,
(S0)
(p) = 1

2 log detM
(p), according to formula (21); M
(p) is the K ×K restriction
of matrix M(p) to the indices i1, i2, . . . , iK in 
. In presence of a regularization term
(13) Eq. (36) has to be used instead of (21) to calculate (S0)
(p).

B3. Substract the entropies �S
′(p) of all the sub-clusters 
′ of size K ′ < K , included in 
.

The last step (B3) assumes that the entropies of all the sub-clusters of 
 are known, i.e.
have been computed at a previous step in the algorithm. This is true for K ′ = 2, but not
necessarily so for K ′ ≥ 3. To circumvent this difficulty we maintain at all times during the
execution of the algorithm the list Lall of all the clusters and of their entropies calculated so
far; Lall is a larger list than the one of the selected clusters (union of all LK ). The procedure
to compute �S
(p) is then:

B0. build the list L̂ of all the sub-clusters 
′ in 
 not already present in Lall. For each

′ ∈ L̂, starting from the smallest sub-cluster and ending up with the largest one, run
steps B1, B2, B3 to obtain �S
′(p), and add 
′ and its entropy to the list Lall.

The ordering of L̂ ensures that all the sub-clusters of 
′ required to calculated its entropy
are in Lall when step B3 is executed.

3.3.3 Calculation of the Cross-Entropy, Couplings and Fields

Once the construction process is finished, the list Lsel = L1 ∪ L2 ∪ L3 ∪ · · · ∪ LKmax of all
selected clusters is available. Here, Kmax is the size of the largest cluster selected by the
construction procedure. We then
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C1. estimate the cross-entropy through

S(p) = S0(p) +
∑


∈Lsel

�S
(p). (39)

Next we need to estimate the values of the fields and of the couplings, solution to the in-
verse Ising problem. One possibility would be to use recursion relations similar to (38) for
�hi,
(p) and �Jij,
(p), that is, the contributions to, respectively, the field hi and the cou-
pling Jij coming from the cluster 
. Next we could sum up those contributions over the
clusters included in Lsel. However, to save memory space, it is possible to resort to the
following, alternative procedure:

C2. define the ‘multiplicities’ m
 of the subsets 
 through:

C21. let Lsub be the list of all clusters in Lsel and of all their subsets. Initialize m
 = 0
for every 
 ∈ Lsub.

C22. for each 
 ∈ Lsel, and for each 
′ ⊂ 
, add (−1)K−K ′
(see (29)) to m
′ , where

K,K ′ are the sizes of, respectively, 
,
′. The sub-clusters 
′ = 
 must be taken
into account in the addition process.

C3. estimate the fields and the couplings through

hi(p) = (h0)i(p) +
∑


∈Lsub: (i)⊂


m


(
hi,
(p) − (h0)i,
(p)

)
,

Jij (p) = (J0)ij (p) +
∑


∈Lsub: (i,j)⊂


m


(
Jij,
(p) − (J0)ij,
(p)

)
.

(40)

The fields hi,
 and the couplings Jij,
 in step C3 above are the ones obtained through the
minimization of SIsing(J|p) over J = {hi,
, Jij,
} in step B1. The fields (h0)i and the cou-
plings (J0)ij are (minus) the derivatives of the reference entropy S0(p) with respect to pi

and pij , see formulas (22). The fields (h0)i,
 and the couplings (J0)ij,
 are their counter-
parts for the subset 
 only, i.e. the derivatives of (S0)
(p); their expressions are given by
(22) again, upon substitution of the N × N matrix M(p) with the K × K matrix M
(p)

restricted to the K elements of 
 only.

3.3.4 Pseudo-Code of the Algorithm

We now give the pseudo-code useful for the implementation of the procedures above. To
improve the readability the code is broken into several parts.

We start with Algorithm 1, which computes the cross-entropy and the reference entropy
for a subset 
. The energy function HIsing is defined in (6). The minimization over J can be
done using standard numerical algorithms for convex functions. A speed-up is generally ob-
tained when we start with JMF , the value of the interaction parameters obtained from the MF
approximation (22), as an initial guess for the value of J [45]. In the absence of regulariza-
tion, the parameter γ is set to 0; the reference entropy S0 can also be chosen at convenience,
e.g. S0 = 0 or S0 = SMF . It is straightforward to change the pseudo-code to introduce the
L1-regularization instead of the L2-norm, see formulas (14). Then, Algorithm 2 calculates
the entropy �S
 of the cluster 
 and maintains the list Lall of all cluster-entropies computed
so far. It calls Algorithm 1 as a subroutine. Algorithm 3 is the core part of the procedure,
which produces the list of selected clusters. Finally, Algorithm 4 calculates the estimates for
the total cross-entropy, and for the interaction parameters once the list of selected clusters
Lsel has been obtained. It requires Algorithms 1 and 2; the function (SIsing)
 and the matrix
M
 are defined in the pseudo-code of Algorithm 1.
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Algorithm 1 Computation of entropy S
(p) − (S0)
(p)

Require: 
 (of size K), data p, regularization parameter γ

Computation of S
:
Define (SIsing)
[J|p] ← log(

∑
σ∈{0,1}K exp(−HIsing[σ |J])) − ∑

i∈
 hipi

− ∑
i<j∈
 Jijpij + γ

∑
i<j J 2

ijpi(1 − pi)pj (1 − pj ), where

J = {hi, Jij } is of dimension 1
2K(K + 1).

S
(p) ← minJ (SIsing)
[J|p]

Computation of (S0)
:
M
 ← K × K matrix with elements (M
)ij = pij −pipj√

pi (1−pi )pj (1−pj )
with i, j ∈ 


(S0)
(p) ← 1
2 log det M
 if γ = 0, or use formula (36) if γ > 0.

Output: S
(p) − (S0)
(p)

Algorithm 2 Computation of cluster-entropy �S
(p)

Require: 
 (of size K), data p, list Lall = {
′,�S
′(p)} of known cluster-entropies.

L̂ ← {
′: 
′ ⊂ 
 and 
′ /∈ Lall} (ordered in increasing sizes)
for 
′ ∈ L̂ do

�S
′(p) ← S
(p) − (S0)
(p) − ∑

′′⊂
′

(
′′ �=
′)
�S
′′(p) using list Lall of cluster-entropies

calculated so far
update Lall ← Lall U {
′,�S
′(p)}

end for

Output: �S
(p) and Lall

Algorithm 3 Adaptive cluster algorithm for the inverse Ising problem
Require: data p, threshold 

L1 ← {(i): i = 1,2, . . . ,N}
Lsel ← ∅
K ← 1

while LK is not empty
Lsel ← Lsel U LK

K ← K + 1
LK ← ∅
for 
1,
2 ∈ LK−1 do


 ← 
1 ∪ 
2

if 
 is of size K and if |�S
(p)| > , then LK ← LK U 


end for
end while

Output: list Lsel of selected clusters
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Algorithm 4 Estimates for the cross-entropy and for the interaction parameters
Require: data p, list Lsel of selected clusters

Computation of cross-entropy S:
compute S0(p) using formula (21) or (36)
S
(p) ← S0(p) + ∑


∈Lsel
�S
(p)

Computation of fields and couplings J = {hi, Jij }:
compute {(h0)i(p), (J0)ij (p)} using formula (22)
Lsub ← {
′ ⊂ 
: 
 ∈ Lsel}
for 
′ ∈ Lsub do

m
′ = ∑

∈Lsel: 
′⊂
(−1)|
|−|
′ |, where |
|, |
′| are the sizes of 
,
′.

{hi(p), Jij (p)} ← arg minJ (SIsing)
[J|p]
compute {(h0)i,
(p), (J0)ij,
(p)} using formula (22), with M
 replac-

ing M .
end for
compute {hi(p), Jij (p)} using formula (40)

Output: S(p), {hi(p), Jij (p)}

4 Properties of the Cluster-Entropies and of Their Truncated Sum

Hereafter we discuss the properties of the cluster-entropies and study the behavior of their
sum in the presence of a truncation scheme, which consists in discarding all clusters with
entropies smaller than a threshold . We explain why this scheme is efficient, in particular
in the presence of sampling noise, and robust against strong correlations in the data (large
correlation length). The behavior of the expansion as a function of the threshold is discussed.
The one-dimensional Ising model, for which analytical calculations can be exactly carried
out, is used to illustrate the various properties throughout the discussion.

4.1 Dependence of the Cluster Entropy on the Cluster Size and on the Interaction Path
Length

To reach a better understanding of what the cluster-entropy means, we consider the case of
finite-dimensional Ising model, e.g. with coupling J > 0 between nearest-neighbors on a
D-dimensional lattice. We call ξ the correlation length: the connected correlation c between
two sites at large distance d decays as ∼ exp(−d/ξ). We want to characterize the behavior
of the cluster-entropy �S
 when the K sites in the cluster 
 are far apart on the lattice.
We first choose no reference entropy (S0 = 0). We look for the shortest closed path joining
all the sites in 
; let L(
) be this contour length, that is, the sum of the distances between
neighboring sites along the path (Fig. 3). Then, according to the small-correlation expansion
of Appendix B, the largest contribution (in absolute value) to the cluster entropy is

�S
 
 A(p,K)(−1)K−1 exp
(−L(
)/ξ

)
, (41)

where A is a positive function K and of p, the representative value of the frequencies pi of
the variables in 
. We conclude that the sign of the cluster-entropy depends on the parity of
the number of sites. Furthermore, �S
 decreases exponentially fast (in absolute value) with
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Fig. 3 Examples of contour paths for three different graphs. Spins are labelled by 1, 2, 3, 4 and first-neighbor
interactions are represented by bold lines. The contour path is depicted with a dotted line. The contour length
L, which can be calculated as the sum of distances along the contour path (dotted arcs have length 2) is
indicated above each graph. Different clusters may have the same contour path and contour length. Left: (1,3)

and (1,2,3) have contour length L = 4, while (1,2) has L = 2. Middle: clusters (1,3), (1,2,3), (1,2,3,4),
(1,3,4) have the same contour path. Right: (1,2,3,4) has length L = 6

the length of the shortest path joining the sites in the cluster. As soon as one site is very far
away from the remaining K − 1 ones, the cluster-entropy is small.

As a consequence, the sum (27) is alternate, and we expect cancellation between
contributions coming from clusters sharing the same shortest path, but with different
sizes. This crucial point is perfectly illustrated by the one-dimensional Ising model.
The correlation between two sites at distance dij = j − i is, in one dimension, cij =√

pi(1 − pi)pj (1 − pj ) exp(−dij /ξ) (Appendix C). The matrix M defined in (21) has ele-
ments

Mij = e−dij /ξ . (42)

An exact calculation, reported in Appendix C, shows that

�S(i1,i2,...,iK ) = (−1)KF

(
exp

(
− ik − i1

ξ

))
, (43)

where F is a smooth function given in (C.11), such that F(0) = F ′(0) = 0,F ′′(0) = −1.
This identity is in agreement with (41), since the shortest path encircling all sites has
length L(
 = (i1, i2, . . . , ik)) = 2(iK − i1). Hence, all clusters sharing the same ‘extrem-
ities’, i.e. the same values of i1 and iK , have the same entropies in absolute value. The
sign is determined by the parity of K as mentioned above. Let iK − i1 ≡ d . 
 = (i1, iK) is
the unique cluster of size K = 2 having its ‘extremities’ equal to i1 and iK ; its entropy is
�S∗

(i1,iK ) = F(exp(−d/ξ)). There is (d − 1) clusters of size K = 3 with the same extremi-

ties, each having an entropy equal to −�S∗
(i1,iK ). More generally, there are

(
d−1
K−2

)
clusters of

size K with the same extremities, each having an entropy equal to (−1)K−2�S∗
(i1,iK ). The

total contribution to the entropy of all those clusters (at fixed extremities i1, ik) is

�Sfixed i1,ik =
d+1∑

K=2

(−1)K−2

(
d − 1

K − 2

)
�S∗

(i1,iK ) = (1 − 1)d−1�S∗
(i1,iK )

=
{

�S∗
(i1,iK ) if d = 1,

0 if d ≥ 2.
(44)

The above calculation nicely exemplifies the cancellation of cluster-entropies. The contri-
butions of all clusters sharing the same extremities exactly compensate each other, unless
those extremities are nearest-neighbors on the lattice. We show in Appendix C that this exact
cancellation is a consequence of the existence of a unique interaction path along the unidi-
mensional chain. As a result, in dimension D = 1, the cross-entropy S is simply the sum of
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Fig. 4 Cluster entropy contribution �S
 for a 3 × 3 grid (top-right) with nearest-neighbor couplings
J = 1.777 (in units of kBT ) as a function of the contour length L
 of the shortest closed path on the lattice
joining the spins in 
. To illustrate cancellation effects, some �S
 are labelled with the indices in 
, see
main text. The values of J and of the fields hi = − 1

2
∑

j (�=i) Jij
4 are chosen to make the system critical in

the infinite grid size limit, see Sect. 5.3

the entropies of the single-site (23) and of nearest-neighbor (26) clusters, in agreement with
the findings of [46].

In the presence of a reference entropy, S0 = SMF , the asymptotic scaling of the cluster-
entropy with its contour length L changes, as the dominant contribution coming from loop
diagrams is removed from the cluster expansion and absorbed into S0. The subleading con-
tribution to the cluster-entropies is depicted in bold in Fig. 26 and derived in Appendix D.
In dimension D = 1, formula (41) is replaced with

�S(i1,i2,...,iK ) = A′(p,K)(−1)K−1 exp
(−3(ik − i1)/ξ

)
. (45)

Note the sharper asymptotics decay with the distance between the extremities of 
 than
in the absence of reference entropy. As expected, the terms in the expansion of S − S0 are
smaller than the one in the expansion of S alone. Remarkably, the exact cancellation property
studied above also holds when the reference entropy is non-zero, as proven in Appendix C.

In dimension D = 2 or higher, more than one interaction path connect any two spins,
and cluster-entropies with the same contour path do not cancel exactly as in the D = 1
case. However, partial cancellations are present. Figure 4 shows the values of the cluster-
entropies versus the length of the shortest path, L(
), for a small bidimensional 3×3 grid
with uniform couplings. For such a small system all data p and cluster-entropies �S
 (with
up to K = 9 spins) can be calculated by exact enumeration methods. We observe that:

4In the present work where spins are equal to 0,1, the couplings (Jij ) and fields (hi ) are the one’s in spin

0,1 (Ĵij , ĥi ) by the transformation: Jij = 4Ĵi,j and hi = − 1
2

∑
j �=i Jij + ĥi . The numerical experiments of

[17] where done with ±1 spins.
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Fig. 5 Effect of truncation on
the bidimensional 3×3 grid with
J = 1.777 (units of kBT ) and
fields hi = −∑

j (�=i) Jij see
footnote 4, for these parameters
values the model has a phase
transition between the
paramagnetic and ferromagnetic
phase and therefore the
correlation length is proportional
to the linear size of the system.
Top: difference between the
truncated and the true
cross-entropies as a function of
the cut-off on the absolute
cluster-entropies, . Bottom:
contour lengths L(
) vs. . The
fluctuations of S() − S reflect
the cancellation phenomenon.
Summation of the 12 clusters of
nearest-neighbors with K = 2
and L = 2 gives
S( = 0.1) − S 
 0.01, of the 21
clusters contributions
corresponding to squared paths,
e.g. 1-2-4-5, with K = 2,3,4 and
L = 4 gives
S( = 0.002) − S 
 10−6.
Fluctuations arise if only a part of
the clusters that share the same
interaction path are summed up,
and cancellation is incomplete.
For instance, fixing  = 0.0025
discards (1,2,4,5), which has
the same interaction path as (2,4)

• |�S
| is sensitive to the value of L
 more than to the size K of the cluster;
• |�S
| rapidly decreases with L
 ;
• the values of the cluster-entropies reflect the structural properties of the lattice, e.g. clus-

ters made of central sites, such as 4-5, have a larger entropy than the clusters including
pairs of edge spins, such as 1-2;

• the sign of �S
 changes with the parity of the size of the cluster.

As a result, the contributions to the entropies coming from the clusters sharing the same
path, of length L, partially cancel each other. Consider for example the path 1-2-4-5 of
length L = 4; all 7 clusters that share this path have similar |�S|, ranging between 0.0024
and 0.0046, and so does their sum, �S(2,4) + �S(1,5) + �S(2,4,5) + �S(1,4,5) + �S(1,2,5) +
�S(1,2,4) + �S(1,2,4,5) = −0.00242.5 The sum of the entropies of the clusters sharing the
same path is generally of the same order of magnitude as, or even smaller than the single
contributions. Figure 5 shows that the sum of the 12 clusters of contour length L = 2 and of
the 4 square-path contributions (|�S| ≥ 0.0024) approximates the entropy within 10−6.

5A further theoretical argument supporting the existence of the cancellation property is, in the case of perfect

sampling, the fact that the entropy S must be extensive in N . As S is the sum of ∼ 2N cluster entropies, those
contributions must compensate each other.
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4.2 Schemes for Truncating the Expansion in the Noiseless Case

Expansion (27) for S(p) includes 2N − 1 terms, and is useless unless an accurate truncation
scheme is available. As the cluster-entropies may be either negative or positive the values
of the truncated (partial) sums may however strongly vary depending on the clusters they
include. A naive truncation consists in keeping the contributions from the clusters with ≤K

spins, where K is an arbitrary size. This procedure was applied to neurobiological data (with
N ≤ 40, K = 7) in [11], which are characterized by large negative fields. However it suffers
from two drawbacks. First, the combinatorial growth of the number of clusters with N and
K impedes its application to very large systems. Secondly, the truncation does not converge
properly with increasing K if the correlation length of the system is large.

As an illustration, consider again the 1D-ferromagnetic Ising model, with correlation
length ξ . The sign of �S
 alternates with the parity of the size K of 
; its modulus decays
asymptotically as exp(−�d/ξ), where d is the maximal distance between any two spins
in 
 (Sect. 4.1), and � = 2 if there is no reference entropy (S0 = 0), � = 3 if S0 = SMF . Let
�S(K) be the sum of �S
 over all the clusters 
 with K spins. In the thermodynamic limit
(N → ∞),

1

N
�S(K) ∼ (−1)K−1

∑

d≥K−1

(
d − 1

K − 2

)
exp(−�d/ξ) = (−1)K−1

(exp(�/ξ) − 1)K−1
. (46)

Consider then the series summing all 1
N

�S(K) with K ≥ 2. The series is convergent if ξ <

ξc = �
log 2 , and divergent when ξ > ξc . In the latter case, for a finite-N system, the maximum

of |�S(K)| is exponentially large in N , and is reached in K 
 N
2 . As a consequence, for

ξ > ξc , the sum (27) can not be truncated according to the size of the clusters. This result is
not specific to the dimension unity, and holds for other interaction networks. The expansion
of S(p) defines an alternate series, and the order of its terms matters for its convergence
in the N → ∞ limit. For an Ising model on a generic lattice with fixed degree (number
of neighbors) v, the largest value of ξ such that the series (27) (after division by N ) is
absolutely convergent in the N → ∞ limit is ξc = �

logv
(Appendix E).

A better truncation scheme consists in keeping cluster-entropies larger than a threshold
 only. Let us define

S(p,) =
∑


⊂(1,2,...,N)
|�S
(p)|>

�S
(p). (47)

The rationale is that, due to the properties of the cluster entropies and to the cancellation
mechanism exposed in Sect. 4.1, summing large cluster-entropies may provide a good ap-
proximation to the true value of S(p). In the D = 1 Ising model case, the exact value of
S(p) is, indeed, obtained as soon as  < �S(1,2). We show in Fig. 5 the residual error in
the cross-entropy due to the truncation as a function of the threshold  for the same small
D = 2 grid as in Fig. 4. The error S(p,) − S(p) is very small, and equal to 10−6 when all
clusters with contour length smaller than 4 are taken into account. As  is made smaller,
clusters with larger contour lengths are summed up, and the error reaches the numerical ac-
curacy ∼ 10−14. On top of this trend, positive fluctuations, corresponding to larger errors,
arise when not all the clusters with the same interaction path (and length L) are summed
up, and the cancellation of those contributions is not effective (Fig. 5 and caption). We will
study in more details this phenomenon in Sect. 4.5.

We now explain why the presence of noise in the data provides a compelling argument
supporting the introduction of the cut-off .
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Fig. 6 Histograms of �S(i,j,k)
for the 1D-Ising (full
distributions, p = 0.02, ξ = 1)
and Independent Spin (dotted
distribution) models, with
N = 50 spins. Each histogram
correspond to one random
sample of B configurations.
Impulses show the histogram for
perfect sampling (B = ∞), with
Dirac peaks located at

log |�S
 | = − 3d

ξ + Cst. The

cut-off at small entropies comes
from the finite value of N

4.3 Distribution of Small Cluster-Entropies in the Presence of Noisy Data

In this section, we investigate how limited sampling affects the values of the cluster-
entropies. We assume that B configurations σ τ are sampled from the Gibbs distribution
of an Ising model with interaction parameters J using a Monte Carlo procedure to generate
the data p.

4.3.1 Universality at Small |�S|: Numerical Evidence

The empirical correlations, cij = pij − pipj , differ from the Gibbs correlations, 〈σiσj 〉J −
〈σi〉J〈σj 〉J, by random fluctuations of amplitude

cB 
 p(1 − p)√
B

, (48)

where p is the typical value of the pi . For pairs i, j with weak Gibbs correlations (< cB

in absolute value), the experimental correlations are dominated by the noise. As a conse-
quence, the distribution of the cluster-entropies is universal for small �S. Its structure is a
consequence of the noise in the data, and not of the interaction network of the model used
to generate the data.

Figure 6 shows the histograms H (full distributions) of the entropies �S(i,j,k) for the
K = 3-clusters for a one-dimensional Ising model, for three values of the numbers B of
sampled configurations. The histograms are made of two components: a bell-shaped distri-
bution at small |�S|, and isolated peaks at larger |�S|. The cluster-entropies corresponding
to the isolated peaks have the same values as in the perfect sampling case (B = ∞, im-
pulses). When B increases, the bell shapes move towards smaller entropies (in the log-scale
of Fig. 6), and more peaks are unveiled in H .

We show also in Fig. 6 the histograms HIS for a system of Independent Spins (IS), with
the same pi ’s as the original system, and the same number B of sampled configurations.
Contrary to H , HIS does not exhibit isolated peaks at well-defined, B-independent cluster-
entropies. The histograms HIS concentrate around smaller |�S| as the number B of configu-
rations increases. Note that the histograms HIS roughly correspond to the bell-shape parts of
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the distributions H for the same value of B . We have checked that these features are largely
independent of the particular sample and of the cluster size, K .

The histograms HIS depend on B through their standard deviation, σIS(B). The calcula-
tion of σIS(B) from the dominant contribution (D.7) in the diagrammatic expansion of the
cluster entropies (Appendix B) is presented in Appendix F. We obtain that, for clusters of
size K and in the case of uniform averages pi = p different from 0, 1

2 , and 1.6

σIS(B) 

√

3KK!
8

(2p − 1)2

p(1 − p)

(
1

B

)K− 1
2

. (49)

The small-entropy regions of the histograms H obtained for different B collapse onto each
other once rescaled by σIS(B), see Fig. 2 in [9] (same data as Fig. 6; σIS(B) was denoted by
�IS(B) in [9]). As expected, the rescaled H coincide with HIS in the small |�S| ≤ σIS(B)

region, which concentrates most of the distribution. The universality of the distribution at
small �S is not specific to the one-dimensional Ising model, but holds, in the thermody-
namic limit, for all interacting spin systems when the measured connected correlations are
corrupted by noise. For a finite system in dimension D with correlation length ξ , we expect
that the small-�S is universal when N > �D , where � = ξ log(1/cB). Indeed, the number of
large cij coming out of the noisy background is ≈ N�D , while, for most of the

(
N

2

)
pairs of

spins i, j , the connected correlations have random values of amplitude cB .
The full distribution HIS can be characterized analytically in the N → ∞ limit. Details

can be found in Appendix F. We find the following scalings, depending on the value of the
cluster size, K :

HIS(�S) ∼ 1

|�S|2/3
for K = 2,

(− log�S)K−2

√|�S| for K ≥ 3
(|�S| → 0

)
,

∼ exp
(−C2(B)|�S|2/(2K−1)

(
1 + o(1)

))
for every K ≥ 2

(
large |�S|),

(50)

where C2(B) = 2 × 3(K−1)/(2K−1)K(2K−3)/(2K−1)/(2K − 1)2(σ�S)
−2/(2K−1) is proportional

to B , see Appendix F and Eq. (F.15). The distribution is therefore characterized by a diver-
gence at the origin, and stretched exponential tails. The scalings above were derived with
the choice S0 = SMF ; in the absence of the reference entropy, the stretched exponential has
exponent 2

K
instead of 2

2K−1 .

4.3.2 Finite-N Effects and Lower Bound to the Threshold 

The discussion about the localized peaks and the bell-shape distribution in HIS in the pre-
vious section is an oversimplification. In reality, for finite systems, large fluctuations of the
sampled correlations take place, and no clear-cut boundary exist between cluster-entropies
due to the noise and the ones deriving from the interaction network. From extreme value
theory [40], the largest value of the correlations are of the order of cMAX

ij = cB

√
4 logN .

Therefore, the largest cluster-entropy is, according to (D.7), of the order of

�Smax ≈ (4 logN)(2K−1)/2σIS. (51)

6If p = 1
2 , �SIS is of the order of B−K .
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Fig. 7 (a) Number M of clusters (i, j, k) with |�S(i,j,k | >  as a function of the threshold , for one

realization of B = 106 configurations (N = 40 independent spins with p = 0.0248). The theoretical values
for the threshold, (2) = 5 · 10−14, (1) = 1.3 · 10−12, (0) = 5.5 · 10−12, corresponding to, respectively,
M = N2,N,1, are shown. (b) Number of clusters as a function of their entropy �S. Same data as in (a), on
a smaller entropy scale

A more detailed calculation to estimate where this fuzzy boundary between the signal
and the noise in the entropy distribution takes place is presented below. Let MK() be the
average number of clusters of size K with entropies |�S| > . According to (50),

M() =
(

N

K

)∫



d(�S)HIS(�S)


 exp
(−C2(B)2/(2K−1)

) (2K − 1)NK(2K−3)/(2K−1)

2K!C2(B)
, (52)

for large  and N (compared to K). The value of the threshold  such that M() = Nα ,
with α < K , is, to the leading order in N ,

(α) 

(

K − α

C2(B)
logN

)K− 1
2

. (53)

In particular, using the formula above for α = 0, it is likely that no cluster have entropy
larger than (0), in agreement with (51).

We have tested formula (53) through a computation based of a system of N = 40 Inde-
pendent Spins, with uniform mean p = 0.0248; these parameters were chosen to mimick
real data described in [2, 3]. Figure 7(a) shows the number of clusters with entropies larger
than  in absolute value, for a random set of B = 106 configurations (K = 3). The theo-
retical predictions based on (53) are in very good agreement with the simulations. The vast
majority of clusters have entropies smaller than, say, (2). On a smaller entropy scale, the
histogram HIS of the small cluster entropies is strongly concentrated around zero as pre-
dicted in 50 (Fig. 7(b)).

As a conclusion, due to the sampling noise, most small cluster-entropies are random
quantities, and provide no information about the underlying interactions parameters. Impos-
ing a threshold  allows one to remove these artifact contributions. A lower bound to the
value of  is given by (53), with, say α = 1 or 2. In practice, we will see that higher values
of  may be sufficient for an accurate solution of the inverse Ising problem.
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4.4 Properties of the Susceptibility Matrix and of Its Inverse

We now present a theoretical argument suggesting that the truncation scheme we have intro-
duced is robust against an increase of the correlation length of the system. More precisely,
the maximal size of the clusters to be summed up to reach an accurate solution of the inverse
problem is not directly related to the correlation length, but rather depends on the structure
of the interaction graph.

The susceptibility matrix χ (10) characterizes how the observables of the Ising model,
such as the averages and correlations in p, are modified in response to an infinitesimal
change in one or more interaction parameters in J. As far as the inverse Ising problem is
concerned, it is more natural to ask the following question. Assume the inverse problem has
been solved for a set of data p and the corresponding interactions J have been found. Now
imagine that the data are slightly changed, p → p + δp. How large will be the resulting
change δJ in the interactions? The response function characterizing the inverse problem,

δJ
δp

= −∂2S(p)

∂p∂p
= χ−1, (54)

is simply the inverse of the susceptibility matrix χ . Whether the inverse problem is well-
behaved or not will therefore depend on the properties of χ−1. In particular, it will depend
on the largest eigenvalues of χ−1 and on the structure of the corresponding eigenvectors.

A quantity which is closely related to (54) in liquid theory is the Ornstein-Zernike direct
correlation function. The direct correlation is widely believed to be short-ranged, as the in-
teraction potential [47]. This property is used in closure schemes such as the Percus-Yevick
scheme to obtain the equation of state [43]. We discuss below in details the property of the
inverse susceptibility matrix in the case of the spherical model and of the unidimensional
Ising model.

4.4.1 Case of Perfect Sampling: Properties of χ and χ−1

Consider first the O(m) model, where each site i = 1,2, . . . ,N carries a m-dimensional
real-valued spin vector σ i = (σ 1

i , σ 2
i , . . . , σm

i ), of norm
√

m. As usual, two spins, say, i and
j , are coupled through the dot product of their spin vectors, −Jijσ i · σ j (units of kBT ).
Hence the interaction Jij couples the same component (α) of the spins in the pair i, j . The
fields hα

i , with α = 1,2, . . . ,m, are chosen to vanish for simplicity. In the large-m limit the
model can be exactly solved [42]. The cross-entropy is equal to

S(p) = m

2
log det p̂ + O(logm), (55)

where p̂ is the N × N matrix with diagonal elements p̂ii = 1 and off-diagonal elements p̂ij ,
equal to the average of the product of the components α of spins i and j . The elements of
the inverse susceptibility matrix are obtained by differentiating S(p) twice with respect to p̂,

(
χ−1

)
kl,k′l′ = 1

2
(Jk,k′Jl,l′ + Jk,l′Jl,k′). (56)

Hence, the inverse susceptibility has the same structure as the interaction graph. In particular,
if the coupling matrix J is sparse (has many zero elements), so is χ−1. On the contrary, the
susceptibility matrix χ is generally not sparse.

The observation above is not specific to spherical spins. Consider now the D-dimensional
Ising model with σi = 0,1 spins on a hypercubic lattice, with nearest neighbor interactions



278 S. Cocco, R. Monasson

Jij . In the D = 1 case the susceptibility matrix (top right corner in matrix (10)) is non-
zero for all i, i ′: χi,i ∝ x |i−i′|, where the proportionality constant does not depend on i, i ′,
and x = exp(−1/ξ). The inverse susceptibility matrix is a tridiagonal matrix [44]: the only
non-zero elements are

(
χ−1

)
ii

= 1 + x2

1 − x2
and

(
χ−1

)
i,i±1

= − x

1 − x2
. (57)

As in the spherical model, the structure of the inverse susceptibility matrix is the same as
the one of the interaction matrix. In dimension D ≥ 2 the inverse susceptibility matrix is
not, strictly speaking, sparse. However it exhibits a much faster decay with the distance
r = |i − i ′| than the susceptibility itself.7 At the critical point, the latter decays as χ(r) ∼
r−(D−2+η), where the critical exponent attached to the decay of the spin-spin correlation,
η, vanishes in dimension D ≥ 4, and is positive and small in dimension D ≤ 3, i.e. η = 1

4
for D = 2. The inverse susceptibility is the Laplacian in dimension D ≥ 4, a purely local
operator, and decays as χ−1(r) ∼ r−(D+2−η) for D ≤ 3. While both quantities decrease as
power laws in r , the inverse susceptibility has a much sharper decay than the susceptibility
itself. In particular, the integrated contribution to the susceptibility coming from distances
larger than R,

∫ ∞

R

dDrχ(r) = R1−η, (58)

diverges when R → ∞, while the same quantity calculated for the inverse susceptibility,
∫ ∞

R

dDrχ−1(r) = 1

R3−η
, (59)

tends to zero as R → ∞. This fact is a good news for the inverse problem. According to
(54) the error on the field hi done when discarding all the spins at distance R > ε−1/(3−η)

is of the order of ε only. In this regard, the inverse Ising problem remains local even at the
critical point.

While the discussion above is related to the response of a field hi to a change in the av-
erage pi′ of spin i ′, the response of a coupling Jkl following a modification of the 2-point
average pk′l′ , see (10), is also of interest. Unfortunately, to our best knowledge, this quantity
has not been studied in the case of the Ising model so far. As a first step, we focus here on the
D = 1-Ising model with uniform nearest-neighbor interactions, and in the thermodynami-
cal limit (N → ∞). The four-spin connected correlation function is, up to a p-dependent
multiplicative constant, equal to

χij,kl = xi4−i3+i2−i1 − xj−i+k−l , (60)

where i1 ≤ i2 ≤ i3 ≤ i4 are the same indices as i, j, k, l but sorted in increasing order, and
x = exp(−1/ξ) < 1. We show in Appendix G that the inverse susceptibility matrix is given

7This statement is widely believed to be true in the theory of liquids literature. The fast decay of the inverse

susceptibility, χ−1(r), or, equivalently, of the direct pair correlation, g(r), is used to approximately close the
hierarchy of correlation functions. The Percus-Yevik closure scheme, which gives an accurate equation of
state for liquids of hard spheres, assumes that the inverse susceptibility vanishes above the interaction range
of the potential (diameter of a particle).
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Fig. 8 Fraction of elements larger than 10−7 (in absolute value) for the susceptibility χ (a) and the inverse
susceptibility χ−1 (b) matrices vs. strength J of the nearest-neighbor coupling. The sizes N of the grids
are indicated. Data were obtained from exact numerations for sizes 3 × 3, 4 × 4, 5 × 5 (perfect sampling,
black) and from Monte Carlo simulations for all sizes (one realization of B = 4500 configurations, red/gray).
Periodic boundary conditions were used

by

(
χ−1

)
ij,kl

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1+x2)2

(1−x2)2 if i = k, j = l and j ≥ i + 2,

1+x2+x4

(1−x2)2 if i = k, j = l and j = i + 1,

− x(1+x2)

(1−x2)2 if i = k ± 1, j = l or i = k, j = l ± 1,

x2

(1−x2)2 if i = k ± 1, j = l ± 1,

0 otherwise.

(61)

Hence, the inverse susceptibility matrix is sparse, with at most 9 non-zero elements per
line, while the dimension of the matrix is 1

2N(N − 1) → ∞. In dimension D ≥ 2, we do not
expect χ−1 to be sparse. However we conjecture that (χ−1)ij,kl decays quickly with the min-
imal distance between the four points i, j, k, l (each index, e.g. j , is now a D-dimensional
vector).

4.4.2 Influence of the Sampling Noise on the Norms of χ and χ−1

To corroborate this statement we have carried out exact numerical analysis of small bidimen-
sional grids (Sect. 4.1). We show in Fig. 8(a) the fraction of elements χij,kl of the suscep-
tibility matrix larger than ε = 10−7 in absolute value (the largest elements have magnitude
∼ 1). This fraction is closed to 1 for all the values J of the coupling we have studied. As
expected, the inverse susceptibility matrix has many more small elements (Fig. 8(b)). In ad-
dition, the fraction of entries in χ−1 smaller than ε seem to increase with the size N of the
grid.

In the presence of noise in the sampling process the inverse matrix χ−1 loses its quasi-
sparse structure. More precisely, for the number B of sampled configurations chosen in
Fig. 8(b), all the elements (χ−1)ij,kl are larger than ε in absolute value. Indeed, the quasi-
sparsity χ−1 in the perfect sampling case reflects the sparse structure of the underlying
interaction matrix. When data are corrupted by noise, the Ising model (over)fitting the data
has no reason to be sparse anymore, and neither has the inverse susceptibility.

The influence of the sampling noise on the susceptibility matrix and on its inverse can be
measured through the largest and smallest eigenvalue of χ , denoted by, respectively, λmax

and λmin. According to Figs. 9(a), (b), we have that:
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Fig. 9 Largest (a) and smallest (b) eigenvalues of the susceptibility matrix, and norms of χ (c) and of
its inverse χ−1 (d) as functions of the coupling strength J for the 3 × 3 grid. See Fig. 8 for explanations
regarding the color code and the line styles

• λmax increases with the size of the system (we expect λmax to diverge at the critical cou-
pling J 
 1.778 in the thermodynamical limit), but is not affected by the sampling noise
(the black and red/gray curves associated to the same size are nearly indistinguishable in
Fig. 9(a)).

• λmin is not strongly affected by the system size in the case of perfect sampling. In case of
noisy sampling, λmin acquires a smaller value. The effect of the noise increases with the
system size (Fig. 9(b)).

Those facts are observed from the study of the norms of the two matrices χ and χ−1. Here,
we define the norm of the matrix A through

‖A‖ = max
i

∑

j

|Ai,j |. (62)

Figures 9(c), (d) show that the behaviors of the norms ‖χ‖ and ‖χ−1‖ are, from a qualitative
point of view, similar to the ones of, respectively, λmax and 1/λmin. However the norms are
directly related to the magnitudes of the elements of the matrices, according to (62). The
independence of ‖χ−1‖ from the size N , contrary to the strong increase of ‖χ‖, supports
the notion that most elements of χ−1 are very small (or even zero) in the case of perfect
sampling. This property is lost when the sampling is not perfect: due to the presence of
noise in the correlations ‖χ−1‖ increases with N (Fig. 9(d)).

4.5 Dependence of the Truncated Entropy on the Threshold

Hereafter, we study how the error on the entropy S() resulting from the truncation varies
with the threshold  and we discuss the fluctuations of S() − S observed in Fig. 5. We
start by sorting the absolute values of the cluster-entropies |�S
| in decreasing order:

�S1 ≥ �S2 ≥ �S3 ≥ · · · ≥ �Sn ≥ · · · ≥ 0. (63)
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We call ηn = ±1 the sign of the cluster-entropy �S
 attached (equal in absolute value) to
�Sn. Given the threshold , we define n∗() as the index of the smallest cluster-entropy
larger than : �Sn∗() ≥  > �Sn∗()+1. The truncated entropy (47) can be rewritten as
S(p,) = �(), where

�() =
n∗()∑

n=1

ηn�Sn. (64)

We want to study how �() behaves when  is made small. In particular, how does the
difference εs() = �() − �(0) behave as a function of ? Is it a smooth function, or
does it exhibit large and irregular fluctuations? From a mathematical point of view, it is con-
venient to imagine that N → ∞. The above question can be formalized as whether 1

N
�()

converges to some limit value; the normalization factor comes from the fact that we expect
the cross-entropy to be extensive in the system size N . Depending on the system under
consideration, different situations can be encountered.

The most favorable case is when

lim
N→∞

1

N

∑

n≥1

�Sn < ∞. (65)

If this condition holds, the difference εs() can be made arbitrarily small if  is small
enough. An illustration is provided by the one-dimensional Ising model with small correla-
tion length ξ and perfect sampling (B = ∞). For this model, the sequence of �Sn is highly
degenerate, and its distinct values are in one-to-one correspondence with the integer dis-
tances d ≥ 1 between the extremities of the clusters (Fig. 6). The cluster-entropy �S(d)

asymptotically decays as exp(−3d/ξ), and has multiplicity 2d−1, since each point between
the extremities may or may not belong to the cluster. We find

1

N

∑

n≥1

�Sn 

∑

d≥1

2d−1 exp(−3d/ξ), (66)

which converges if ξ < ξc = 3
log 2 . The calculation above is very similar to the one of

Sect. 4.2. Indeed, when the series with general term �S(K) is absolutely convergent, any or-
dering of the cluster-entropies is possible. In particular, one is allowed to sum all the clusters
of a given size K as proposed at the beginning of Sect. 4.2.

What happens when condition (65) is violated? Again consider the one-dimensional Ising
model. For perfect sampling, the cancellation property discussed in Sect. 4.1 ensures that
1
N

�() has reached its limit �S(d = 1) as soon as  < �S(1). In the case of noisy sam-
pling (finite B), the situation is more complex. In the presence of noise in the correlations
ckl the cluster-entropies with the same distance d between extremities are not degenerate
any longer. We show in Fig. 10(a) the value of � as function of  for a large correlation
length ξ compared to ξc , and B = 105 sampled configurations. We observe the appearance
of ‘packets’ of cluster-entropies, located around the noiseless values �S(d ≥ 2). The width
of a packet depends on the amount of noise due to the sampling, i.e. on the number B of
sampled configurations. The values of � at the two edges of the packet are very close to one
another due to the cancellation property. As  spans the range of cluster-entropies in the
packet, � fluctuates. The maximal amplitude of the fluctuations seems to weakly increase
as we look at packets with smaller and smaller entropies (Fig. 10(a)).

We have analyzed the statistics of the signs εn of the clusters-entropies in (64). Writing
the sequence of signs η = (η1, η2, η3, . . .), we consider the blocks j of contiguous and equal
signs, and defines their lengths �j . For instance, the block lengths corresponding to η =
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Fig. 10 (a) Sum � of the cluster-entropies larger than  (in absolute value) for the nearest neighbor
one-dimensional Ising model with ξ 
 8.97 � ξc 
 4.33, and B = 105 configurations. The initial increase
from zero, taking place at small  
 �S(1) 
 0.41, is not shown. (b) Magnification of (a) in the range
0.029 <  < 0.033. Within the random sign model, the behavior of � within a packet is similar to a Brown-
ian bridge, see main text

Fig. 11 Frequencies of the block
length � for the 1D-Ising model,
with N = 30 spins, ξ = 8.96, and
one set of B = 105 sampled
configurations. The statistics
takes into account the
cluster-entropies used to draw
Fig. 10(a) only

(+,+,−,+,+,+,+,−,−,−,−,−,+,−, . . .) are �1 = 2, �2 = 1, �3 = 4, �4 = 5, �5 = 1,
. . . . The histogram of the block-lengths is shown in Fig. 11. The two main features are:

• The frequency of � decreases exponentially when � � N , and is in very good agreement
with the exponential law ( 1

2 )�.
• A large ‘structural’ block of length � 
 N is present. This block corresponds to the N

clusters of size K = 2 (having all sign +), and the cluster of size K = 3 with largest
entropy (which has the same sign +).

We have calculated the correlation between successive block lengths, normalized by the
variance of the block length,

ρ = lj lj+1 − lj
2

l2
j − lj

2 , (67)

where (·) denotes the average over the blocks j . For the model and the data shown in Figs. 10
and 11, we find ρ 
 0.012. Changing the set of sampled configurations does not affect the
amplitude of the ratio ρ, which is always found to be about 1 %. This ratio coincides with
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the inverse of the square root of the number of blocks, equal to a few thousands. Hence,
the analysis is compatible with the absence of any correlation between the lengths of suc-
cessive blocks. The same conclusion is reached with experimental data, e.g. multi-electrode
recordings of the activity of a neural population [2, 3, 39] (not shown).

The simple statistics sets above suggests the following ‘random sign’ model, allowing
us to deepen our theoretical understanding of the behavior of �(). In the random sign
model, the signs ηn are replaced with random variables, equal to ± with probabilities 1

2 ,
and independent from each other. We emphasize that, in �() defined in (64), the signs are
deterministic (for given data p). The random sign model is therefore an approximation mo-
tivated by the statistical analysis above. Assume now that the value chosen for the threshold
 falls within a packet p including Np clusters. Fluctuations of the order of

�� ∼ ±
√

Np (68)

are expected on the entropy. As  decreases, the size of the packets, Np , tends to be bigger.
Loosely speaking, smaller entropies correspond to longer interaction paths, shared by many
more clusters. In the case of the one-dimensional Ising model, as  decreases, the distance
between the extremities of the clusters involved in a packet, d , increases. We have Np =
2d−1; hence, �� ∼ exp(−3d/ξ)

√
2d . We conclude that the error on the entropy tends to

zero if ξ < 2ξc .
From the above discussion, it appears that a general, sufficient condition for the amplitude

of the fluctuations to vanish as  → 0 is

lim
N→∞

1

N

∑

n

(�Sn)
2 < ∞. (69)

Indeed, if condition (69) is fulfilled, the sum of the fluctuations due to all packets corre-
sponding to cluster-entropies smaller than  is guaranteed to vanish with . Hence con-
dition (69) not only ensures that the fluctuations �� attached to the packet ‘cut’ by 

vanishes, but also that the error on the entropy, εs(), tends to zero when  → 0. It is im-
portant to realize that the guarantee is of probabilistic nature. Arbitrary large fluctuations
are possible (in the N → ∞ limit), but are very unlikely. More precisely, within the random
sign model, the error is a normal variable,

εs() = N
(

0,
1

N

∑

n>n∗()

(�Sn)
2

)
, (70)

with a variance vanishing with  according to (69). The true error is expected to be even
smaller than the random sign estimate (70). Indeed, packets need not be isolated from each
other as in Fig. 10. In the presence of a strong sampling noise, or in higher dimension than
D = 1, packets will overlap. As a consequence, the number of packets ‘cut’ by the threshold
and their size will determine the amplitude of ��. Further investigations of those points are
needed.

5 Applications

In this section we report the results of our algorithm when applied to data generated from
Ising models with diverse interaction structures and various numbers B of sampled config-
urations. We define:

• the number Nclu of clusters generated by the algorithm and the size Kmax of the largest
clusters.
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• the average error on the inferred couplings and fields:

εh =
(

1

N

∑

i

(
h

inf
i − hi

)2
) 1

2

, εJ =
(

2

N(N − 1)

∑

i<j

(
J

inf
ij − Jij

)2
) 1

2

. (71)

Here, J
inf
ij and h

inf
i denote the values of, respectively, the inferred couplings and fields,

while Jij and hi are the values of the couplings and fields in the model used to generate
the data.

• The error bars δhi and δJkl on the inferred couplings and fields, resulting from the finite
sampling. Those statistical fluctuations are asymptotically given by the inverse of the sus-
ceptibility matrix of the cross-entropy SIsing, see Eq. (17). The entries of χ can be calcu-
lated from a Monte Carlo simulation, to estimate the multi-spins correlations. In practice,
a good approximation of χ can already be obtained from the empirical average over the B

configurations in the sampling set. This procedure avoids the use of the Monte Carlo. In
the presence of a L2-regularization (13), γpk(1 − pk)pl(1 − pl) is added to the diagonal
element χkl,kl of the susceptibility matrix, before the inversion is performed. Hence, all
the eigenvalues are strictly positive and the inverse is well defined. The inversion of χ can
be done with standard linear algebra routines.

Inferred couplings are called ‘reliable’ when their absolute value is larger than three
times their statistical error-bar: |Jkl | > 3δJkl .

• The reconstructed observables, prec
i and crec

ij , which we compare to the data, pi and cij .
Those reconstructed averages are obtained using Monte Carlo simulations of the Ising
model with the inferred fields, h

inf
i , and couplings, J

inf
ij . For those simulations the number

of sampled configurations is chosen to be much larger than B , e.g. 100B , to minimize the
uncertainty on the reconstructed averages.

• the relative errors on the reconstructed averages pi and connected correlations cij , with
respect to their statistical fluctuations due to finite sampling:

εp =
(

1

N

∑

i

(prec
i − pi)

2

(δpi)2

) 1
2

, εc =
(

2

N(N − 1)

∑

k<l

(crec
kl − ckl)

2

(δckl)2

) 1
2

, (72)

where the denominators in (72) measure the typical fluctuations of the data expected at
thermal equilibrium, see (18), and

δckl = δpkl + pkδpl + plδpk. (73)

If not explicitly stated otherwise we start from the value  = 1 for the threshold and run the
algorithm several times, dividing the threshold by 1.01 after each execution. The algorithm is
stopped when both errors εp and εc are close to 1. We call ∗ the final value of the threshold
corresponding to this criterion. Unless explicitly stated otherwise a L2-regularization term
(13) is present, with γ = 1/(10Bp2(1 − p)2), where p is the average value of the pi ’s. As
explained in Sect. 2.2 the regularization term is important in case of undersampling and
guarantees the convergence of the numerical minimization of SIsing.

5.1 Independent Spin Model

It is instructive to run first the algorithm on the Independent Spins model, where each spin
has a probability pi to be 1, 1 − pi to be 0, independently of the other variables. Due to the
noise in the sampling (finite value of B), the connected correlations cij are not equal to zero.
Figure 12 shows the outcome for a system of size N = 40, as a function of the threshold .
The errors of reconstruction, εp and εc , are already smaller than one for the initial threshold
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Fig. 12 Performance of the algorithm as a function of  for the Independent Spin model: (a) errors εp and
εc ; (b) cross-entropy S. The entropy of the model in absence of sampling noise is 
 4.182071; (c) size Kmax
of largest clusters; (d) number Nclu of clusters. Panels (e) and (f) show the reconstructed pi and cij vs. their
values in the data. Error bars on pi and cij are calculated through (73). Data were obtained by sampling

B = 105 configurations of the N = 40 spins, with spin dependent means pi equal to the average activity of
the neurons in [2, 3]. The optimal threshold ∗ is already obtained with clusters of size K = 1

value ∗ = 1. For this value of the threshold, cluster of size one only are selected. In other
words, the interaction network J0, calculated from the reference entropy S0 = SMF alone,
is already overfitting the data as it attempts to reproduce the correlations due to statistical
fluctuations. For smaller thresholds  contributions from clusters of size K ≥ 2 allow for
an even more precise reproduction of the data.

The histogram of the inferred couplings, J
inf
ij , is centered around zero, and is approxi-

mately Gaussian (not shown). The standard deviation of the distribution is compatible with
the statistical error bar on couplings δJij (17) averaged on all the couplings. For the partic-
ular case of Fig. 12, 815 of the 820 inferred couplings are away from zero by less than three
error bars, and are, therefore, classified as unreliable. This result is compatible with the fact
that the non-zero couplings are the consequence of overfitting and do not reflect any real
interactions.

Another possibility to avoid overfitting in this case is to apply the cluster expansion to
the entropy S in the absence of reference entropy (S0 = 0). We find that, for ∗ = 1, the
reconstruction errors are εp = 0.07 and εc = 0.8. Therefore only one-spin clusters are taken
into account, and all couplings are equal to zero exactly (since J0 = 0).
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Fig. 13 Errors on the entropy (εS ), the couplings (εJ ), and the fields (εh) vs. threshold  for the unidi-
mensional Ising model with ξ = 1 (top) and ξ = 9 (bottom). Full lines correspond to large sampling noise
(B = 105 for ξ = 1, B = 103 for ξ = 9), dashed line to weak sampling noise (B = 107 for ξ = 1, B = 105

for ξ = 9). The size is N = 30

5.2 Unidimensional Ising Model

We now test the algorithm on the unidimensional Ising model with first-neighbor interac-
tions, Ji,i+1 = J , and uniform fields, hi = h. The model is placed on a ring with N sites
(periodic boundary conditions). Data p can be computed exactly (Appendix C) or through
an average over B configurations, sampled by Monte Carlo simulations. We compare the
performance of the inference procedure for various values of B and two values of J,h, cor-
responding to the correlation lengths ξ 
 1 (h = −5, J = 4) and ξ 
 9 (h = −5.95, J = 6).
These values are, respectively, smaller than ξc 
 4.3, the correlation length below which
the cross-entropy expansion (64) is absolutely convergent, and larger than 2ξc 
 8.6, above
which condition (69) is violated, see Sect. 4.5.

5.2.1 Accuracy of the Cluster Expansion as a Function of the Threshold: Errors on the
Entropy, Couplings and Fields

We start with the small-ξ case. Figure 13 (top) shows εS , the absolute value of the dif-
ference between the cross-entropy S(p,) (47) and the entropy of the model for perfect
sampling, and the errors εJ and εh, for various values of B . We observe that εS sharply
decreases around 1 = 0.05, that is, the entropy of nearest-neighbor clusters �S(i,i+1); dis-
carding all entropies smaller than this value would be exact in the perfect sampling case
(Sect. 4.1). As  is decreased, εS exhibits fluctuations centered around a discrete sequence
of threshold values, d , with d ≥ 2. As explained in Sect. 4.1, these values correspond to
the cluster-entropies �S(i,i+d) in the absence of noise, see identity (44). Fluctuations spread
over a small window around d . They correspond to imperfect cancellations of ‘packets’
of entropies whose associated clusters share the same interaction path with length L = 2d

(Sect. 4.5). Since the correlation length ξ is small, and, therefore, the cross entropy expan-
sion is absolutely convergent, the magnitude of the fluctuations quickly decreases with d .
For B = 105 two bursts of fluctuations are visible (corresponding to d = 2,3). For B = 107,
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Fig. 14 Performance of the algorithm on the unidimensional Ising model with ξ = 1, B = 105 (full-bold
line) B = 107 (dashed line). For both values of B the optimal threshold 0.0007 < ∗ < 0.003 is reached
with clusters of size K = 3 and length L = 6. The reconstruction of data pi and cij is shown only for the

B = 105 case (large sampling noise). Error bars on pi and cij are computed from (73)

fluctuations are smaller and spread over narrower windows; only the d = 2 burst can be ob-
served. In between two bursts of fluctuations, εS reaches a plateau. Note that the value of εS

on the plateau is not zero due to the sampling noise (finite B).
The errors on the inferred couplings and fields have the same behavior as εS (Fig. 13

(top)). Their magnitude are comparable to the expected statistical fluctuations calculated
from the 4-spin correlations (inverse susceptibility in (17)), which decrease as B−1/2.

We now test our algorithm on the unidimensional Ising model with a large correlation
length, ξ = 9. The errors εS, εJ , εh are shown in Fig. 13 (bottom) as functions of . The
correlation length of the model is larger than 2ξc , at which the series of the squared cluster-
entropies is divergent. Therefore, we expect large fluctuations of εS , corresponding to pack-
ets of clusters with the same interaction path (Sect. 4.5). Figure 13 shows, indeed, that fluc-
tuations are much larger for ξ = 9 (bottom) than for ξ = 1 (top). Furthermore, fluctuations
do not decrease much in amplitude as  is decreased. In the case of severe undersampling
(B = 1000) the notion of bursts of fluctuations separated by plateaus is blurred out. The
distributions of cluster-entropies in a packet is so wide that it overlaps with the distributions
of entropies associated to the neighboring packets. As for the previous case the magnitude
of εJ , εh are comparable to the expected statistical fluctuations calculated from (17).

5.2.2 Quality of Reconstruction and Choice of the Threshold ∗

We now study the reconstruction errors εc and εp as functions of , for the small and large
correlation lengths and for the weak and strong sampling noises. We show in Fig. 14 the
errors εc and εp , as well as the maximal size, Kmax, and the number, Nclu, of clusters vs.
the threshold  in the case of a small correlation length, ξ = 1. The threshold at which
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Fig. 15 Performance of the algorithm on the unidimensional Ising model with ξ = 9, B = 103 (full-bold
line) and B = 105 (dashed line). For the largest sampling noise case (B = 103) at the threshold ∗ 
 0.104,
89 clusters of size K = 2, 92 clusters of size K = 3, 35 clusters of size K = 4, and 2 clusters of size K = 5
are selected. The reconstruction of data pi and cij is shown for the B = 103 case. Error bars on pi and cij

are computed from (73)

both εc and εp are close to 1 can be chosen in the range 0.0007 < ∗ < 0.003, for which
all the clusters of lengths L ≤ 4 are processed. It is possible to check in Fig. 13 (top) that
this threshold value gives the minimum values of εS , εJ , εh. Contrary to the case of perfect
sampling, it is not sufficient to take into account clusters with contour length L = 2 only. The
selected clusters correspond to three groups of N = 30 clusters each; the first group gathers
the clusters (i, i + 1) (L = 2), the second one, the clusters (i, i + 2) (L = 4) and the third
one, the clusters (i, i + 1, i + 2) (L = 4). In Fig. 14 we show the reconstructed averages pi

and correlations cij , at ∗ and for the largest sampling noise case B = 105, vs. their values
in the data. The agreement is very good, and falls within the statistical fluctuations expected
at equilibrium for the Ising model, given in (73). We stress that the optimal value of the
threshold and the maximal size of selected clusters depend on the particular realization of
the data p, and can vary from sample to sample. By further decreasing the threshold  below
∗, the reconstruction errors εp and εc decrease to values smaller than one (Fig. 14). This
regime corresponds to an overfitting of the data, as the errors on the couplings, εJ , and on
the fields, εh, cease to decrease (Fig. 13 (top)).

Results for the case of a larger correlation length (ξ = 9) with B = 105 and B = 103 sam-
pling configurations are reported in Fig. 15. For the poor sampling case (B = 103) plateaus
are not present any longer, but a good inference is still obtained for a value ∗ of the thresh-
old, which, as in the ξ = 1 case, corresponds to the summation of all the clusters with
contour length L = 4. This finding supports the discussion of Sect. 4.4: the contour length
required for a good inference is largely independent of the correlation length. However, in
the poor sampling case, finding the right value for ∗ is harder for larger ξ due to the mixing
of packets.
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Fig. 16 Histograms of the inferred couplings J
inf
ij

for the unidimensional Ising model. (a) Case ξ = 1:
couplings equal to J = 4 and J = 0 in the model are shown in, respectively, black and gray. (b) Case ξ = 9:
couplings equal to J = 6 and J = 0 in the model are shown in, respectively, black and gray. Gray couplings
are unreliable, as they differ from zero by less than three standard deviations. Values of B and  are indicated
on the figure. The bin width is �J = 0.08

5.2.3 Quality of the Inference: Histograms of Couplings

To better understand the quality of the inference we plot in Fig. 16 (up and middle panels)
the histogram of the inferred couplings J

inf
ij at the threshold ∗. The distribution is bimodal:

a Gaussian-like peak centered in J inf = 0 and a smaller distribution around J inf = 4. The
two sub-distributions are separated by a wide gap. The inference algorithm makes no clas-
sification error: the sub-distribution centered around J inf = 0 contains all the pairs (i, j)

such that Jij = 0, and the one around J inf = 4 includes all the pairs of nearest neighbors
(i, i + 1). All the couplings centered around zero are unreliable. Moreover the standard de-
viation of the distribution of the couplings around the zero value (equal to the minimal value
of εJ reached on the plateau in Fig. 13) agrees with the statistical fluctuations (17); all the
couplings around zero are therefore unreliable. The structure of the interaction network is
perfectly recovered.

We show the histogram of couplings for  > ∗, i.e. εc > 1, in Fig. 16(a) (bottom);
the structure of the interaction network is still perfectly recovered but the values of the
positive inferred couplings is less accurate. The histogram of inferred couplings for the
large correlation length, ξ = 9, is shown in Fig. 16(b). Even when the sampling noise is
large, a good separation of the two sub-distributions corresponding to interacting and non-
interacting pairs of spins is achieved for large values of the threshold ∗, and the couplings
are correctly inferred (up to the expected statistical fluctuations).
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5.3 Regular Bidimensional Grid

We now analyze the performance of the algorithm on bidimensional grids of different sizes,
N = N ′ × N ′. Nearest neighbors on the grid interact through the coupling J . The value of
J 
 1.778 is chosen to make the grid critical in the thermodynamical limit, N ′ → ∞ [48,
49]. Hence, the system is at the paramagnetic/ferromagnetic critical point, and the correla-
tion length ξ ′ diverges with N ′.

We have described in Sect. 4.2 and Fig. 5 the partial cancellation of the cluster-entropies
for a small bidimensional grid (N ′ = 3), and no sampling noise. Due to this cancellation
property, taking into account clusters of contour length L ≤ 4 was sufficient to obtain a
very accurate approximation to the cross-entropy. Hereafter, we show that this result is not
affected by the presence of sampling noise. Furthermore, we will see that the size of the
clusters necessary for a good inference of the interactions remains rather constant when the
grid size is increased from N ′ = 7 to N ′ = 20, and is thus, as in Sect. 5.2, largely independent
of the correlation length ξ .

5.3.1 The Small 3 × 3 Grid Revisited: Influence of the Sampling Noise

We start with the 3 × 3 grid of Sect. 4.2, for which the summations of all clusters up to size
K = 9 gives the exact solution of the inverse problem, and all 1- and 2-point averages can
be calculated exactly in the perfect sampling case. The reader is kindly referred to Fig. 5
and to the related discussion. Figure 17 shows the errors on the entropy, the couplings, the
fields, the reconstructed 2- and 1-point averages, and the size and the number of clusters as
functions of . For a given amount of sampling noise (set by the value of B), the errors
εS, εJ , εh follow their perfect-sampling counterparts, until a threshold value sat, and they
saturate for  < sat. The saturations are interrupted by fluctuations due to the imperfect
cancellations of clusters within a packet (Sect. 4.5). The saturation values of εJ and εh

decrease with increasing B , and are compatible with the expected statistical fluctuations δJij

given by (17). The value of sat approximately coincides with the threshold ∗, at which
both εc and εp are 
 1 (Fig. 17). For B = 4500, only clusters of size K = 2 are taken into
account at ∗. For B = 107, clusters made of spins on the elementary squares of Fig. 4 and
of size up to K = 4 are selected, e.g. 1,5 or 1,2,4,5 with L = 4 in Fig. 4, while clusters
such as (1,2,3) or (1,3), which have the same contour length but are not on elementary
squares, are discarded. At ∗ the histogram of the inferred couplings is made of two far
apart sub-distributions (not shown): the first one corresponds to the 12 non-zero couplings
and is centered around J inf 
 1.8, and the second one, peaked around J inf = 0, contains the
remaining 24 pairs of sites. Hence, the structure of the interaction graph is correctly found
back.

5.3.2 Study of Larger Critical Grids

We now turn to larger grids N ′ ×N ′, where N ′ ranges between 7 and 20. Data are calculated
from B = 4500 configurations sampled through a Monte Carlo simulation. As  decreases,
the error εJ on the couplings saturates to a value close to the average of the expected statisti-
cal error, δJij , which lies between 0.1 and 0.2, see Fig. 3(b) in [9]. Saturation begins at large
values of the threshold, even when the linear size N ′ of the grid is increased. The asymptotic
values depends strongly on N due to the non-periodic boundary conditions.8

8We have verified that the dependence on N is weaker in the case of periodic boundary conditions.
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Fig. 17 Errors εs , εJ , εh , εc ,
εp , size Kmax , and number Kclu
of clusters vs.  for a 3 × 3 grid
with J = 1.778. The dashed line
corresponds to B = 4500
sampled configurations, the full
line to B = 107; the perfect
sampling curves are shown with
dotted lines in the top three
panels (same data as Fig. 5). The
values of ∗ are shown with
vertical lines: ∗ = 0.0017 (full,
B = 107), and 0.007 (dashed,
B = 4500). At ∗ 21 clusters
(B = 4500) and 49 clusters
(B = 107) are selected

The reconstructions errors εp and εc are shown in Fig. 18. The maximal size of the clus-
ters at the optimal threshold ∗ is bounded (Kmax ≤ 4), as the correlation length ξ diverges
with N ′. As a consequence, the running time of the algorithm increases linearly with N . For
threshold values smaller than ∗, εp and εc decrease. The 7 × 7 grid in Fig. 18 provides a
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Fig. 18 Reconstruction errors εc (squares) and εp (diamonds) for grids of sizes 7 × 7, 9 × 9, 12 × 12
and 20 × 20. Optimal thresholds ∗ are located by arrows. Other possible choices for ∗, for instance
∗ = 0.024 for the 7 × 7 grid are equally possible

clear illustration of data overfitting. Keeping B fixed while N ′ and N increase make the data
effectively more and more noisy. This is the reason why the value of ∗ slightly increases
with N .

The histograms of the inferred couplings at the threshold ∗ are shown in Fig. 19. The
structure of the grid is perfectly reconstructed for all sizes N ′. We find that all the inferred
couplings in the sub-distribution centered around zero are smaller (in absolute value) than
three times their standard deviation (corresponding to the asymptotic value of Fig. 3(b) in
[9]) and are, therefore, unreliable.

5.4 Randomly Diluted Bidimensional Grid

We now remove a fraction 1 − ρ of the couplings on the grid, independently and at random.
Our goal is to study how the algorithm performs on such disordered systems, at the phase
transition and in the low temperature phase. We will compare the performance with another
low complexity algorithm, the regularized logistic regression (Rlr) algorithm, guaranteed
to perform well at high temperature and to fail at low temperature [16]. In the following
we refer to the practical implementation of the algorithm and the numerical experiments
in [17]; note that other implementations of the Rlr procedure could show quantitatively
better performance. We have generated 7 × 7 bidimensional grids, and keep each bond with
probability ρ = 0.7. The remaining bonds are all equal to J .9 We generate, for each value of
J ranging from 0.4 to 4.4, eight randomly diluted grids. For each grid we calculate the data
p by sampling over B = 4500 configurations generated by a Monte Carlo dynamics.

9The numerical experiments of [17] were done with ±1 spins and with coupling parameter θ and field ν = 0;
in the present work where spins are equal to 0,1, the corresponding couplings and fields are: J = 4θ and
hi = − 1

2
∑

j �=i Jij .
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Fig. 19 Histograms of inferred couplings for bidimensional grids of different sizes. Couplings equal to
J = 1.778 and 0 in the model are shown in, respectively, black and gray; the integral of each sub-distribution
is normalized to one by hand. The values of ∗ for each size are shown in Fig. 18

5.4.1 Inference of the Network Structure from the Mean Field Entropy SMF

Our first task consists, as in [17], in reconstructing the structure of the interaction graph only.
We do not want to accurately determine the value of the coupling constants Jij , but only if it
is positive or null. This task is easier than the precise inference of the couplings, and we will
first handle by approximating the cross-entropy S with the reference entropy S0 = SMF only.
Equivalently, we choose ∗ to be large enough that no cluster is selected by our algorithm.
We compute the mean-field couplings, (J0)ij , and, for each pair (i, j), and decide that a bond
is present if (J0)ij > J/2, absent otherwise. The performances of this simple, Mean-Field
algorithm are shown in Fig. 20. We say that the neighborhood of a vertex i is reconstructed
if the sets of its neighbors j (Jij �= 0) and of its non-neighbors (Jij = 0) are correctly in-
ferred. In Fig. 20 (top panel) we report the fraction Qsucc of the neighborhoods which are
reconstructed (straight line), as a function of the coupling strength J . The neighborhoods
are perfectly reconstructed at the phase transition. Furthermore, Qsucc remains large in the
ferromagnetic phase: for instance, for J = 3.2, more than 80 % of neighborhoods are per-
fectly inferred. For very large J (low temperatures) the average pi are too close to 0 in the
down state and to 1 in the up state. Most of the sampled configurations coincide with one of
the two ground states, and the inference is difficult. Figure 20 (top panel) shows the increase
of Qsucc resulting from a ten-fold increase of B . Contrary to the Rlr version of [17], it seems
that the neighborhoods can be exactly inferred when the number of sampled configurations
is large enough.

Another measure of the performances is shown in Fig. 20 (bottom panel). We plot Psucc,
the fraction of bonds in the grid correctly predicted to exist, averaged over the data realiza-
tions, as a function of the coupling strength J . For J = 3.2 more than 99.78 % (respectively
99.96 %) of the bonds are correctly predicted with B = 4500 (respectively B = 45000) con-
figurations. For even larger values of the coupling constant, J = 4, more than 95 % (respec-
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Fig. 20 Probabilities that neighborhoods are reconstructed (Qsucc , top) and that a non-zero bond is inferred
(Psucc , bottom) as functions of the coupling J for a bidimensional random 7 × 7 grid density ρ = 0.7 and for
various values of the numbers B of sampled configurations. Error bars are calculated from the standard devia-
tions over eight random grids. Probabilities were obtained from the simple Mean-Field algorithm (S0 = SMF ,
 = 1). The value of Qsucc (top) is compared to the performances of the pseudo-likelihood algorithm (Rlr)
[16] implemented by [17] in the top panel

tively 99 %) of the bonds are correctly predicted with B = 4500 (respectively B = 45000)
with the Mean-Field algorithm.

In Sect. 5.4.3 we show that the probability of success increases in the ferromagnetic
phase, when using our algorithm with a well-chosen threshold  rather than the simple
Mean-Field procedure ( = 1), e.g. all neighborhoods are perfectly reconstructed for J =
3.2 (Qsucc = 1).

5.4.2 Is Thermalization Relevant to the Inference at Low Temperatures?

The diluted bidimensional grid, with a fraction ρ = 0.7 of non-zero bonds, undergoes a
transition from a paramagnetic to a ferromagnetic phase at the value Jcrit(ρ = 0.7) 
 2.8
(vertical line in Fig. 20) in the infinite size limit [48, 49]. In the ferromagnetic phase, J >

Jcrit(ρ = 0.7), and for small bidimensional grids, two competing ‘states’ coexist: the ‘down’
state, where most spins are 0, and the up state, where most spins are equal to 1. The system
‘jumps’ from one state to the other, as shown by the time-dependence of the average activity,

μ(t) = 1

N

N∑

i=1

σi(t), (74)

where t is the Monte Carlo time. Figure 21(a) shows that the two states are equally sampled
on a 9 × 9 grid, with NA = 10,000 single spin-flip attempts with the Metropolis rule in
between two sampled configurations (the results of Fig. 20 on the 7 × 7 grid were obtained
with the same value of NA). To investigate the performance of the algorithm when the two
states are not well sampled we have studied a 9×9 grid, with NA = 100 and NA = 1000. For
NA = 100, Fig. 21(b) shows that few transitions occur, and that the two states will likely not
be weighted equally. On larger 12×12 grids no jump occurs, even with NA = 1000 spin-flip
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Fig. 21 (a, b, c). Average activity μ (74) of the B = 4500 sampled configurations for three grid sizes and
numbers of spin-flip attempts in between two samplings. (d) Probability of success for J > 2.8, for the same
data as in (a, b, c) and for the 7 × 7 grid of Fig. 20

attempts (Fig. 21(c)). The values of the spin averages pi will strongly vary between the three
cases above: pi 
 0.5 in the mixed case (a), pi 
 0.7 in the particular realization (b) of the
partially mixed case, and pi close to zero in case (c). Remarkably the probability of success
of the algorithm is not sensitive to the nature of the mixing. Figure 21(d) shows, indeed,
that the reconstruction performances do not significantly decrease even in the partially and
non-mixed cases compared to the fully thermalized case.

5.4.3 Inference of the Couplings and Reconstruction of 1- and 2-Point Averages with the
Cluster Expansion

It is harder to determine the values of the fields and of the couplings and to reconstruct
the frequencies than to infer the structure of the interaction graph alone. To this aim the
minimization of the MF entropy SMF is generally not sufficient, and the cluster expansion
of S − SMF has to be carried out. In Fig. 22 we show the relative errors εp and εc in the
reconstruction of one- and two-site frequencies as a function of the threshold  for the
same 7×7 randomly diluted grid as in Sect. 5.4.1. We also compare the fields and couplings
inferred with our cluster algorithm (middle panels in Fig. 22, ∗ = 0.05) to the ones found
with the simple MF procedure (right panels in Fig. 22, large value of ). Note that the
small error done in the graph learning for J = 3.2 (Psucc = 0.997) can be avoided when the
threshold value is optimized for each data realization.

We show in Fig. 23 the performances of the algorithm in the case of poor mixing,
when the two states are not equally sampled. For the particular realization corresponding
to Fig. 23, the frequencies are pi 
 0.3 instead of pi 
 0.5. In spite of the poor mixing the
inference of the fields and couplings is as accurate as in the case of well-mixed sampling.
The difference between the fields corresponding to the apparent frequencies pi 
 0.3 and
the true one (pi = 0.5) are, indeed, smaller than the statistical uncertainty on the fields due
to the limited sampling (finite value of B). The reason is that, near a critical point, a small
variation in the field is sufficient to produce a large change in the average values of the spins.
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Fig. 22 Performances of the inference algorithm for the 7 × 7 randomly diluted grid, with J = 3.2,
B = 4500, NA = 105. Left: Relative errors εp , εc as functions of the threshold (top) and comparison of re-
constructed and data correlations at ∗ (bottom). Middle and right: comparison of the inferred and true fields
(top) and histograms of inferred couplings (bottom) for our cluster algorithm and the mean field procedure.
Color code for the histograms: brown/gray: unreliable couplings (which also correspond to zero couplings in
the true network), black: reliable couplings. The two sub-distributions are normalized separately

Fig. 23 Performance of the inference algorithm in the case of poor mixing, for a 7×7 randomly diluted grid,
with J = 3.2, B = 4500, NA = 102. Top & left: relative errors εp , εc as functions of the threshold . Bottom

& left: reconstructed pi and cij versus their data values. Right: Inferred fields h
inf
i

vs. their true values for

∗ = 0.05 (top) and histogram of the inferred couplings J inf (bottom). As usual, unreliable couplings, which
correspond to zero couplings in the true network, are depicted in gray, and reliable couplings in black
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Fig. 24 Outcome of the inference algorithm for an Erdös-Renyi random graph with N = 50 spins, connec-
tivity d = 10, and with B = 106 (a) and B = 103 (b) sampled configurations. For each value of B we show
the errors εp, εc vs. θ , the inferred vs. data values of the correlations cij , and of the couplings Jij . A few

large error bars over Jij (calculated from χ−1) are shown. Values of Jij were chosen uniformly at random
in [−3;3], and fields were set to hi = −1

5.5 Erdös-Renyi Random Graphs

In this section we report the results of our inference algorithm when applied to disordered
Ising models on random graphs. The random networks are generated from the Erdös-Renyi
ensemble, where M = d

2 N edges are drawn, uniformly and at random, between N points.
Parameter d is the average degree of a vertex on the network.

Figure 24 shows the outcome of the algorithm when data are generated from an Erdös-
Renyi model of connectivity d = 10. On the selected bonds (i, j) the couplings Jij were
chosen uniformly at random in [−3;3]. All other couplings Jij were set to zero, and the
fields were hi = −1. Values of the parameters are such that the system is in the paramagnetic
phase (in the thermodynamic limit). Panel A shows the inference with good sampling (the
data are obtained by averaging over B = 106 Monte Carlo configurations), while Panel B
shows the inference with poor sampling (B = 103). At ∗ the data are reconstructed within
the expected statistical fluctuations and, correspondingly, couplings are found back within
the statistical error bars δJij . In the case of a large sampling noise case B = 103, the sta-
tistical fluctuations δJij are so large that most of the inferred couplings are unreliable. The
inference of the complete network is thus not possible. The maximal size of clusters at θ∗ in-
creases with the average degree (Sect. 5.6); we find Kmax = 9 and Kmax = 7 for, respectively,
B = 106 and B = 103.

Figure 25 shows the outcome of the algorithm on an Erdös-Renyi random graph with a
smaller connectivity, d = 5, and for values of the couplings Jij chosen uniformly at random
in [−4;4]. The fields are set to hi = − 1

2

∑
j (�=i) Jij , in such a way that the corresponding

fields in spin variable ±1 vanish. This is an example of a smaller connectivity system in
the spin-glass phase. We have studied the performance of the algorithm as a function of
the threshold , by varying the system size N from 50 to 200 and the number of sampled
configurations from B = 1000 to 10000. The algorithm is able to reach εc = 1 at large
thresholds, with a small number of selected clusters, e.g. Nclu < 1000 and Kmax = 7 for
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Fig. 25 Outcome of the inference algorithm for an Erdös-Renyi random graph with N spins, and connectivity
d = 5. Values of Jij were chosen uniformly at random in [−4;4], and fields were set to hi = − 1

2
∑

j (�=i) Jij .
Left: error εJ on the inferred couplings as a function of  for N = 50 and B = 1000,4500,10000 configu-
rations. Middle: error εJ vs.  for N = 50,100,200 and for B = 4500. Right: εc (top) and Kclu (middle) as
functions of ; the inferred couplings Jinf are compared to their true values in the bottom panel for N = 100
and threshold ∗

N = 100. The threshold ∗ for which εc = 1 corresponds to the beginning of the plateau
for εJ . For smaller thresholds εc decreases and data are overfitted. The height of the plateau
for εJ coincides with the calculated statistical error δJ ; it scales as 1/

√
B and does not

strongly depend on N .

5.6 Computational Time

We have found that, for the different examples shown in Sect. 5, the running time of our
algorithm is approximately linear in the number of selected clusters. The CPU time is of the
order of 0.01 sec per cluster on one core of a 2.8 GHz Intel Core 2 Quad desktop computer.
The number of clusters is sensitive to the structure of the interaction graph, but does not
depend too much on the correlation length. For instance, the number of processed clusters
and the computational time for Erdös-Renyi graphs is larger for the connectivity d = 10 than
for d = 5. Moreover, as the sampling noise increases (the value of B is made smaller), so
does the threshold value ∗. As less precision is needed in the reconstructed frequencies and
correlations, the size of the selected clusters is reduced, and so is the computational time.
We have found for instance that, for Erdös-Renyi random graphs, the running time increases
with the quality of the sampling, i.e. increases with the value of B . In some very noisy cases,
however, large size clusters which are due only to the noise and do not reflect the interaction
network can be processed. As an example, the number of clusters for the unidimensional
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Ising model with ξ = 9, B = 1000 is larger than the one for B = 4500. Another illustration
is given by the diluted 7 × 7 grid with J = 3.2, which requires the processing of many
clusters of large size (Kmax = 8).

6 Conclusion and Perspectives

In this paper, we have presented an adaptive cluster expansion to infer the interactions be-
tween a set of Ising variables from the measure of their equilibrium correlations. We have
discussed the statistical mechanics of this expansion, and shown applications of the algo-
rithm to artificial data generated using Ising models on unidimensional and bidimensional
lattices, as well as on Erdös-Renyi random graphs.

We have in particular underlined the important conditions on the inverse problem that
should be fulfilled for our algorithm to be efficient. The essential condition is that the in-
verse susceptibility, which determines the change of a coupling (or a field) resulting from
a change in the data (1- or 2-spin frequencies) should be well-conditioned. We stress that
this property is not incompatible with the presence of a long-range susceptibility. Hence,
the inverse problem can be easy to handle even in the presence of long-range correlations.
As far as our algorithm is concerned, this condition entails that the maximal size Kclu of the
clusters which need to be taken into account remains small even if the correlation length of
the system is large.

The origin of this condition is that our algorithm builds up, by definition, an interac-
tion network defining a well-conditioned Ising model. Indeed, in the absence of reference
entropy (S0 = 0), the cross-entropy S(p) is approximated through a sum of a restricted num-
ber of cluster-entropies, see (30). For sufficiently large thresholds , most quadruplets of
variables, say, i, j, k, l, do not appear in any selected cluster (of size K ≥ 4); hence, most
of the entries (χ−1)ij,kl of the inverse susceptibility matrix entries vanish according to (54).
In the presence of the reference entropy S0 = SMF , χ−1 is not guaranteed to be sparse any
more due to the contribution χ−1

0 = − ∂S0
∂p∂p . However, when a regularization is introduced,

e.g. based on the norm L1 (14), the network of interactions (J0)ij is highly diluted, and we
expect χ−1

0 to be well-conditioned, too. Further investigations of this point would be very
useful.

According to the discussion of Sect. 4.4 inverse problems corresponding to Ising models
on finite-dimensional lattices are well-conditioned in the perfect sampling limit. The intro-
duction of a threshold over the minimal values of cluster-entropies allows us to force the
inverse problem to be well-conditioned even in the presence of sampling noise. We have
checked this statement on inverse problems corresponding to ‘critical’ Ising models. While
the correlation length increases with the size of the system, the maximal size of the clusters,
Kclu, remains roughly constant. Therefore, the computational complexity of the algorithm
increases only linearly with the system size.

An essential feature of inverse problems is that data are generally obtained from a fi-
nite sampling and, therefore, frequencies and pairwise correlations are plagued by sam-
pling noise. Avoiding overfitting is a primary goal for an inference algorithm. This goal
is achieved, in our algorithm, by the introduction of the threshold . As a result most of
the clusters are discarded, and in particular, those whose contributions would convey very
little information about the true nature of the underlying interaction network. Fixing the
threshold value such that the relative reconstruction errors εp and εc are of the order of one
corresponds to the maximal accuracy allowed by the quality of the data.

The cluster expansion introduced here differs from other classical cluster expansions,
developed in the contexts of the theory of liquids and of computational physics. In particular
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we do not impose consistency equations for the marginal probabilities over the clusters. Our
expansion scheme is simpler, and requires only the knowledge of the individual and pairwise
frequencies of the variables in the cluster. Moreover, the cluster construction and selection
rules prevents any combinatorial explosion of the computational time.

Several points would deserve further investigations. Among them the discussion of the
convergence properties of the expansion, started in Sect. 4.5, should be expanded and im-
proved. A natural and interesting question is to ask how the series behaves when the packets
of Fig. 10 start mixing, i.e. in the presence of a strong sampling noise. Another aspect which
should be better understood is the influence of the construction rule. Our heuristic consists in
merging two almost completely overlapping clusters of size K to build a new cluster of size
K + 1 (provided its entropy is larger than ). This rule has a simple intuitive interpretation,
compatible with the notion of interaction path, and attempts with other rules have been less
fruitful. However, a deeper theoretical understanding and justification is clearly needed. Last
of all, the a posteriori validation of the method relies on the use of a Monte Carlo simulation
to calculate εc and εp . We have tested another procedure to avoid the use of a Monte Carlo
calculation, based on a partial resummation of the cluster contributions corresponding to the
free-energy (at fixed couplings and fields). This procedure, whose applicability goes beyond
the inverse problem, will be detailed in a further publication.
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Appendix A: Expression of the Entropy of Clusters with Size K = 3

In this appendix, we give the analytical expression for the entropy of a cluster with K = 3
spins. Using this expression instead of minimizing the cross-entropy (7) offers a valuable
computational speed-up as there are O(N3) clusters of size K = 3. We start with the defini-
tion of the entropy P (σ ):

S3 = −
∑

σ1=0,1

∑

σ2=0,1

∑

σ3=0,1

P (σ1, σ2, σ3) logP (σ1, σ2, σ3). (A.1)

We then replace the probabilities P (σ1, σ2, σ3) of the eight configurations of the three spins
above with their expressions in terms of the probabilities {pi,pkl} in the data, and of the
probability p123 that the three spins are equal to 1: P (1,1,1) = p123, P (1,1,0) = p12 −
p123, P (1,0,1) = p13 − p123, P (0,1,1) = p23 − p123, P (0,0,1) = p3 − p23 − p13 + p123,
P (0,1,0) = p2 − p12 − p23 + p123, P (1,0,0) = p1 − p13 − p12 + p123, P (0,0,0) = 1 −
p1 − p2 − p3 + p12 + p13 + p23 − p123. The only unknown quantity (not available from p)
is the probability p123. To determine p123 we impose

dS3

dp123
= 0, (A.2)

which means that the three-body coupling J123 vanishes. Condition (A.2) gives a third degree
equation on p123,

p3
123 + αp2

123 + βp123 + γ = 0 (A.3)
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with

α = p1p2 + p1p3 + p2p3 − p1p23 − p2p13 − p3p12 − p12 − p23 − p13,

β = p1p
2
23 + p2p

2
13 + p3p

2
12 − p1p2p23 − p1p2p13 − p1p3p12 − p1p3p23

− p2p3p12 − p2p3p13 + 2p12p13p23 + p12p13 + p12p23 + p13p23 + p1p2p3,

γ = −p12p13p23(1 − p1 − p2 − p3 + p12 + p13 + p23).

(A.4)

Upon substitution of p123 in (A.1) we obtain the desired cross-entropy S3, as a function
of the three average values pi and the three two-point averages pkl . The expression of the
cluster-entropy is given by,

�S(i,j,k) = S3(pi,pj ,pk,pij ,pik,pjk) − �S(i,j) − �S(i,k) − �S(j,k) − �S(i)

− �S(j) − �S(k), (A.5)

according to (28). The expressions of the cluster-entropies for one and two spins are given
by, respectively, (23) and (25). Similarly, one obtains the expressions for the contributions
of the 3-spin cluster to the values of the interactions parameters by differentiating �S with
respect to the pi ’s and the pkl’s.

Appendix B: Diagrammatic Expansion of the Cluster-Entropies in Powers of the
Connected Correlations

A better understanding of the cluster expansion and of the role of the reference entropy S0

can be gained through the diagrammatic expansion of the entropy S(p) in powers of the
connected correlations (high-temperature expansion),

cij = pij − pipj . (B.1)

Note that the entry Mij of the matrix M defined in (21) vanishes linearly with cij . Thus,
an expansion in powers of cij is equivalent to an expansion in powers of Mij . A procedure
to derive in a systematic way the diagrammatic expansion of S(p) is proposed in [31]. The
diagrammatic expansion provides a simple representation of the cluster-entropies, in which
the entropy S(p) can be represented as a sum of connected diagrams (Fig. 26). Each diagram
is made of sites, connected or not by one or more edges. Each point symbolizes a variable,
and carries a factor pi . The presence of n(≥ 0) edges between the sites k and l results in a
multiplicative factor (ckl)

n. The contribution of a diagram to the entropy is the product of
the previous factors, times a function of the pi specific to the topology of the diagram, see
[31]. Diagrams of interest include (Fig. 26):

• the N single-point diagrams, whose contributions are �S(i)(pi);
• the ‘loop’ diagrams, which consist of a circuit with K edges going through K sites i1 →

i2 → ·· · → iK → i1, whose contributions to the entropy are

Sloop(p|i1, i2, . . . , iK) = (−1)K−1Mi1,i2Mi2,i3 . . .MiK−1,iK MiK,i1; (B.2)

• the Eulerian circuit diagrams, for which there exists a closed path visiting each edge
exactly once;

• the non-Eulerian diagrams, with the lowest number of links (smallest power in M).

The entropy for two variables i, j , S(pi,pj ,pij ) (24), is the sum of the two single-point
diagrams i and j , plus the sum of all connected diagrams made of the two sites i and j
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Fig. 26 Diagrammatic expansion of the cross-entropy S(p). A cluster-entropy (see Fig. 2) is the infinite sum
of all the diagrams in a box (dashed contour), linking the K sites in the cluster. Each link in a diagram carries
Mij , and each site pi ; in addition, each diagram carries a multiplicative factor, which is a function of the pi ’s.

In the figure only one cluster among all
(N
K

)
clusters is represented. Only the first diagrams with non-zero

coefficients are drawn. Loop diagrams are analytically summed up and removed from the expansion through
the reference entropy S0 = SMF ; Eulerian circuit diagrams (brown/gray) are partly removed, see main text.
Diagrams giving the largest contributions to the universal central peak of the cluster-entropy distribution
(Appendix D) are shown in bold

with an arbitrary large number of edges (n ≥ 2) in between (first two columns in Fig. 26).
According to (25), the cluster-entropy �S(i,j)(pi,pj ,pij ) is equal to the latter sum (second
column in Fig. 26). More generally, the entropy of a cluster �S
(p) is the infinite sum of all
diagrams whose sites are the indices in 
.

We now interpret the Mean Field expression for the entropy, SMF , in the diagrammatic
framework. We start from identity (21), and rewrite,

SMF(p) = 1

2
Trace logM = 1

2
Trace log

[
Id − (Id − M)

]

=
∑

K≥1

−Trace[(Id − M)K ]
2K

. (B.3)

Using the fact that the diagonal elements of M are equal to unity, the term corresponding to
K = 1 above vanishes. For K ≥ 2, we have

−Trace
[
(M − Id)K

]

= −
∑

i1,i2,...,iK

(δi1,i2 − Mi1,i2)(δi2,i3 − Mi2,i3) . . . (δiK−1,iK − MiK−1,iK )(δiK ,i1 − MiK,i1)

=
∑

i1,i2,...,iK

(−1)K−1M̂i1,i2M̂i2,i3 . . . M̂iK−1,iK M̂iK ,i1 , (B.4)
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where the matrix M̂ has the same off-diagonal elements as M , and has zero diagonal ele-
ments. Each term in the above sum corresponds to an Eulerian circuit over K ′ ≤ K sites,
where K ′ is the number of distinct indices in (i1, i2, . . . , iK). Note that the same circuit can
be obtained from different K-uplets of indices. Consider for instance the longest circuits,
obtained for K ′ = K , i.e. all distinct indices. 2K different K-uplets (i1, i2, . . . , iK) corre-
spond to the same circuit, as neither the starting site nor the orientation of the loop matter.
For instance, i1 → i2 → i3 → i1, i2 → i3 → i1 → i2, i1 → i3 → i2 → i1, . . . are all equiva-
lent. This multiplicity factor 2K precisely cancels the 2K at the denominator in (B.3). The
contribution corresponding to a circuit therefore coincides with expression (B.2) for the loop
entropy. We conclude that

• SMF(p) sums up all loop diagrams exactly;
• SMF(p), in addition, sums up Eulerian circuit diagrams, but with weights a priori different

from their values in the cross-entropy S(p).10 An exception is the three-variable Eulerian
diagram shown in Fig. 26, whose weights in SMF and S coincide.

• no non-Eulerian diagram is taken into account in SMF(p).

As a conclusion, the diagrammatic expansion provides a natural justification for the choice
of the reference entropy S0(p) = SMF(p). In addition, it provides us with the dominant con-
tribution to the cluster-entropies once the Mean-Field entropy is substracted, see Fig. 26.
A detailed study of those dominant contributions is presented in Appendix D.

Appendix C: Properties of the Cluster-Entropies of the One-dimensional Ising Model

Consider the one-dimensional Ising model with nearest-neighbor couplings and periodic
boundary conditions. The Hamiltonian of the model is

H = −h
∑

i

σi − J
∑

i

σiσi+1, (C.1)

where the spins σi take 0,1 values. The parameters of the model are the N identical fields
hi = h, the N couplings Ji,i+1 = J between neighbors and the remaining N × (N − 3)/2
zero couplings Ji,j = 0 between non-neighbors.

We recall a few elementary facts about the model. The transfer matrix is

T =
(

eJ+h eh/2

eh/2 1

)
. (C.2)

The eigenvalues are λ± = 1
2 (eJ+h + 1 ± √

(eJ+h − 1)2 + 4eh), and the two components

of the eigenvectors are, respectively, v±(1) = −(1 − λ±)/
√

eh + (1 − λ±)2 and v±(2) =
eh/2/

√
eh + (1 − λ±)2. The probability that a spin is up is given by, in the N → ∞ limit,

p = 〈σi〉J = (
v+(1)

)2
, (C.3)

and the connected correlation at distance d is

ci,i+d = 〈σiσi+d〉J − 〈σi〉J〈σi+d〉J = p(1 − p)

(
λ−
λ+

)d

= p(1 − p) exp(−d/ξ), (C.4)

where the correlation length is given by ξ = −1/ log(λ−/λ+).

10In mean-field spin-glasses, as the couplings scale as the inverse square root of the number N of spins, only
loop diagrams have non-zero weights in the thermodynamical limit.
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C.1 Calculation of the Cluster-Entropies and Cancellation Property

In this section, we show the exact cancellation property between the entropies of clusters
with different sizes discussed in Sect. 4.1. We will see that this property is a direct conse-
quence of the existence of a unique interaction path along the unidimensional chain.

C.1.1 Case S0 = 0

We first consider the case where the reference entropy is zero. Let 
 = (i1, i2, . . . , iK) be a
cluster of size K , with i1 < i2 < · · · < iK . Due to the unidimensional nature of the interac-
tions, the Gibbs distribution over the K-spin configurations σ obeys the chain rule,

PJ[σ ] = PJ(σiK |σiK−1) . . . PJ(σi4 |σi3)PJ(σi3 |σi2)PJ(σi2 , σi1), (C.5)

where P (·, ·) and P (·|·) denote, respectively, joint and conditional probabilities. Inserting
the above formula into expression (9) for the cross-entropy, we obtain

SIsing(J|p) = −
∑

σ

Pobs[σ ]
(

K−1∑

l=2

logPJ(σil+1 |σil ) + logPJ(σi2 , σi1)

)

= −
∑

σ

Pobs[σ ]
(

K−1∑

l=1

logPJ(σil+1 , σil ) −
K−1∑

l=2

logPJ(σil )

)

=
K−1∑

l=1

SIsing

(
h→

il
, h←

il+1
, Jil ,il+1 |pil , pil+1 ,pil ,il+1

) −
K−1∑

l=2

SIsing

(
h0

il
|pil

)
. (C.6)

Each variable σil , with l = 2, . . . ,K − 1, appears three times in (C.6), which explains
the presence of three fields h with the same index il . After optimization over J =
({Jil ,il+1}, {h→

il
}, {h←

il
}, {h0

il
}) all these fields are equal, and we obtain

S(p) =
K−1∑

l=1

S(pil , pil+1 ,pil ,il+1) −
K−1∑

l=2

S(pil )

=
K−1∑

l=1

�S(il ,il+1)(p) +
K−1∑

l=2

�S(il )(p). (C.7)

Hence the cross-entry S(p) is the sum of the 1-cluster entropies and of the entropies of the 2-
clusters made of adjacent sites. None of the other cluster-entropies appear, which proves that
they cancel each other. To illustrate the cancellation mechanism, consider the case K = 3.
According to (C.7),

S(p) = �S(i1,i2)(p) + �S(i2,i3)(p) + �S(i1)(p) + �S(i2)(p) + �S(i3)(p). (C.8)

Comparing with (28) we obtain

�S(i1,i2,i3)(p) = −�S(i1,i3)(p), (C.9)

which shows that the entropy of a 3-cluster and the one of a 2-cluster with the same extrem-
ities i1, i3 are opposite to one another. By a recursive applications of (C.7) this result can
be immediately generalized to higher values of K . The entropy of a K-cluster is simply the
entropy of the 2-cluster with the same extremities, multiplied by (−1)K−2. Hence, identity
(43) is established.
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According to formula (C.4) for the connected correlation, the entropy of a two-site cluster
is a function of the distance d between the two sites:

�S(i,i+d) = F
(
exp(−d/ξ)

)
, (C.10)

where

F(u) = −2p(1 − p)(1 − u) log(1 − u) − p
(
p + (1 − p)u

)
log

(
1 + (1 − p)u

p

)

− (1 − p)(1 − p + pu) log

(
1 + pu

1 − p

)
. (C.11)

To obtain the expression (C.11) for F , we have used formula (26) for the 2-spin cluster-
entropy, with p1 = p2 = p and p12 = p2 + c12, where the correlation c12 is given by (C.4).
Note that F(u) = O(u2) for small u, in agreement with scaling (41).

C.1.2 Case S0 = SMF

We now introduce the reference entropy S0 = SMF . The matrix M defined in (21) has ele-
ments

Mij = cij√
pi(1 − pi)pj (1 − pj )

= exp
(−|i − j |/ξ)

. (C.12)

The inverse of M , G = M−1, is a tridiagonal matrix, whose non-zero elements are

Gii = 1 + exp(−2/ξ)

1 − exp(−2/ξ)
, Gi,i±1 = − exp(−1/ξ)

1 − exp(−2/ξ)
. (C.13)

Consider now the Gaussian model over N real-values variables ϕi , whose energy function
is given by

E[ϕ] = 1

2

∑

i,j

Gijϕiϕj . (C.14)

For this Gaussian model, the logarithm of the partition function is (up an irrelevant additional
constant), logZ[G] = − 1

2 log detG. By construction, model (C.14) is the solution of the
inverse Gaussian problem, with data: 〈ϕi〉 = 0, 〈ϕiϕj 〉 = Mij . Hence, S0 can be interpreted as
the cross-entropy of Gaussian model (C.14) under those data. A key feature of the Gaussian
model above is that its interaction matrix Gij is tridiagonal. Only nearest neighbor variables
are coupled to each other according to (C.13). We conclude that the Gaussian model is a
one-dimensional model. Consequently, it obeys a chain rule similar to (C.5). This is the
only requirement for the main conclusion of Sect. C.1.1 to hold: in the cluster expansion of
S0, the entropy of a K-cluster is simply equal to the entropy of the 2-cluster with the same
extremities, multiplied by (−1)K−2. As both the expansions of S and the one of S0 enjoy
this property, so does the expansion of S − S0.

We conclude this section by the expression of the 2-cluster entropy �S(i,i+d). In the
presence of the reference entropy S0 = SMF , we substract the following contribution to ex-
pression (C.10), see (21),

(�S0)(i,i+d) = 1

2
log det

(
1 Mi,i+d

Mi,i+d 1

)
. (C.15)

Hence, function F(u) defined in (C.11) should be substracted 1
2 log(1 − u2). It is a simple

check that F(u) − 1
2 log(1 − u2) = O(u3), in agreement with scaling (45).
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Fig. 27 Leading diagrams to the
order 5 (top) and 6 (bottom) in
the connected correlation for the
entropy of 3-clusters

Table 1 Distances corresponding to the diagrams of Fig. 27

Diagram Sum of distances

(a) d + 2d ′ + 2(d − d ′) = 3d

(b) 2d + 2d ′ + (d − d ′) = 3d + d ′
(c) 2d + d ′ + 2(d − d ′) = 4d − d ′
(d) 3d ′ + 3(d − d ′) = 3d

(e) 3d + 3d ′
(f) 3d + 3(d − d ′) = 6d − 3d ′

C.2 Examples and Calculation of Diagrammatic Coefficients

We have studied the histograms of cluster-entropies with K = 2 and K = 3 spins for specific
choices of J,h. The averages pi and pij were calculated exactly through formulas (C.3) and
(C.4) (perfect sampling). We have found that

• for K = 2, the cluster-entropies take discrete values, labelled by the distance d between
the two extremities of the cluster, e.g. 
 = (i, i + d). Expanding F(u) to the lowest order
in u (for S0 = SMF) we find the asymptotic formula for the 2-cluster entropy:

�Si,i+d 
 (2p − 1)2

6p(1 − p)
e−3d/ξ , (C.16)

in agreement with (D.1). We have verified that this formula is in very good agreement
with the numerics at large distance d .

• for K = 3, we find that the entropies of 3-clusters of the type (i1, i2, i3) depend only on
the distances d = i3 − i1 between the extremities. In addition, the values are exactly the
opposite of the ones found for K = 2-clusters with the same distance d as expected. Two
differences are:
– The peak in d = 1 in the histogram is not present because the minimal distance between

three spins is d = 2. The largest 3-spins entropy thus corresponds to triplets of the type
(i, i + 1, i + 2).

– The height of the peak (number of clusters) corresponding to distance d is (d − 1)N .
The degeneracy (d − 1) is the number of ways of choosing the location of site i2 in
between i1 and i3.

We now show how the value of the cluster entropy can be found back from the leading
terms in the diagrammatic expansion calculated in Sect. D.4. Let us call d ′ = j − i < d the
distance between the first two sites in the cluster. For each diagram in Fig. 27 we give in
Table 1 the sum of the distances of its links, i.e. the power of exp(−1/ξ).
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Interestingly, the lowest total distances are found in diagrams (a) and (d), while the latter
diagram is of a higher power (6) in terms of the correlated function than the former (5).
Hence, contrary to the case of independent spins (Appendix F), diagrams (a) and (d) give
the dominant contributions to the entropy. Summing the contributions of (a) and (d) we find

�S(i,j,k) = α
(5)
ijk(cij )

2(cjk)
2cki + α

(6)
ijk(cij )

3(cjk)
3

= (
α

(5)
ijk + α

(6)
ijk

)(
p(1 − p) exp(−1/ξ)

)3d
. (C.17)

To derive the coefficients α(5) and α(6), we impose that �S(i,j,k) is the opposite of (C.16).
We deduce that α(5) and α(6) are given by, respectively, (D.4) and (D.6).

The exact cancellation property discussed above has important consequences for the in-
ferred fields and couplings. Consider for instance the coupling Ji,i+2, which vanishes in the
1D-Ising model with nearest-neighbor interactions (C.1). As the connected correlation ci,i+2

is not equal to zero, a contribution to the coupling will be collected from the cluster (i, i +2)

itself, equal to

�Ji,i+2;(i,i+2) = −∂�S(i,i+2)

∂pi,i+2
. (C.18)

Other contributions will come from larger clusters. For instance the cluster (i, i + 1, i + 2)

will give an additional

�Ji,i+2;(i,i+1,i+2) = −∂�S(i,i+1,i+2)

∂pi,i+2
. (C.19)

The sum of the two contributions above vanishes due to the cancellation property. It can be
checked that the contributions coming from all the other clusters vanish, too, which makes
the coupling Ji,i+2 = 0 as it should.

Appendix D: Leading Diagrammatic Contributions to Small Cluster-Entropies

We analyze the dominant diagrams contributing to the cluster-entropies for the various val-
ues of the cluster sizes, K , in the limit of small connected correlations ckl .

D.3 Case K = 2

The entropy �S(i,j) of a 2-spin cluster is the sum of all diagrammatic contributions contain-
ing two spins and an arbitrary number of links between them, corresponding to the power
of the expansion parameter Mij = cij /(pi(1 − pi)pj (1 − pj )) (Fig. 26) and Appendix B.
For small values of Mij the largest contribution to �S(i,j) is the one with three links (cubic
power of Mij ), if the reference entropy S0 = SMF removes the two-link loop diagram. The
entropy contribution of this diagram was computed in [31], with the result

�S
(3)
i,j = αi,j (cij )

3, (D.1)

where

α
(3)
i,j = (2pi − 1)(2pj − 1)

6(pi)2(1 − pi)2(pj )2(1 − pj )2
. (D.2)

The superscript 3 refers to the power of the connected correlation.
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D.4 Case K = 3

For K = 3 the leading term to �S(i,j,k) in powers of Mij was not derived analytically in [31].
Based on the studies of the unidimensional Ising model and the independent spin models
(Appendix C), we find that the leading diagrams are diagrams (a), (b), (c) in Fig. 27 (bold
diagrams in Fig. 26), whose sum is given by

�S
(5)
i,j,k = α

(5)
ijk(cij )

2(cjk)
2cki + α

(5)
j ik(cij )

2cjk(cki)
2 + α

(5)
jkicij (cjk)

2(cki)
2, (D.3)

with

α
(5)
ijk = − (2pi − 1)(2pk − 1)

2(pi)2(1 − pi)2(pj )2(1 − pj )2(pk)2(1 − pk)2
. (D.4)

Note that α
(5)
ijk differs from α

(5)
j ik . We have also found the coefficients of the subsequent dia-

grams, of the order of M6. These diagrams are labelled by (d), (e), (f) in Fig. 27. Their total
contribution to the cluster-entropy is

�S
(6)
i,j,k = α

(6)
ijk(cij )

3(cjk)
3 + α

(6)
j ik(cij )

3(cki)
3 + α

(6)
jki(cjk)

3(cki)
3 (D.5)

with

α
(6)
ijk = (2pi − 1)(2pk − 1)

3(pi)2(1 − pi)2(pj )3(1 − pj )3(pk)2(1 − pk)2
. (D.6)

D.5 Generic Case K ≥ 4

The above results for K = 3 are easily generalized to any value of the cluster size K ≥ 4.
The diagrammatic expansion of a K-spin cluster includes all circuits where pairs of spins are
linked together. Each diagram with (one or two) links between il and il+1 (l = 1, . . . ,K − 1)
and (one or two) links between i1 and iK gives

�S
(2K−1)
i1,...ik

= (−1)K

2
∏K

l=1(pil )
2(1 − pil )

2

× [
(2pik−1 − 1)(2pik − 1)(ci1,i2)

2(ci2,i3)
2 . . . (cik−2,ik−1)

2cik−1,ik

+ (2pik−2 − 1)(2pik−1 − 1)(ci1,i2)
2(ci2,i3)

2 . . . cik−2,ik−1(cik−1,ik )
2 + · · ·

+ (2pi1 − 1)(2pi2 − 1)ci1,i2(ci2,i3)
2 . . . (cik−2,ik−1)

2(cik−1,ik )
2
]
. (D.7)

At the next order in power of Mij , each diagram with three links between il and il+1 (l =
1, . . . ,K − 1) gives a contribution

�S
(3K−3)
i1,...ik

= (−1)K−1(2pi1 − 1)(2pik − 1)

3(pi1)
2(1 − pi1)

2(pik )
2(1 − pik )

2
∏K−1

l=2 (pil )
3(1 − pil )

3

K−1∏

l=1

(cil ,il+1)
3.

(D.8)

Appendix E: Critical Correlation Length ξc for the Absolute Convergence

In this appendix, we briefly explain why the cluster-entropy series is absolutely convergent
if and only if the correlation length ξ is smaller than

ξc = �

logv
. (E.1)
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Here, � = 2 when the reference entropy is S0 = 0, and � = 3 when S0 = SMF . Parameter
v denotes the number of neighbors of a site on the lattice, supposed to be uniform. For
instance, v = 2D on a hypercubic lattice in dimension D ≥ 1.

Consider a set of K distinct points on the lattice. Let N (L) be the number of closed paths
of length L visiting all K points. We obviously have N (L) ≤ vL. Hence, the series

∑

L

N (L) exp(−�L/ξ) (E.2)

is convergent if ξ < ξc . Reciprocally, let L0 be the length of the shortest closed path C0

encircling the K points. A closed path of length L1 + L0 can be built from C0 by attaching
a closed loop of length L1 to any one of the sites in C0. Hence, for L ≥ L0 + 2, N (L) ≥
L0v

L−L0 . We deduce that the series (E.2) is divergent if ξ > ξc .

Appendix F: Distribution of Cluster-Entropies for the Independent Spin Model

We generate B configurations of N independent spins σi . Spin i is equal to 1 with probability
p and to zero with probability 1 − p (for simplicity we assume here that all the frequencies
pi are equal to the same value p). The empirical connected correlations cij computed from
the B sampled configurations of spins are generally non-zero. The marginal distribution of
cij is a normal law, with zero mean and standard deviation (48). The largest values of the
correlations are, for a system with N spins, of the order of

cMAX
ij = cB

√
4 logN, (F.1)

according to extreme value theory.
We have checked the validity of formulas (D.3) and (D.5) for, respectively, the cluster-

entropies �Sij and �Sijk with numerics carried out from randomly sampled configurations.
The agreement, for B = 106 sampled configurations, is excellent due to the small value of
cB 
 2 · 10−5.

F.6 Distribution of Cluster-Entropies for K = 2

To derive the analytical expression of the distribution in the N → ∞ limit, we use the small-
correlation formula (D.1) for �S(1,2), and the fact that the distribution of the connected
correlation is Gaussian. As a result, approximating α1,2 with its average value α obtained by
substituting p1 and p2 with p in (D.2), we obtain

HIS(�S(1,2)) =
exp

(− (�S(1,2))
2/3

2(cB )2α2/3

)

3α1/3
√

2π(cB)2(�S(1,2))2/3
. (F.2)

This distribution is a stretched exponential at infinity, and diverges in zero. Its standard
deviation is

σ�S(1,2)
= √

15α(cB)3 =
√

15(2p − 1)2

6p(1 − p)B3/2
. (F.3)

This analytical prediction is in very good agreement with the distribution of cluster-entropies
found from numerical data for large values of B , e.g. B = 106 for p = 0.024. For finite N ,
the largest correlations are given by (F.1), and cluster-entropies cannot exceed �S(1,2), of
the order of

�SMAX
(1,2) 
 (4 logN)3/2(σ�S(i,j)

)1/2. (F.4)



310 S. Cocco, R. Monasson

F.7 Distribution of the Cluster-Entropies for K = 3

The leading order contribution to the entropy of a 3-cluster is given by (D.3). We want
to calculate the distribution of �S(1,2,3) when the connected correlations cij are random
Gaussian variables, of zero mean and variance (cB)2. We neglect the correlations between
c12, c13, c23, which is legitimate for large B . Let us call x = �S(1,2,3)/(α(cB)5), with α given
by (D.4). We can easily evaluate the variance of each of the three terms of the sum in (D.3)
as the product of the variances of the three terms in the product, based on the approximation
that the connected correlations cij are independent stochastic variables. We obtain11

σ�Sijk
= 3

√
3(2p − 1)2(cB)5

2p6(1 − p)6
= 3

√
3(2p − 1)2

2p(1 − p)B5/2
. (F.5)

Let P (x) be the probability density of x. Though we have not been able to find a closed
expression for P (x), the asymptotics behavior of P for large or small arguments can char-
acterized analytically.

F.7.3 Large x Behavior

The Mellin transform of P [38] is
∫ ∞

0
dxP (x)xλ =

(
2

π

)3/2 ∫ ∞

0
dc12dc13dc23e

−F(c12,c13,c23) (F.6)

where

F(c12, c13, c23) = −1

2

(
c2

12 + c2
13 + c3

13

)

+ λ log
(
c12c

2
13c

2
23 + c2

12c13c
2
23 + c2

12c
2
13c23

)
. (F.7)

The tail of P (x) at large x can be studied by considering large values of λ. We expect
the dominant contribution to the multiple integral on the right hand side of (F.6) to come
from large correlations. The location of the main contribution to the integral is the value of
(c12, c13, c23) which maximizes F . As F is invariant under any permutation of its arguments,
we look for a maximum where c12 = c13 = c23 ≡ c∗. A straigthforward calculation shows
that

c∗(λ) =
√

5

3
λ, F ∗(λ) = 5

2
λ logλ + λ

(
log 3 + 5

2
log

5

3
− 5

2

)
. (F.8)

We now use the saddle-point method again, this time to estimate the integral on the left hand
side of (F.6). We obtain

max
x

[
logP (x) + λ logx

] = F ∗(λ), (F.9)

which is true when λ is very large. Hence, F ∗(λ) is the Legendre transform of logP (x).
Solving (F.9) gives

logP (x) 
 −3

2

(
x

3

)2/5

(F.10)

at large x. The distribution of the cluster entropies �S(1,2,3) thus follows a stretched expo-
nential with exponent 2

5 . This decay is much slower than an exponential, and leads to large
tails as can be seen from Fig. 7.

11With N = 40, p = 0.024, we find that the standard deviation is of the order of 10−13 for B = 106, and

2 · 10−11 for B = 105, see Fig. 7.
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F.7.4 Small x Behavior

In order for the rescaled entropy x to be small, at least one among the three correlations
should be small according to (D.3). Without restriction, we may assume that c12 is the small-
est of the three correlations. As c12 appears once with power one, and twice with power two
in (D.3), we approximate x 
 c12c

2
13c

2
23. The Mellin transform of P is, for negative λ,

∫ ∞

0
dxP (x)xλ 
 3

(∫ ∞

0
dc

2√
2π

cλe−c2/2

)(∫ ∞

c

dc
2√
2π

c2λe−c2/2

)2

. (F.11)

The largest pole is located in λ = − 1
2 , and is of order 2. According to standard results on the

inversion of Mellin transforms [38], we obtain a precise characterization of the divergence
of the probability density at small x,

P (x) 
 C
(− logx)√

x
, (F.12)

where C is a constant.

F.8 Distribution of Cluster-Entropies for Generic K ≥ 4

In general, for K ≥ 3, the leading contribution to �S(i1,i2,...iK ) (D.7) contains the sum of
K × (K − 1)!/2 terms, each one being the product of K random variables, among which
(K − 1) are elevated to power two, and 1 is elevated to power 1. The factor K comes from
the fact that there are K way of choosing the single link in the circuits with K spins. The
factor (K −1)!/2 is the number of non-equivalent circuits going through K spins. We define
the rescaled entropy x through

x = |�S(i1,i2,...iK )| × 2(p(1 − p))2K

√
K!
2 (2p − 1)2(cB)2K−1

. (F.13)

The approach followed in Sect. F.7 to calculate the asymptotic behavior of the probability
density P of x for K = 3 can be extended without difficulty to any value of K > 3. We find
that P (x) diverges when x → 0, with

P (x) = C
(− logx)K−2

√
x

(F.14)

where C is a constant. Hence the shape of the distribution of x is, up to logarithmic terms,
independent of K . On the contrary, the tail of the distribution for large x is very sensitive
to K ,

logP (x) 
 − K

2(K − 1
2 )2

(
x

K

)2/(2K−1)

. (F.15)

As in the K = 3 case, the distribution of the cluster entropies �S follows a stretched ex-
ponential. The exponent of the stretched exponential decreases with K . The variance of the
distribution can be easily evaluated, with the result

σ�S(i1,i2,...iK )
=

√
K!/2(

√
3)K−1(2p − 1)2(cB)2K−1

2(p(1 − p))2K
. (F.16)
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Fig. 28 Half grid representing the index (i, j) of the entries of the inverse susceptibility matrix, with i < j

(a). Black circles locate the nearest-neighbors and the diagonally opposed sites (k, l) of (i, j) (cross), with
i = 4 and j = 9 (b), 6 (c), 5 (d)

Appendix G: Inverse Susceptibility Matrix for the Unidimensional Ising Model

Hereafter, we want to invert the matrix χ , whose elements are given in (60). The matrix is
of dimension 1

2 N(N − 1), and each element is labelled by two indices (i, j) and (k, l), with
i < j and k < l. Each index (i, j) can be represented by a site of coordinates i and j on the
half-grid of Fig. 28(a). We now show that the non-zero entries of the inverse susceptibility
matrix, (χ−1)ij,kl , are in one-to-one correspondence with the sites (i, j) and (k, l) that are
either identical, or nearest neighbors, or diagonally opposed on the elementary mesh of the
half-grid (Fig. 28(b, c, d)). Depending on the value of the difference j − i, the number of
those sites is equal to 9, 8, or 6.

We start with the case j − i ≥ 3 (Fig. 28(b)). By symmetry, the nine unknown matrix
elements (χ−1)ij,kl take only three independent values, denoted by γ for (k, l) = (i, j), β

for (k, l) and (i, j) nearest neighbors, and α for (k, l) = (i ± 1, j ± 1). We now write the
matrix inversion identity,

∑

k<l

(
χ−1

)
ij,kl

χkl,mn = δi,mδj,n, (G.1)

for various values of (m,n). Let d = j − i. For m = i, n = j , constraint (G.1) gives

γ
(
1 − x2d

) + 2β
(
2x − x2d−1 − x2d+1

) + α
(
4x2 − x2d−2 − x2d − x2d+2

) = 1, (G.2)

which should hold for all d ≥ 3. We deduce two coupled equations for the three unknown
variables:

γ + 2

(
x + 1

x

)
β + 4

(
x + 1

x

)2

α = 0, (G.3)

γ + 4xβ + 4x2α = 1. (G.4)

For m = i + 1, n = j , constraint (G.1) is equivalent to

γ
(
x − x2d−1

) + β
(
1 + 3x2 − x2d−2 − 3x2d

)

+ α
(
2x + 2x3 − x2d−3 − 2x2d−1 − x2d+1

) = 0. (G.5)

The d-dependent term in the equation above cancels by virtue of (G.3). We are left with an
additional equation over α,β, γ :

γ x + β
(
1 + 3x2

) + 2x
(
1 + x2

)
α = 0. (G.6)
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By symmetry of the matrices χ ,χ−1, no new constraint is obtained when the values of m,n

are further varied. Solving (G.3), (G.4), (G.6) we obtain

α = x2

(1 − x2)2
, β = −x(1 + x2)

(1 − x2)2
, γ = (1 + x2)2

(1 − x2)2
. (G.7)

The analysis of the other cases j = i + 2 (Fig. 28(c)) and j = i + 1 (Fig. 28(d)) can be
done along the same lines. We do not write the calculations in details, and simply report the
results. The case j = i + 2 is very similar to the previous case. There are 8 coefficients to be
calculated, with three independent values, α′, β ′, γ ′. It turns out that

α′ = α, β ′ = β, γ ′ = γ. (G.8)

As for the last case, j = i + 1, we call α′′ the values of the entries of χ−1 with (k, l) =
(i − 1, j − 1), (i − 1, j + 1), (i + 1, j + 1), β ′′ the values of the entries with (k, l) = (i −
1, j), (i, j + 1), and γ ′′ the diagonal element corresponding to (k, l) = (i, j). After some
elementary algebra, we find

α′′ = α, β ′′ = β, γ ′′ = 1 + x2 + x4

(1 − x2)2
. (G.9)

All those results are reported in (61).
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