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Abstract We present two Bayesian procedures to infer
the interactions and external currents in an assembly of
stochastic integrate-and-fire neurons from the record-
ing of their spiking activity. The first procedure is based
on the exact calculation of the most likely time courses
of the neuron membrane potentials conditioned by the
recorded spikes, and is exact for a vanishing noise
variance and for an instantaneous synaptic integration.
The second procedure takes into account the presence
of fluctuations around the most likely time courses of
the potentials, and can deal with moderate noise levels.
The running time of both procedures is proportional
to the number S of spikes multiplied by the squared
number N of neurons. The algorithms are validated
on synthetic data generated by networks with known
couplings and currents. We also reanalyze previously
published recordings of the activity of the salamander
retina (including from 32 to 40 neurons, and from
65,000 to 170,000 spikes). We study the dependence
of the inferred interactions on the membrane leaking
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time; the differences and similarities with the classical
cross-correlation analysis are discussed.
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1 Introduction

Over the past decades, multi-electrode recordings
(Taketani and Baudry 2006) have unveiled the nature
of the activity of populations of neural cells in various
systems, such as the vertebrate retina (Schnitzer and
Meister 2003), cortical cultures (Tang et al. 2008), or
the prefrontal cortex (Peyrache et al. 2009). The ob-
servation of substantial correlations in the firing ac-
tivities of neurons has raised fundamental issues on
their functional role (Romo et al. 2003; Averbeck et al.
2006). From a structural point of view, a challenging
problem is to infer the network and the strengths of
the functional interactions between the neural cells
from the spiking activity (Fig. 1(a)). Powerful inference
procedures are needed, capable to handle massive data
sets, with millions of spikes emitted by tens or hundreds
of neurons.

A classical approach to infer functional neural
connectivity is through the study of pairwise cross-
correlations (Perkel et al. 1967; Aersten and Gerstein
1985). The approach was applied in a variety of neural
systems, including the auditory midbrain of the grass-
frog (Epping and Eggermont 1987), the salamander
retina (Brivanlou et al. 1998), the primate and rat pre-
frontal cortex (Constantidinidis et al. 2001; Fujisawa
et al. 2008). Other approaches, capable of taking
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into account network-mediated effects, were proposed
based on concepts issued from statistics and graph
theory (Seth and Edelman 2007; Dahlhaus et al. 1997;
Sameshima and Baccalá 1999; Jung et al. 2010), infor-
mation theory (Bettencourt et al. 2007), or statistical
physics (Schneidman et al. 2006; Shlens et al. 2006).

An alternative approach is to assume a particu-
lar dynamical model for the spike generation. The
generalized linear model, which represents the gen-
eration of spikes as a Poisson process with a time-
dependent rate is a popular framework (Brown et al.
2001; Truccolo et al. 2005; Pillow et al. 2008). The
Integrate-and-Fire (IF) model, where spikes are emit-
ted according to the dynamics of the membrane poten-
tial is another natural candidate (Gerstner and Kistler
2002; Jolivet et al. 2004). The problem of estimating
the model parameters (external current, variance of the
noise, capacitance and conductance of the membrane)
of a single stochastic IF neuron from the observation of
a spike train has received a lot of attention (Paninski
et al. 2004; Pillow et al. 2005; Mullowney and Iyengar
2008; Lansky and Ditlevsen 2008). Few studies have
focused on the inference of interactions in an assembly
of IF neurons (Makarov et al. 2005). Recently, we
proposed a Bayesian algorithm to infer the interactions
in a network of stochastic perfect integrators when the
synaptic integration is instantaneous and the noise is
vanishingly small (Cocco et al. 2009).

In the present work we introduce a Bayesian algo-
rithm to infer the couplings and the external currents
in an assembly of leaky IF neurons, and in presence
of moderate input noise (Fig. 1(a)). The computational
time grows as the product of the number of recorded
spikes, and the square of the number of neurons. We
validate the algorithm on synthetic data, and apply
it to real recordings of the ganglion cell activity in
the salamander retina, presented with natural visual

stimuli, and in the absence of stimulus (spontaneous
activity).

2 Materials and methods

2.1 Definition of the Leaky Integrate-and-Fire model

In the Leaky Integrate-and-Fire (LIF) model, the mem-
brane potential Vi(t) of neuron i at time t obeys the
first-order differential equation,

C
dVi

dt
(t) = −g Vi(t) + Isyn

i (t) + Ii + ηi(t) (1)

where C and g are, respectively, the capacitance and
conductance of the membrane. The ratio τ = C/g is the
membrane leaking time. Isyn

i (t) is the synaptic current
coming from the other neurons and entering the neuron
i at time t:

Isyn
i (t) =

∑

j("=i)

Jij

∑

k

δ(t − t j,k) (2)

where Jij is the strength of the connection from neuron
j onto neuron i (Fig. 1(a)); t j,k is the time at which
neuron j fires its kth spike. We assume that synap-
tic inputs are instantaneously integrated, i.e. that the
synaptic integration time is much smaller than all the
other time scales, including τ . Our method for inferring
the interactions relies on this assumption, and should
be modified in the presence of synaptic integration
kernels with temporal filtering. Ii is a constant ex-
ternal current flowing into neuron i (Fig. 1(a)), and
ηi(t) is a fluctuating current, modeled as a Gaussian
noise process: 〈ηi(t)〉 = 0, 〈ηi(t) η j(t′)〉 = σ 2 δij δ(t − t′).
The noise standard deviation, σ , has here the dimen-
sion of a current times the square root of a time. An
alternative definition would consist in rescaling σ with

time
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Fig. 1 (a) Extra-cellular recordings give access, through spike-
sorting, to the times ti,k of the spikes emitted by a population of
neurons. We want to infer the values of the interactions Jij and
external inputs Ii of the network most likely to have generated

the recorded activity. (b) Example of firing activity of N = 2
neurons. The top panel shows three spikes emitted by neuron 1.
Panels (a)–(c) show possible activities of neuron 2, with equal
average firing rates but with different timings
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a time dependent factor, e.g.
√

τ ; our definition allows
us to reach the perfect integrator limit (τ →∞) while
keeping σ fixed.

The neuron i remains silent as long as Vi remains
below a threshold potential Vth. If the threshold is
crossed at some time t0, i.e. Vi(t0) = Vth, then a spike
is emitted, and the potential is reset to its resting
value: V(t+0 ) = 0. The dynamics then resumes following
Eq. (1).

2.2 Likelihood of the spiking times for given
interactions and currents

Let J = {Jij} and I = {Ii} denote the sets of, respec-
tively, the interactions and currents. Let ti,k ∈ [0; T] be
the time at which neuron i emits its kth spike; T is
the duration of the recording. How can we infer the
interactions and currents from the observation of the
spiking activity? Consider the raster plots in Fig. 1(b).
In pattern a, the timings of the spikes of neuron 1 do
not seem to be correlated to the activity of neuron 2.
Hence, we may guess that there is no interaction from
neuron 2 to neuron 1 (J12 = 0). In pattern b , a spike of
neuron 1 is likely to follow a spike of neuron 2, which
suggests that the interaction J12 is positive. Conversely,
in pattern c, it seems that the firing of neuron 2 hinders
the firing of neuron 1, which indicates that J12 has a
negative value.

This crude reasoning can be made mathematically
rigorous in the framework of statistical inference
(Cover and Thomas 2006). Let us define the likelihood
P(T |J , I) of a set of spiking times, T = {ti,k}, given
J and I. According to Bayes rule the most likely
couplings and currents, Ĵ and Î, given the set of spiking
times T can be inferred through the maximization of
P(T |J , I).1 Due to the statistical independence of the
noises ηi from neuron to neuron, the likelihood P of
T given J , I can be written as the product of First-
Passage Time (FPT) probabilities,

P(T |J , I) =
∏

i,k

pF PT(ti,k+1|ti,k, {t j,%}, {Jij}, Ii) . (3)

Here pF PT denotes the probability that Vi crosses Vth

for the first time at time ti,k+1, starting from 0 at time
ti,k and conditioned to the inputs from the other neu-
rons at times t j,%, with ti,k < t j,% < ti,k+1. As the synaptic
integration is instantaneous, an incoming spike from
neuron j results in a (positive or negative) jump of the
potential Vi by Jij/C; pF PT can therefore be interpreted

1We consider here that the a priori measure over the couplings
and currents is flat.

as the FPT density probability for a one-dimensional
Ornstein–Uhlenbeck process with a time-dependent
force. It is important to stress that the presence of the
products over the spike intervals in Eq. (3) does not
entail that the spiking times are independent.

Consider now the potential Vi(t) during the inter-
spike interval (ISI) [ti,k; ti,k+1]. The boundary condi-
tions are Vi(t+i,k) = 0 (reset of the potential right after
a spike), and Vi(t−i,k+1) = Vth (condition for firing). At
intermediate times, the potential can take any value
smaller than Vth. The logarithm of the probability of
a dynamical path (time course) of the potential over
the kth ISI of neuron i is, after multiplication by the
variance σ 2 of the noise,

L[Vi(t); k, T ,J , I]

= −1
2

∫ ti,k+1

ti,k
dt ηi(t)2

= −1
2

∫ ti,k+1

ti,k
dt
[

C
dVi

dt
(t) + g Vi(t)− Isyn

i (t)− Ii

]2

, (4)

according to the Gaussian nature of the noise ηi(t) and
to the dynamical equation of the LIF (Eq. (1)).

2.3 Dynamical equations for the optimal potential
and noise

While no exact expression is known for pF PT , it can
be analytically approximated by the contribution of the
most probable dynamical path for the potential, V∗

i (t)
(Paninski 2006). This approximation becomes exact
when the standard deviation σ of the noise is small.
The idea is to replace the distribution of paths for the
potential Vi(t) with a single, most likely path V∗

i (t),
which we call optimal. We now explain how to derive
V∗

i (t) through the condition that the log–probability L
(Eq. (4)) is maximal.

Let us assume first that V∗
i (t) < Vth. Then, the deriv-

ative of L in Eq. (4) with respect to V∗
i (t) must vanish,

which gives

δL
δVi(t)

∣∣∣∣
V∗

i

= −C2 d2V∗
i

dt2 (t) + g2 V∗
i (t) + C

dIsyn
i

dt
(t)

− g Isyn
i (t)− g Ii = 0 . (5)

We now turn this second order differential equation
for the optimal potential into a first order differential
equation at the price of introducing a new function,
η∗i (t), and a new first order differential equation for this
function. It is straightforward to check that the solu-
tion of

C
dV∗

i

dt
(t) = −g V∗

i (t) + Isyn
i (t) + Ii + η∗i (t) (6)
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is a solution of the optimization equation (Eq. (5)) if
η∗i (t) fulfills

dη∗i
dt

(t) = g
C

η∗i (t) = η∗i (t)
τ

, (7)

where τ is the membrane leaking time. The similarity
between Eqs. (1) and (6) allows us to interpret η∗i (t)
as a current noise. However, this noise is no longer
stochastic, but rather it follows the deterministic path
solution of Eq. (7). We will, therefore, in the following
refer to η∗i (t) as the optimal noise. η∗i (t) corresponds to
the most likely value the noise takes given the set of
spiking times. Solving Eq. (7) shows that the optimal
noise is an exponential function of the time:

η∗i (t) = η exp(+t/τ) (V∗
i (t) < Vth) , (8)

where η is a constant, which we call noise coefficient.
It may happen that the optimal potential only

reaches the threshold without actually crossing it at
intermediate times. When this is the case, the optimal
potential equals V∗

i (t) = Vth and its derivative with
respect to the time vanishes. The expression for the
optimal noise can be then read from Eq. (6), and is
given by

η∗i (t) = g Vth − Isyn
i (t)− Ii (V∗

i (t) = Vth) . (9)

Equation (9) ensures that the potential does not cross
the threshold value at a time t < ti,k+1.

Despite their apparent simplicity, Eqs. (6), (8) and
(9) are not easy to solve, due mainly to the interplay
between the two regimes, V∗ < Vth and V∗ = Vth, men-
tioned above. The determination of V∗

i (t) was achieved
numerically by Paninski for a single neuron (Paninski
2006). We now sketch the procedure to determine V∗

i (t)
rapidly, even for tens of neurons. The procedure relies
on the search for contacts, that is, times at which the
optimal potential touches the threshold. There are two
types of contacts: contacts coinciding with a synaptic
input (the potential touches the threshold at time t j,k),
and contacts arising in between two inputs. In the
absence of leakage, only the former type of contacts
matter, and a search procedure to locate those isolated-
time contacts was proposed by Cocco et al. (2009). In
the presence of leakage, both types of contacts have to
be taken into account. The search procedure is more
complex, and is explained below.

2.4 Fixed Threshold procedure: optimal paths
for the potential and the noise

We assume in this Section that the couplings and
currents are known. Consider neuron i at time

t ∈ [ti,k; ti,k+1], where k is the index of the ISI. The
initial and final conditions for the optimal potential
are: V∗

i (t+i,k) = 0 and V∗
i (t−i,k+1) = Vth. In between, V∗

i (t)
obeys the LIF evolution equation (Eq. (6)) with an
optimal ‘noise’ η∗i (t). η∗i (t) can be interpreted as a non-
stochastic, external, time-dependent current to be fed
into the neuron in order to drive its potential from 0 to
Vth, given the synaptic couplings. The expressions for
the optimal ‘noise’ are given by Eq. (8) when V∗

i (t) <

Vth, and Eq. (9) when the optimal potential V∗
i (t) is

equal to the threshold value.
When V∗

i (t) reaches the threshold at a time coincid-
ing with an incoming spike, the coefficient η in Eq. (8)
may abruptly change through an active contact; the
notion of active contact is illustrated in the simple case
of a neuron receiving a single spike in Appendix A.1.
The potential V∗

i (t) may also touch the threshold with-
out crossing it, and the noise may remain constant
over some time interval; we call such an event passive
contact. That the potential can brush, or remain at
the threshold level without producing a spike is made
possible by the σ → 0 limit. We will discuss later on the
validity of this calculation, and how to modify it when
the noise standard deviation, σ , does not vanish. Both
types of contacts are shown in Fig. 2(a).

Let us explain how the positions of active and pas-
sive contacts can be determined. Let t1 < t2 < . . . <

tM be the emission times of the spikes arriving from
the neurons interacting with i during the time interval
[t0 ≡ ti,k; tM+1 ≡ ti,k+1], and J1, J2, . . . , JM the corre-
sponding synaptic strengths.2 Let V0 = 0 be the initial
value of the potential, and m0 = 1 be the index of the
first input spike. If the time is small enough the optimal
potential is surely below the threshold value. According
to Eq. (8) the optimal noise is an exponential with noise
coefficient η, and the optimal potential is obtained by
solving Eq. (6) with the result,

Vi(η, t) = V0 e−(t−t0)/τ +
M∑

m=m0

Jm

C
e−(t−tm)/τ θ(t − tm)

+ Ii

g
(
1− e−(t−t0)/τ

)
+ η

g
sinh
(

t − t0
τ

)
(10)

where θ is the Heaviside function. It is tempting to look
for the value of η such that a spike is emitted at time
tM+1, defined by the implicit equation Vi(η, tM+1) =
Vth. However, the corresponding potential might not

2Due to the limited temporal resolution of the measurement two
inputs of amplitudes J and J′ can apparently arrive at the same
time; if so, we consider, based on models (1) and (2), that a single
input of amplitude J + J′ enters the neuron.
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Fig. 2 (a and b) Sketches of the optimal potentials V∗ (top,
black curves) and noises η∗ (bottom, black curves) for one neuron
receiving several inputs from two other neurons (red and green
impulses, middle, with Jred = −Jgreen = .2 CVth). The membrane
conductance is g = .8I/Vth. The jump in the optimal noise con-
secutive to an active contact is always positive. (a) Illustration
of Passive (P) and Active (A) contacts. (b) Comparison with
numerical simulations, averaged over ∼ 5,000 samples, for σ̄ =
.07 (red), .18 (purple), .36 (blue); noise curves are averaged over
the time-window 't = .015 τ . (c) Dashed lines represent possible
paths for the potential when the noise standard deviation, σ , does
not vanish. The amplitude of the fluctuations of the potential

around V∗ at the mid-point of the ISI is symbolized by the double
arrow line. (d) Probability ps(δt|V) that an Ornstein–Uhlenbeck
process starting from V does not cross the threshold Vth for a time
δt = 3.5 τ . Parameters are gVth/I = 1.2, σ̄ = .15. The tangent line
to ps in V = Vth crosses the ps = 1

2 line in VM
th . (e) System of

two IF neurons, with gVth/I1 = 1.5, gVth/I2 = 2., J12/(CVth) =
.1, J21 = 0, σ̄ = .25. The dashed and full black curves represent
the optimal potentials for neuron 1 calculated by, respectively,
the Fixed and Moving Threshold procedures; for the latter, VM

th is
shown in red. One random realization of the membrane potential
(averaged over a 10 ms time–window) is shown for comparison
(blue curve)

be below threshold at all intermediate times t0 < t <

tM+1. Instead, we look for the smallest noise capable
of driving the potential from its initial value V0 into
contact with the threshold:

η∗ = min
{
η : max

t0<t≤tM+1
Vi(η, t) = Vth

}
. (11)

As the potential Eq. (10) is a monotonically increasing
function of η, a value of the noise smaller than η∗ would
not be able to bring the potential to the threshold and
to trigger a spike at any time, while a value larger than
η∗ would violate the condition that the potential cannot
cross the threshold on the time interval t0 < t < tM+1,
see Appendices A.2 and A.3.

We denote by tc the time at which the threshold
is reached: Vi(η

∗, tc) = Vth. The solution to the mini-
mization problem (Eq. (11)) can be found following
the procedure described below. Briefly speaking, the
procedure identifies candidates for the contact points,
selects the best one, and is iterated until the ISI is
completed.

– Active candidates: we first consider the possibility
that the contact time tc coincides with a synap-
tic input. We therefore calculate for each m =
m0, . . . , M + 1, the root ηm of the implicit equation
V(ηm, tm) = Vth. The smallest of those M noise
coefficients is called η∗a .

– Passive candidates: we then consider the case
where the contact time tc may not be simulta-
neous to any input, but rather fall between two
successive spikes. For each 0 ≤ m ≤ M, we look
for a noise coefficient ηp and a contact time tc ∈
[tm; tm+1] fulfilling the set of coupled equations
Vi(ηp, tc) = Vth, V̇i(ηp, tc) = 0, expressing that the
potential reaches and does not cross the threshold.
These two equations can be solved analytically, see
expressions (51) and (52) in Appendix B. We call
η∗p the smallest noise coefficient corresponding to
those possible passive contacts.

– Selection of the best candidate:

• if η∗a < η∗p, the contact is active and takes place
at time tc = tm∗ for a certain m∗ comprised be-
tween m0 and M + 1 (Fig. 2(a)). The optimal
potential and noise in the time interval [t0, tm∗ ]
are given by, respectively, Eqs. (10) and (8)
with η = η∗.

• If η∗p < η∗a , the contact is passive, and takes
place in the time interval [tmc−1; tmc] for a
certain mc comprised between m0 and M + 1.
The potential will remain equal the threshold,
and the noise will remain constant according
to Eq. (9) over a finite time interval [tc; tc +
'c], after which both V∗

i (t) and η∗i (t) resume
their course (Fig. 2(a)). 'c is the smallest
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delay allowing the potential to be in active
contact with the threshold at a later time tm∗ ,
with m∗ ≥ mc. The correctness of this statement
is ensured by the fact that there can be at
most one passive contact between two active
contacts (Appendix B); hence, a passive con-
tact is necessarily followed by an active con-
tact (or by the spike at the end of the ISI).
For every integer m comprised between mc

and M + 1, we calculate analytically the de-
lay 'c(m) such that the potential reaches the
threshold in tm, see Eq. (53) in Appendix B;
the smallest among those delays and the cor-
responding value of m are, respectively, 'c

and m∗.

– Iteration: we are left with the calculation of η∗i (t)
and V∗

i (t) on the remaining part of the inter-spike
interval, [tm∗ ; tM+1]. To do so, we iterate the previ-
ous steps. We first update t0 ← tm∗ , m0 ← m∗ + 1,
V0 ← Vth + θ(−Jm∗) Jm∗

C in Eq. (10), and look for
the lowest noise producing a new contact over the
interval [t0, tM+1] using Eq. (11) again. The proce-
dure is repeated until the whole inter-spike time
interval is exhausted.

As a result a sequence of values for η∗ is built, each
value corresponding to the noise coefficient (Eq. (11))
between two successive active contact points.

2.5 How small should the variance of the noise be?

The LIF dynamical equation (Eq. (1)) involves quan-
tities, such as the membrane potential, the membrane
conductance, the input current, which have different
physical units. A straightforward algebra shows that
Eq. (1) is equivalent to the following differential
equation,

dV̄
dt̄

= −V̄ +
∑

j("=i)

J̄ij

∑

k

δ(t̄ − t̄ j,k) + Īi + η̄i(t̄) , (12)

which involves only dimensionless variables (denoted
with overbars): t̄ = t g

C , V̄ = V
Vth

, J̄ij = Jij

C Vth
, Īi = Ii

g Vth
.

The noise has zero mean, and covariance 〈η̄i(t̄)η̄ j(t̄′)〉 =
σ̄ 2δijδ(t̄ − t̄′), where

σ̄ = σ

Vth
√

gC
. (13)

Intuitively, we expect that the potential Vi(t) will not
depart much from the optimal path V∗

i (t), and, hence,
that our inference algorithm will be accurate if the
dimensionless standard deviation of the noise, σ̄ , is
small. We illustrate this claim on the simple case of a
neuron receiving a few inputs from two other neurons

during two inter-spike intervals (ISI) of length 2τ , see
Fig. 2(b). The times of the input spikes were randomly
chosen, once for all, before the simulations started.
Then, we numerically integrated the LIF equation for
the potential (Eq. (1)) for 106 random realizations of
the noise η(t). The realizations such that the neuron
spiked twice, with ISIs falling in the range [1.99, 2.01] ×
τ were considered as successful. The number of suc-
cessful realizations was comprised between 103 and 104,
depending on the noise level, σ . We show in Fig. 2(b)
the paths of the potential and of the noise, averaged
over successful realizations, and compare them to the
optimal potential, V∗, and noise, η∗. As expected the
agreement is very good for small σ . We now make this
observation quantitative.

Consider the kth inter-spike interval [ti,k; ti,k+1] of
neuron i. The optimal potential V∗

i (t) is the time-course
followed by the LIF membrane potential Vi(t) in the
σ → 0 limit. When the noise variance is not vanishing,
the potential Vi(t) can slightly deviate from the optimal
path (Fig. 2(c)). Deviations are null at the extremities
of the inter-spike interval due to the boundary con-
straints on the potential. A measure of the magnitude
of the fluctuations of the potential is thus given by the
variance of Vi(t)− V∗

i (t) at the middle of the ISI, i.e.
t = 1

2 (ti,k + ti,k+1) (Fig. 2(c)). This variance can be calcu-
lated when the constraint that the fluctuating potential
Vi(t) does not cross the threshold at times t < ti,k+1 is
relaxed, see Appendix D. We obtain

〈(Vi − V∗
i )2〉

V2
th

= σ̄ 2 tanh
(

ti,k+1 − ti,k
2τ

)
, (14)

where τ is the membrane leaking time. As expected,
if σ̄ is small, so are the fluctuations of the potential
around the optimal path.

However, the reverse statement is false. Consider,
for instance, the case of a perfect integrator, for which
the dimensionless σ̄ Eq. (13) is virtually infinite. Send-
ing g → 0 in (14), we obtain

〈(Vi − V∗
i )2〉

V2
th

= σ 2 (ti,k+1 − ti,k)
2 (C Vth)2 (g → 0) . (15)

Hence, the relative fluctuations of the potential are
small if the typical amplitude of the electrical charge
entering the neuron during the ISI due to the noise,
σ
√

ti,k+1 − ti,k, is small compared to the total charge
C Vth necessary to reach the threshold from the rest
state. It is interesting to note that this statement
applies to the LIF, too. Whatever the level of the
noise, σ̄ , the relative fluctuations of the potential
Eq. (14) can be made small if the duration of the ISI
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is short enough compared to the membrane leaking
time, τ .

2.6 Beyond the weak-noise limit: the Moving
Threshold procedure

For large values of σ , a discrepancy between the opti-
mal potential and the potential obtained in simulations
appears (Fig. 2(b)). A general observation is that the
optimal potential calculated by the Fixed Threshold
procedure can get very close to Vth, while the true
potential stays further away from the threshold to
avoid premature firing. To further illustrate this effect,
consider a system of two IF neurons, 1 and 2, both
fed with an external current. In addition, neuron 1
receives positive inputs from neuron 2 (J12 > 0), and
neuron 2 is independent from the activity of neuron 1
(J21 = 0). In presence of a strong noise, the optimal po-
tential calculated from the Fixed Threshold procedure
quickly reaches a stationary value close to Vth, while the
random potential obtained from simulations fluctuates
around a much lower level (Fig. 2(e)). The presence of
a strong noise biases the membrane potential to lower
values to prevent early spiking. A heuristic approach to
reproduce this bias consists in decreasing the threshold
from Vth to a time- and context-dependent value, VM

th .
We now explain how this moving threshold, VM

th , is
determined.

Consider first a neuron with no synaptic input, fed
with an external current I, during the inter-spike in-
terval [ti,k; ti,k+1]. We call ps(δt|V) the probability that
the potential, taking value V at time ti,k+1 − δt, remains
below the threshold at any larger time t, with ti,k+1 −
δt < t < ti,k+1. This probability depends on the current
I, and can be expressed for an arbitrary level of noise,
σ , as a series of parabolic cylinder functions (Alili et al.
2005). Figure 2(d) show ps as a function of V for some
characteristic values of the parameters. The probability
of survival, ps, sharply decreases to zero when V gets
close to the threshold, V = Vth. We model this outcome
by the following approximation, which involves a new,
effective threshold VM

th : we consider that the processes
starting from a value of the potential V > VM

th will not
survive for a time delay δt. In other words, the true
threshold, Vth, is changed into a ’moving’ threshold,
which is a function of the current I, the time δt, and
the parameters g, C, σ . A simple way to define VM

th is to
look at the intersection of the tangent line to ps in V =
Vth with, say, the ps = 1

2 line;3 the resulting expression

3This choice is arbitrary; other values, ranging from 1
4 to 1 have

been tried, do not qualitatively affect the results presented later
in this article.

for VM
th is given in Appendix E. Figure 2(e) shows

the output of the Moving Threshold procedure on the
simple 2-neuron system described above. The optimal
potential, ’pushed’ down by the moving threshold VM

th is
much lower than in the Fixed Threshold approach and
in much better agreement with the random realization
of the membrane potential. More details are given in
Section 3.1.4.

To account for the existence of synaptic inputs, we
may choose the parameter I entering the calculation
of ps and VM

th to be the value of the effective current
Ie

i = Ii +
∑

j("=i)

Jij f j, rather than the external current Ii

itself. Here, f j is the average firing rate, defined as
the number of spikes fired by neuron j divided by the
duration T. Contrary to the external current Ii, the
effective current Ie

i takes into account the (average)
input current coming from other neurons. This choice
was done in the numerical experiments reported in the
Results section. To further speed up the calculations,
we derive the value of VM

th for discrete-values delays
δt only; in a discrete interval, VM

th is kept to a constant
value.

Alternative heuristic approaches to deal with the
presence of moderate noise can be proposed. In
Appendix E we introduce a cost-function for the
effective current, whose effect is also to decrease the
optimal potential. These approaches are effective when
the optimal potential calculated by the Fixed Threshold
procedure quickly saturates to a level close to Vth. More
precisely, we expect the Moving Threshold procedure
to be efficient if the membrane leaking time is smaller
or comparable to the ISI, and the leaking current,
1 gVth, is larger or equal to the external current, I.

2.7 Maximization of the log-likelihood to infer
the interactions and currents

The Fixed or Moving Threshold procedures allow us
to calculate the optimal paths for the potential and the
noise, given the couplings and currents. Knowledge of
those paths gives us also access to the logarithm of the
likelihood P in the σ → 0 limit,

L∗(T |J , I) = lim
σ→0

σ 2 log P(T |J , I)

=
∑

i,k

L[V∗
i (t); k, T ,J , I]

= −1
2

∑

i,k

∫ ti,k+1

ti,k
dt η∗i (t)

2 (16)

Since L∗ in Eq. (16) involves the sum over different
neurons, the maximization over the couplings Jij and
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the current Ii of neuron i can be done independently
of the other couplings Ji′ j and currents Ii′ (i′ "= i). For-
mally, we are left with N independent inferences of the
most likely couplings and current for a single neuron,
in presence of the spikes emitted by the N − 1 other
neurons. As a consequence neurons ‘decouple’ in the
inverse problem: the couplings Jij and the current Ii

of neuron i can be inferred independently of the other
couplings Ji′ j and currents Ii′ (i′ "= i).

L defined in Eq. (4) is a negative-semidefinite
quadratic function of its arguments Vi(t), Jij, Ii. It is
thus a concave function of the couplings and the cur-
rents. This property holds for L∗ (Eq. (16)) (Boyd and
Vandenberghe 2004). In order to infer the most likely
current Ii and couplings Jij, we start from an arbitrary
initial value e.g. Ii = Jij = 0. The full path of the opti-
mal noise, η∗i (t), over all the inter-spike intervals k of
neuron i, is calculated following the above procedure.
We then update the couplings and the current using
the Newton–Raphson method to maximize log P, i.e.
to minimize the integral of the squared optimal noise,
see Eq. (16). Convergence follows from the concavity
property stated above. The procedure requires the ex-
pressions for the gradient and the Hessian matrix of
log P with respect to the couplings Jij and the current
Ii, which can be calculated exactly from Eqs. (16) and
(10). Note that log P is piecewise continuously twice-
differentiable; while the gradient is continuous for all
Jij and Ii, the Hessian matrix is bounded and negative,
and may discontinuously jump due to a change of the
contact points. Knowledge of the Hessian matrix is also
important to determine how reliable are the values of
the inferred parameters.

2.8 Accuracy on the inferred parameters

When the variance of the noise, σ 2, vanishes the in-
ferred parameters cannot deviate from their most likely
values. However, for small but non zero σ , deviations
are possible.4 The probability for such deviations can
be estimated from the expansion of L∗ around its
maximum. We introduce for each neuron i, the N-
dimensional vector vi whose components are: v

(i)
i =

Ii τ , and v
(i)
j = Jij for j "= i. The multiplication of the

current by the membrane leaking time ensures that all
components can be expressed in units of a coupling.
Similarly we call v̂(i) the vector obtained when the

4Note that the inferred parameters might be less sensitive than
the time course of the potential to the noise level σ . The reason
is that the corrections to the log-likelihood L∗, to the lowest
order in the noise variance σ 2, do not depend on the current and
interactions (Appendix D).

current and couplings take their most likely values, that
is, maximize L∗. Let us call

H(i)
j, j′ = − 1

σ 2

∂2L∗

∂v
(i)
j ∂v

(i)
j′

(T |Ĵ , Î) . (17)

the Hessian matrix of L∗. The parameters v
(i)
j are nor-

mally distributed around their most likely values, with
a covariance matrix given by

〈(
v

(i)
j − v̂

(i)
j

)(
v

(i)
j′ − v̂

(i)
j′
)〉

=
[
H(i)]−1

j, j′ . (18)

In particular, the error bars on the inferred parameters
are given by the diagonal elements of the inverse of
H(i). Note that, if the value of σ is not known, formulas
(17) and (18) can still be used to compare the error bars
between each other.

As the entries of H(i) scale linearly with the duration
T of the recording, or, more precisely, the number
S of recorded spikes the uncertainty on the inferred
parameters will decrease as S−1/2. A detailed spectral
analysis of σ 2 H(i)/S in the case of weak couplings,
reported in Appendix C, shows that the largest eigen-
value, λmax, is related to the fluctuations of the effective
current,

Ie
i = Ii +

∑

j("=i)

Jij f i,τ
j , (19)

where

f i,τ
j = 1

T

∑

k,%:ti,k<t j,%<ti,k+1

exp
(
− ti,k+1 − t j,%

τ

)
(20)

is the average firing rate of neuron j, calculated over the
time scale ∼ min(τ, ISI) preceding a spike of neuron
i. The smallest eigenvalue, λmin, corresponds to the
fluctuations of the current Ii alone. In other words,
the uncertainty on the inferred value for Ie

i is much
smaller than the one on the current Ii. The intermediate
eigenmodes describe correlated fluctuations of the cou-
plings. Explicit expressions for the largest and smallest
eigenvalues, λmax and λmin, are derived in Appendix C.

When a small change of J and I causes a
modification of the set of contact points the second
derivative of L∗ may be discontinuous. A simple illus-
tration is provided by the the case of a single input,
whose log-likelihood L∗ is reported in Appendix A.1.
If the maximum is located at, or very close to the
boundary dividing two or more sets of contacts, the
value of the Hessian matrix will depend on the direction
along which the maximum Ĵ , Î is approached. This
phenomenon is also encountered in the analysis of real
data, see Section 3.2.2.
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3 Results

3.1 Tests on simulated data

In this section, we test our inference procedure on syn-
thetic data generated from networks with known inter-
actions and currents. We compare the results obtained
from our two inference algorithms, the Fixed and
Moving Threshold procedures, respectively defined in
Sections 2.4 and 2.6.

3.1.1 Scaling of the computational time

We first consider N (ranging from 20 to 160) neurons,
with no leakage (g = 0). The neurons are uncoupled
(Jij = 0 for i "= j), and fed with identical currents (Ii =
I for all i). The choice of the noise variance, σ 2, is
specified later. The LIF equation is solved numerically,
using a fourth-order Runge–Kutta integration scheme.
We choose the elementary time step to be 10−5 s, while
the average duration of the ISI is 103–105 longer. For
each realization of the noise, the simulation is run until
a set of 1 107 spikes is generated. We then use the
first S spikes in this set to infer the currents and the
couplings (not fixed to zero a priori) with the Fixed
Threshold procedure. The algorithm stops if the log-
likelihood L∗ increases by less than ε = 10−12 after an
iteration of the Newton–Raphson procedure. Alterna-
tively, the algorithm may halt when the overall change
in the couplings and current becomes smaller than a
certain a priori bound.

Figure 3(a) and (b) show how the running time
scales with, respectively, the number S of spikes, and
the number N of neurons. The empirically found scal-
ing, O(S N2), can be understood as follows. Consider
one neuron, say, i. The number of spikes of neuron
i is, on average, equal to S/N 1 f T, where T is the
duration of the recording and f is the average firing
rate. The number of contact points, Nco, is found to
scale as the number of spikes, S/N. The calculation
of the contribution to the Hessian H(i) coming from
the interval between two successive contact points of
V∗

i takes O(N2) time. The total calculation of H(i) thus
requires Nco N2 1 S N operations.5 The loop over the
neuron index, i, gives an extra (multiplicative) factor N.

5Note that the ratio of the time to calculate H(i) over the time
required for the inversion of the Hessian matrix is equal to
Nco N2/N3 ∼ S/N2, and is generally much larger than one. The
reason is that the number of parameters to be inferred, N, has
to be smaller than the number of constraints over the optimal
potential, Nco. For the real data analyzed in Section 3.2, we have
S/N2 1 64 and 108 for, respectively, Dark and Natural Movie
data sets.

The running time of the Moving Threshold algorithm
grows as S N2, too. However the proportionality con-
stant is generally higher than for the Fixed Threshold
procedure, due to the extra computational burden to
calculate VM

th . For fixed N and S, the running times of
both procedures increase with the number of contacts,
e.g. when the membrane conductance g increases. This
effect is described in Section 3.2.

3.1.2 Dependence of the inference error on the number
of spikes

We define the inference errors as the root mean square
of the difference between the inferred parameters,
Jinf

ij , Iinf
i and the true values, Jij = 0, Ii = I:

εs(J) =

√√√√√ 2
N(N − 1)

∑

i< j

(
Jinf

ij − Jij

CVth

)2

,

εs(I) =

√√√√ 1
N

∑

i

(
Iinf

i

I
− 1

)2

, (21)

together with a similar definition for the effective cur-
rent, ε(Ie

i ), with Iinf
i replaced with the inferred value for

Ie
i . The inference errors depend on the dimensionless

noise ratio,6

r = σ√
I C Vth

. (22)

Figure 3(c) shows the inference errors found for
different noise ratios r, and their dependence on the
number S of spikes, in the absence of membrane leak-
age. For small data sets, the inference error is mainly
due to the imperfect sampling. As the number S of
spikes increases, εs decreases as S−1/2, as expected from
Section 2.8. When S is very large, the errors saturate to
a residual value, ε∞. The presence of the residual error
ε∞ results from the dominant-path approximation done
in our calculation of the likelihood P. The value of ε∞
decreases with r as expected.

The cross-over between the sampling-dominated and
residual error regimes takes place for a certain value of
the number of spikes, Sc.o.. Both Sc.o. and ε∞ depend
on the observable, i.e. I, Ie, J, and on the noise ratio
r. With the values of S reached in the simulations, the
onset of the cross-over is clearly visible for Ie, can be
guessed for I, and is not observable for J. The existence

6When g = 0, changing the value of the current I amounts
to changing the time-scale of the evolution of the potential
in Eq. (1). Hence, the errors εs depend on the parameters
I, C, σ, Vth through the value of r only (as long as I > 0).
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Fig. 3 Results of the fixed threshold algorithm on a network of N
uncoupled neurons, and in the absence of leakage. The running
time, on one core of a 2.8 GHz Intel Core 2 Quad desktop
computer, is shown as a function of the number of spikes, S
(a), and of the number of neurons, N (b). (c) Inference errors
εs on the currents Ii, Ie

i , and on the couplings Jij vs. S/N, for

N = 40 neurons and three values of the noise ratio (Eq. (22)):
r = .4 (filled triangle), .04 (filled square), .004 (filled circle). Data
are shown for one randomly drawn sample; sample-to-sample
fluctuations are of the order of the symbol size. Full lines show
square root, linear and quadratic increases (in log-log scale);
dotted lines serve as guides to the eye

of a cross-over, and an estimate of Sc.o. can be derived
from the discussion of Section 2.8. When S is large, the
a posteriori distribution of the inferred parameter, v =
I, Ie, or J, becomes Gaussian, with a variance

〈('v)2〉 1 σ 2

λ S
, (23)

where λ is the eigenvalue of the Hessian matrix of
L∗ attached to the fluctuations of the parameter v.
The inference error sums up contributions coming from
both the sampling fluctuations and the residual error.
The cross-over takes place when both contributions are
comparable, 〈('v)2〉 1

2 = ε∞, that is, for

Sc.o. ∼
σ 2

λ ε2∞
. (24)

Figure 3(c) confirms that Sc.o. diminishes with σ (or r),
and is much smaller for Ie than for I (as expected from
the dependence on the eigenvalue λ); moreover, the
residual error on the couplings is extremely small (or
might be even zero).

As a conclusion, our inference algorithm is very
accurate in the absence of membrane leakage. With
103 spikes per neuron only and r = .004, for instance,

the errors on the currents and on the couplings are, re-
spectively, εs = 3 10−3 and 4 10−4. Even in the presence
of strong noise (r = .4), and with the same number of
spikes per neuron, the errors on the effective currents
and on the couplings are less than 1%.

3.1.3 Performance of the Fixed Threshold procedure
on networks of coupled neurons

We now study the ability of the algorithm to infer the
interactions between coupled neurons. To do so, we
consider random connection graphs built in the follow-
ing way (Bollobás 2001). We start from a complete ori-
ented graph over N neurons, and erase each one of the
N(N − 1) link with probability 1− p, independently of
each other. The removal process is not symmetric: the
link i → j may be removed, while the connection j→ i
is preserved. At the end of the construction process, the
average number of outgoing (or incoming) neighbors
of a neuron is p(N − 1). Each existing connection is
then assigned a synaptic weight, uniformly at random
over the interval [−J0; J0]. All neurons receive the
same external current I. In addition, the membrane
conductance, g, is now different from zero. The values
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of p, J0, I, g, and σ are chosen so that the network
remains below saturation.

We have also performed simulations where the in-
teraction graph is drawn as above, but each neuron i is
chosen to be either excitatory or inhibitory with equal
probabilities. The outgoing interactions from i have all
the same sign, and random amplitudes in [0; J0]. The
performance of our inference algorithms are qualita-
tively similar for both models.

Figure 4(a) shows the error on the couplings inferred
with the Fixed Threshold algorithm, εs(J), as a function
of the fraction p of connections, for three values of the
membrane conductance over current ratio. The error
roughly increases as

√
p, that is, the number of connec-

tions in the network. This scaling suggests that much of
the inference error is due to non-zero couplings. This
finding agrees with Fig. 3(c), which showed that the
inferred interactions between uncoupled neurons was

very small in the g = 0 case. To better understand the
performance of the algorithm, we compare in Fig. 4(c)
the inferred interactions Jij with their true values for
the 1,560 oriented pairs j→ i of a randomly drawn net-
work of N = 40 neurons, with p = .2 and J0 = .2CVth.
When the ratio gVth/I is small compared to unity,
the quality of the inference is very good (Fig. 4(c-1)).
For larger ratios gVth/I the inferred couplings are still
strongly correlated with their true values, but are ap-
proximately rescaled by an overall factor < 1, corre-
sponding to the average slope of the linear regression
in Fig. 4(c-2). As gVth/I increases, this factor decreases
and the inference error grows (Fig. 4(a)).

Figure 4(b) shows that the inference error on the
interactions increases not only with gVth/I but also with
the noise ratio r. For large values of r, the network can
sustain activity even when gVth > I, and the inference
error can take large values (upper curve in Fig. 4(b)). In
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Fig. 4 Results from the Fixed (empty squares) and Moving
(filled squares) Threshold algorithms on a random network of
N = 40 coupled neurons; the maximal amplitude of synapses is
J0 = .2 CVth. The error on the couplings, εs(J)/J0, is plotted
as a function of the fraction p of connections (a) and con-
ductance over current ratio, gVth/I (b). Each simulated data
set contains S = 5 105 spikes, which is larger than the cross-
over size Sc.o.; the symbol size correspond to the fluctuations
estimated from ten different data sets for the same network of
interactions. (c) Inferred interactions vs. true values of Jij for
various values of gVth/I and r, and for one random network
with a fraction p = .2 of connections. Dashed lines have slope
unity. Panels (c-1)–(c-3) show the results of the Fixed Threshold
(FT) procedure; the slopes of the best linear fits (full lines) are

indicated between parenthesis. Panel (c-4) shows the outcome
of the Moving Threshold (MT) procedure; even if multiplied by
10, the FT couplings of panel (c-3) are in much worse agreement
with the true interactions than the MT couplings. (d) Optimal
potentials V∗ obtained with the Fixed Threshold procedure for
g = .1 I/Vth (dashed curve) and g = 1.2 I/Vth (full curve), and
for one arbitrarily chosen neuron among the N = 40 neural cells;
the noise ratio is r = .15. (e) Comparison of a random realization
of the potential V (red) with the optimal potential V∗ (black)
obtained with the Moving Threshold VM

th (green) procedure. The
network of interactions, the spiking times, and the arbitrarily
chosen neuron are the same as the ones in (d) for g = 1.2I/Vth.
The time-average of VM

th is 1 .93 Vth
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this regime, the couplings found by the Fixed Threshold
algorithm become small, and the inferred current Ii gets
close to gVth. The corresponding potential V∗

i (t) rises
sharply, in a time τ , to a value slightly below thresh-
old, Ii/g, with small fluctuations due to the synaptic
inputs. This phenomenon can be seen in Fig. 4(d),
which compares the optimal potential of a neuron for
two different values of membrane conductance. As
discussed in the Methods section, this behavior is a
consequence of the σ → 0 limit taken in the calculation
of the optimal potential; when σ , or r, is not small, the
potential is unlikely to stay close to the threshold for
a long time without producing a spike, see Fig. 2(b).
In the next paragraph, we analyze the results of the
Moving Threshold inference procedure.

As a conclusion, zero couplings are perfectly in-
ferred, while the amplitude of large (positive or nega-
tive) interactions can be underestimated by the Fixed
Threshold algorithm, especially so when the noise
is strong. However, the relative ordering of the in-
teractions is essentially preserved by the inference
procedure.

3.1.4 Inference error with the Moving Threshold
procedure

The Moving Threshold procedure was tested in
Fig. 2(e) on an asymmetric system of two IF neurons
(J12/(CVth) = .1, J21 = 0) in the presence of a strong
noise, see description in caption and Section 2.6. While
the Fixed Threshold procedure erroneously inferred
that both interactions vanish, the Moving Threshold
correctly inferred the sign and the order of the mag-
nitude of the coupling: Jinferred

12 /(CVth) = .2 ± .1. The
inferred currents were within 10% of their true values.
These results were obtained from a large number S of
spikes to avoid finite-S effects.

The synthetic data used in Fig. 4(b) were gener-
ated with two different values of the noise ratio, r.
We estimate the relative fluctuations of the potential
around the optimal path, averaged over all the inter-
spike intervals in the data set, using formula (14), and
find
√
〈(Vi − V∗

i )2〉
Vth

1
{

.028 for r = .03

.138 for r = .15 (25)

for all values of gVth/I comprised between .9 and 1.25.
Hence, the relative fluctuations cannot be neglected
when r = .15. Figure 4(b) shows the inference error
obtained from the Moving Threshold algorithm as a
function of the membrane conductance for that value of
the noise ratio. Not surprisingly, the Moving Threshold

procedure is more accurate than the Fixed Threshold
algorithm.

In the Moving Threshold algorithm, the optimal po-
tential is constrained to remain below a certain thresh-
old, VM

th , which depends on the time preceding the
next spike and on the effective current Ie

i . Figure 4(e)
shows the values of the moving threshold VM

th and of
the optimal potential V∗

i for a few spike intervals of the
same neuron as in Fig. 4(d). As expected, the value of
V∗

i (t) lies substantially further away from the threshold
Vth than in the Fixed Threshold procedure. In addition,
Fig. 4(e) shows a random realization of the potential
Vi(t), obtained through numerical integration of the
LIF differential equation (Eq. (1)), for the same neuron
i. Although Vi is stochastic, the comparison of several
inter-spike intervals indicates that V∗

i (t) and Vi(t) are in
fair statistical agreement.

To investigate in more details the origin of the in-
ference error on the couplings for large values of r
and gVth/I, we plot in Fig. 4(c) the inferred values of
the interaction Jij vs. the true value for every pairs
j→ i of a randomly drawn network of N = 40 neurons.
The interactions inferred by the Fixed Threshold algo-
rithm are about ten times smaller than their true values
(Fig. 4(c-3)). The use of the Moving Threshold proce-
dure leads to a spectacular improvement for positive-
valued couplings (Fig. 4(c-4)). While positive couplings
are accurately inferred, the magnitude of negative cou-
plings is often overestimated. These negative couplings
are responsible for most of the error εs in Fig. 4(b).
From the Bayesian point of view, when τ is smaller
than the average ISI, negative-valued couplings are
indeed intrinsically harder to infer than positive-valued
ones. A positive input drives the potential closer to the
threshold, which strongly reduces the ISI. Conversely, a
negative input drives the potential down, and a spike is
unlikely to occur before the potential first relaxes to its
average level I/g after a time of the order of τ . Hence,
the influence of a negative input is hardly seen in the
increase of the ISI when τ is smaller than the average
ISI. We present an analytical calculation supporting this
argument in Section 3.2.2.

3.2 Applications to multi-electrode recording data

We now apply our algorithm to multi-electrode record-
ings of the ganglion cell activity of the salamander
retina. Two data sets were considered. The first one,
hereafter referred to as Dark (data courtesy of M.
Meister), reports the spontaneous activity of 32 neurons
for 2,000 s, and consists of 65,525 spikes (Schnitzer and
Meister 2003). In the second experiment, referred to
as Natural Movie (data courtesy of M. Berry), a retina
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was presented a 26.5 second-long movie, repeated 120
times, and the activity of 40 neurons was registered for
the whole duration of 3,180 s (Schneidman et al. 2006).
Natural Movie includes 172,521 spikes. The firing rates,
averaged over the population of recorded neurons,
have similar values in the two data sets: f 1 1.02
spikes/s in Dark, f 1 1.35 spikes/s in Natural Movie.

These two data sets were analyzed in a previous
work (Cocco et al. 2009) with the perfect integrator
model (g = 0) and the Fixed Threshold algorithm. In
this section we extend the analysis to the case of the LIF
model and use both the Fixed and Moving Threshold
approaches. In particular we show that the LIF model is
capable of inferring the asymmetry of the interactions,
which is seen in the cross-correlograms but was not
obtained with the perfect integrator model. Moreover
we discuss error bars on the inferred couplings and the
fact that strong negative interactions are more difficult
to infer than positive-valued couplings. We stress that
the couplings we infer a priori depend on the stimulus.
Cocco et al. (2009) have studied how the interactions
inferred with the perfect integrator model depended on
the stimulus based on the analysis of two recordings on
the same retina, namely the spontaneous activity and
random flickering squares. An alternative approach to
disentangle stimulus-induced and structural contribu-
tions to the couplings would be to consider a time- and
stimulus-dependent external current I(t) (Section 4.4).

The value of the membrane leaking time τ strongly
affects the number of contacts and the running time
of the algorithm. It takes about 40 seconds to infer
the currents and the interactions from either Dark or
Natural Movie when τ 1 1 sec with one core of a
2.8 GHz Intel Core 2 Quad desktop computer, and
about ten times longer when τ = 100 ms. The number
of passive contacts of the optimal potential computed
by the Fixed Threshold procedure quickly decreases as
τ increases. It is divided by 1 20 when the membrane
leaking time increases from 100 ms to 10 s for both data
sets. In comparison, the number of active contacts is
less sensitive to the value of τ . We find that the ratio
of the number of contacts per neuron and per second
over the average firing rate takes similar values for
both data sets. For τ = 1 ms, this ratio is 1 2.00 for
Dark, and 1 2.04 for Natural Movie. The number of
passive contacts is smaller with the Moving Threshold
algorithm, while the number of active contacts remains
rather unchanged compared to its value with the Fixed
Threshold procedure. On the overall, the running time
of the Moving Threshold procedure is higher due to the
calculation of the time-dependent threshold VM

th .
Knowledge of the variance of the noise is required

for the Moving Threshold algorithm. The value of σ

could, in principle, be determined from experimental
measures of the fluctuations of the synaptic current, but
is unknown for the two recorded data sets available
to us. We choose σ so that the relative fluctuations
of the potential around the optimal path V∗

i are less
than 10%. We compute these fluctuations by averaging
Eq. (14) over all ISI and all neurons i in the popu-
lation. The corresponding value of the dimensionless
standard deviation of the noise (Eq. (13)) are: for Dark,
σ̄ = .13, .12, .11 for, respectively, τ = 200, 100, 20 ms;
for Natural Movie, σ̄ = .15, .14, .12 for, respectively,
τ = 200, 100, 20 ms.

3.2.1 Amplitudes of the inferred interactions
and currents

Figure 5(a) shows the average value of the current
and of the interaction strength as a function of the
membrane leaking time. As expected with the Fixed
Threshold inference procedure, we find that the aver-
age value of the couplings decreases as τ gets small.
This effect varies from neuron to neuron: the closer Ii

is to gVth, the smaller are the couplings Jij. To compare
the matrices of couplings J, J′ inferred with the Fixed
Threshold algorithm for different values of τ , we use
the correlation coefficient (Hubert and Baker 1979)

R(J, J′) = cov(J, J′)√
cov(J, J) cov(J′, J′)

, (26)

where

cov(J, J′) = N(N − 1)
∑

i "= j

Jij J′ij −




∑

i "= j

Jij








∑

i "= j

J′ij



 .

(27)

Identical matrices correspond to R = 1, and uncorre-
lated matrices give R = 0. R is independent of the scale
of the coupling matrices J and J′, i.e. R(aJ, a′ J′) =
R(J, J′) for any a, a′ > 0; therefore, R is sensitive to
the relative amplitudes of the couplings J′ and J and
not to their absolute differences. We choose J to be the
coupling matrix in the absence of leakage and J′ to be
the coupling matrix for a given τ . The value of R as a
function of τ is shown in Fig. 5(b). Even for τ = 20 ms,
the coupling matrix is substantially similar to the one
obtained with the perfect integrator model (R = .6 for
Dark, R = .5 for Natural Movie). Despite the overall
change in the amplitude of the inferred couplings, the
relative ordering of the couplings with the pair indices
(i, j) is largely independent of τ , especially so for Dark.
However, for specific pairs of neurons, the interactions
may strongly depend on τ . Such a dependence effect
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Fig. 5 Amplitudes of the interactions and currents in Dark (full
circles) and Natural Movie (empty diamonds). (a) Average value
of the current (left) and root mean square value of the coupling
(right) as a function of the membrane leaking time τ . Points
corresponding to the Fixed Threshold (FT) procedure are joined
by full lines, while dashed lines indicate the results from the
Moving Threshold (MT) algorithm. Note that the currents are
larger in Dark than in Natural Movie. (b) Correlation coefficient
R (Eq. (26)) between the couplings at leaking time τ and with no
leakage. (c) Comparison between the interactions Jij found with
the Moving (x-axis) and the Fixed (y-axis) Threshold procedures,
for Dark (c-1) and Natural Movie (c-2). The dashed line is the

x = y line, and τ = 20 ms. (d) Strongly negative couplings Jij vs.
latency over the membrane leaking time τ for three values of τ .
Couplings were obtained using the Moving Threshold procedure,
and correspond to the Natural Movie data set. Only interactions
Jij < −.1 are considered; there are, respectively, 16, 28, and 60
such couplings for τ = 200, 100, and 20 ms. The value of the
slope of the best linear fit log(−Jij) = α latency(i, j)/τ + β, shown
by the dashed line, is α = 0.95. (e) Distributions of the latencies
(Eq. (28)) between neurons in Dark (top) and Natural Movie
(bottom). Only latencies larger than 5 ms are taken into account
in the histograms

will be illustrated in Section 3.2.3, and can be related
to the temporal structure of the corresponding cross-
correlograms.

The average value of the interactions calculated by
the Moving Threshold algorithm does not decrease
when τ gets smaller, and is larger than the one obtained
from the Fixed Threshold procedure (Fig. 5(a)). To bet-
ter understand this discrepancy, we compare in Fig. 5(c)
the interactions inferred with both algorithms for every
pairs of neurons in the Dark and Natural Movie data
sets when τ = 20 ms. The agreement between both pro-
cedures is very good for positive and strong couplings.
Couplings which are slightly positive with the Fixed
Threshold procedure generally have a larger value with
the Moving Threshold procedure. This offset is respon-
sible for the differences in the average values of the

interactions found in Fig. 5(a). In addition, in Natural
Movie, negative-valued couplings often have a stronger
amplitude with the Moving Threshold procedure. We
find, in both approaches, a few negative and very strong
couplings. The amplitude of those extreme couplings
increases very quickly as the membrane leaking time
decreases.

The emergence of strong negative interactions with
the lowering of τ can be related to the presence of long
latencies between the emission of spikes. We define
the latency of neuron i with respect to neuron j as the
smallest delay between a spike emitted by j and a later
spike fired by i,

latency(i, j) = min
k,%:ti,k<t j,%<ti,k+1

(ti,k+1 − t j,%) (28)
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A large value of the latency of neuron i with respect
to j is interpreted by the inference procedure as the
consequence of a strongly inhibiting coupling from j to
i. However, the effect of a synaptic input of amplitude
Jij on the potential Vi of the neuron i decays exponen-
tially with the ratio of the time elapsed from the input
over the membrane leaking time. Hence, to keep the
latency fixed while τ is changed, the strong and negative
interaction must change accordingly,

Jij ∼ constant× exp
(

latency(i, j)
τ

)
, (29)

where the constant has a negative value. Figure 5(d)
shows the negative couplings Jij vs. the latencies of the
corresponding pairs (i, j) divided by τ , for three values
of τ . The outcome suggests that relation (29) is indeed
correct, see Fig. 5(d) and its caption.

The above mechanism explains why strongly nega-
tive couplings are less frequent in Dark than in Natural
Movie. For τ = 100 ms, there are ten interactions (out
of 1,560) smaller than −1 in Natural Movie, and none
(out of 992) in Dark. For τ = 20 ms, these two numbers
are equal to, respectively, 23 and 1. Figure 5(e) shows
the histograms of latencies for both data sets. In Natural
Movie, we find 17 pairs with latencies larger than 25 ms.
In Dark, only one pair (i, j) has a latency larger than 25
ms. The corresponding interaction, Jij, is the only one
smaller than −1 for τ = 20 ms.

3.2.2 Accuracy on the inferred interactions and currents

As discussed in the Methods section, the uncertainty
on the inferred parameters can be obtained from the
Hessian matrix of L∗, that is, from the curvature of the
log-likelihood around its maximum. To quantify those
uncertainties, we use the following procedure. Assume
for instance we want to know how reliable is the in-
ferred value, Ĵi, j0 , of the interaction Ji, j0 from neuron
j0 to neuron i. We fix Ji, j0 to an arbitrary value, and
maximize L∗(T |Jij, Ii) (Eq. (16)) over all the couplings
Jij with j "= j0 and over the current Ii . The outcome
is a function of Ji, j0 , which we denote by Lc and call
marginal log-likelihood. Lc(Ji, j0) has, by definition, a
maximum in Ji, j0 = Ĵi, j0 . Its second derivative in the
maximum, L′′

c ( Ĵi, j0), is related to the error bar 'Ji, j0 on
the interaction through, see Eqs. (17) and (18),

'Ji, j0 =
√〈(

Ji, j0 − Ĵi, j0
)2〉 = σ

√
−L′′

c

(
Ĵi, j0
) . (30)

The same procedure can obviously be used to obtain
the error bar on the current Ii.

We now illustrate this approach on the Natural
Movie data set, and one arbitrarily chosen neuron,
i = 1. Three interactions, representative of, respec-
tively, positive, weak, and negative couplings, were
singled out among the 39 couplings incoming onto neu-
ron 1. Figure 6(a) shows the marginal log-likelihoods
Lc(J1,4), Lc(J1,20), and Lc(J1,27), in addition to Lc(I1).
For all four parameters, the marginal likelihoods can
be approximated with parabolas in the vicinity of their
maxima. Estimating the second derivatives from those
best quadratic fits and using Eq. (30), we obtain

'I1

gVth
1 .020 σ̄ ,

'J1,27

CVth
1 .023 σ̄ ,

'J1,20

CVth
1 .021 σ̄ ,

'J1,4

CVth
1 .022 σ̄ . (31)

where σ̄ is the dimensionless noise level defined in
Eq. (13). Hence, the error bars on the couplings
and currents have very similar values. This common
value depends on the noise level, σ̄ . As discussed in
Section 3.2.1, σ̄ is expected to be close to, or smaller
than unity when τ = 200 ms. Consequently, the value
for J1,20 is compatible with zero, while the interactions
J1,27 and J1,4 are non zero, with 99.9999% confidence.

A closer inspection of Fig. 6(a) shows that the quality
of the quadratic fit of Lc is excellent for J1,27 and J1,4,
but less so for I1 and J1,20. For the latter parameters, it
seems that the curvature of Lc takes two different val-
ues, depending on whether the maximum is approached
from the left of from the right. This phenomenon results
from the piece-wise structure of the L∗ function, see
Methods section. A practical consequence is that the er-
rors I1 − I∗1 and J1,20 − Ĵ1,20 are not evenly distributed
around zero; for instance J1,20 is more likely to be larger
than Ĵ1,20 than it is to be smaller.

Note that strong, negative interactions may be
harder to infer than positive-valued couplings, a phe-
nomenon already underlined by Aersten and Gerstein
(1985). The underlying intuition is that the duration
of the ISI is less affected by an inhibitory input than
by an excitatory input when the membrane leaking
time, τ , is small compared to the average value of the
ISI. We now present an analytical argument supporting
this intuition. Consider a neuron, fed with an external
current I and with noise variance equal to σ 2. Assume
a synaptic input of amplitude J is received at time
t = 0. We call tF PT the average value of the time at
which the neuron will emit a spike; the calculation of
tF PT can be done using a series of parabolic cylinder
functions (Alili et al. 2005). Figure 6(b) and (c) shows
that the dependence of tF PT on J is much weaker for
negative-valued J than for positive couplings. As the set
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Fig. 6 (a) Marginal log-likelihoods Lc(I1) (top panel), and
Lc(J1,27), Lc(J1,20), Lc(J1,4) (from left to right in the bottom
panel) for Natural Movie, and τ = 200 ms. Dashed lines cor-
respond to the best fits with a single quadratic function. The
most likely value for the current is Î1 = 1.14gVth. The most
likely values for the interactions are: Ĵ1,27 = −.11, Ĵ1,20 = .01,
and Ĵ1,4 = .22, in units of CVth. The offset on the vertical axis

has been chosen so that all maxima are at height Lc = 0. (b)
Average value of the first-passage time tF PT after a synaptic
entrance of amplitude J. (c) Derivative of tF PT with respect to J.
The parameters of the neuron are: gVth/I = 1.2, r = .15, τ = 85
ms (full line) and 20 ms (dashed line). The derivative is maximal
around Jopt/(CVth) = 1− I/(gVth) 1 .167

of spiking times is the only information we have at our
disposal, the difficulty in inferring negative couplings
is intrinsic to the Bayesian approach, and cannot be
circumvented by any particular algorithm.

3.2.3 Symmetry of the interactions
and cross-correlograms

The dependence of the symmetry of couplings upon the
membrane leaking time τ can be understood, to some
extent, from the structure of the cross-correlograms,
that is, the histograms Hij(t) of the delays t = ti,k −
t j,% between the times of the spikes fired by the two
neurons i, j in each pair. To do so, we consider two
pairs of neurons in Dark, called pairs (5, 17) and (1, 22).
Figure 7(a) shows the cross-correlograms H5,17 and
H1,22. Pair (5, 17) is characterized by a positive peak
in H, centered in t = 0, and of width 1 20 ms. Pair
(1, 22) exhibits a positive peak of correlations, of the
same width, but centered around t 1 20 ms.

We plot in Fig. 7(b) the symmetry ratios of the
interactions in the pairs, ρ5,17 = J5,17/J17,5 and ρ1,22 =
J1,22/J22,1. We find that ρ5,17 is, to a large extent,

independent of τ . Conversely, ρ1,22 sharply decreases
with decreasing τ and is close to zero when τ = 20
ms, which coincides with the typical delay in the cross-
correlogram H1,22 shown in Fig. 7(a). We conclude that
the inference procedure is capable of capturing the
directionality of the interaction between the neurons
1 and 22, if τ is small enough. This results shed some
light on the correspondence between the interactions
inferred within the LIF model and within the Ising
model (Schneidman et al. 2006; Shlens et al. 2006). Cou-
plings inferred with the perfect integrator model for
Dark are in good agreement with the Ising interactions,
when the time is binned into windows of width 't = 20
ms (Cocco et al. 2009). By construction, the Ising model
produces symmetric interactions from the pair-wise
correlations of the activities, averaged of the binning
window. In the absence of leakage, the Integrate-and-
Fire inference algorithm hardly distinguishes between a
post-synaptic and pre-synaptic firing pattern, and pro-
duces rather symmetric couplings. But as τ decreases,
the LIF couplings may become strongly asymmetric
(Fig. 7(b)). In this case, the correspondence between
the Ising and LIF couplings breaks down. The same
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Fig. 7 (a) Cross-correlograms H(t) for pairs (5, 17) and (1, 22) in Dark. The cross-correlograms are normalized such that H(t) → 1 for
large delays |t|. (b) Ratios Jij/J ji of the interactions between the neurons 5,17 (top) and 1, 22 (bottom) as a function of τ

phenomenon was observed in Natural Movie, where
delays in the cross-correlograms are even stronger.

4 Discussion

In this article, we have presented a procedure to infer
the interactions and currents in a network of Leaky
Integrate-and-Fire neurons from their spiking activity.
The validity of the procedure was established through
numerical tests on synthetic data generated from net-
works with known couplings. We have also applied
our algorithm to real recordings of the activity of tens
of ganglion neurons in the salamander retina. Though
our algorithm is limited to moderate noise levels and
instantaneous synaptic integration, it is fast and can, to
our knowledge, handle much bigger data sets than the
existing inference methods for the stochastic IF model.
It is our intention to make this algorithm available to
the neurobiology community in a near future.

4.1 Comparison with previous studies

Cross-correlation analysis (Perkel et al. 1967; Aersten
and Gerstein 1985) consists in studying the distribution
of delays between the spikes of neurons in a pair. This
approach has been used to characterize the connections
between neurons (amplitude, time-scale, dependence
on distance), or their dynamical evolution (Fujisawa
et al. 2008). The analysis do not require any combina-
torial processing of the activity of a large part of the
neural assembly. As a result, the approach is not limited
to small networks. However, cross-correlation analysis
may find difficult to separate direct correlations from

indirect correlations modulated through interactions
with neurons in the surrounding network (Ostojic et al.
2009; Cocco et al. 2009), or due to common inputs
(Constantidinidis et al. 2001; Trong and Rieke 2008).

In statistical approaches a widely-used concept is the
one of causality (Seth and Edelman 2007). A causal
interaction exists from neuron i to neuron j if the
knowledge of the activity of i helps predict the firing of j
beyond what can be achieved from the activity of
j alone. In practice, causal relationships are de-
tected through linear multivariate statistical regressions
(Sameshima and Baccalá 1999), and may overlook
non-linear dependencies. Causal analysis have also
difficulties in evaluating the strength of the interactions.

Maximum entropy models, which deduce interac-
tions from pairwise correlations only, have been shown
to accurately reproduce higher-order correlations be-
tween neurons in the vertebrate retina (Schneidman
et al. 2006; Shlens et al. 2006; Cocco et al. 2009). These
models, however, suffer from some limitations. Inter-
actions are constrained to be symmetric, and temporal
correlations are partially discarded (Marre et al. 2009).
In addition obtaining the interactions from the correla-
tions may be computationally very hard for large net-
works, though efficient approximate algorithms have
recently been developed (Cocco and Monasson 2010).

Generalized linear models (GLM), which represents
the generation of spikes as a Poisson process with
a time-dependent rate, have been applied to various
neural systems (Brown et al. 2001; Truccolo et al. 2005;
Pillow et al. 2008). The inference of parameters in the
GLM framework is apparently easier to solve than for
IF models, which has made the GLM framework very
attractive. Whether GLM are better than IF models to
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account for real neural activity, regardless of the com-
putational complexity of both inference framework,
is an important issue (Gerstner and Naud 2009). We
hope that our work, which makes possible to apply the
IF model to large data sets, will help to answer this
question.

Approaches to infer model parameters in the IF
framework have been so far capable of processing a
very limited number of neurons or of spikes. Pillow
et al. (2005) inferred the model parameters of one sto-
chastic IF neuron based on a 50 second-long recording
with a procedure tolerating any level of noise; Makarov
et al. (2005) inferred the connections between five de-
terministic IF neurons from a 60 second-long synthetic
spike train. In comparison we have analyzed a 3,180-
second long recording of the activity of 40 neurons.

The running time of our procedure increases as
N2 S ∼ N3 T f , where T is the duration of the record-
ing and f is the average firing rate. Recently, Koyama
and Paninski (2009) have proposed a numerical pro-
cedure for calculating the optimal potential and infer-
ring the interactions. In their approach, the time is
discretized into many time-bins of small duration ',
and the values of the optimal potentials at those dis-
crete times can be found by means of the interior-point
method for discrete constrained optimization prob-
lems. The running time of the procedure, O(N3 T/'),
is approximately 1/( f') times larger than ours. In prac-
tice, f is of the order of 1–10 Hz, while the discretiza-
tion time, ', is of the order of 1 ms; hence, 1/( f')

ranges from 100 to 1,000. However, this order of mag-
nitude does not take into account the existence of
multiplicative constants; a comparative test of the two
approaches on the same synthetic or real data would
be useful to accurately estimate their running times.
Furthermore, the algorithm introduced by Koyama and
Paninski can easily incorporate the presence of tem-
poral filtering in the interactions. Our procedure is, in
its present form, valid when the integration kernel is
instantaneous only; considering other synaptic kernels
would require ad hoc modifications to the expressions
of the optimal noise and potential and to the search
procedure for contacts.

4.2 How to include a finite integration time

One of the major assumptions in our approach is that
the synaptic integration time, τs, is vanishingly small.
In practice, τs does not vanish, but might often be
smaller than the membrane leaking time, τ , and the
average ISI. Assume that neuron i, whose potential Vi

is close to the threshold Vth, receives a spike at time t
from another neuron, j, through a strongly excitatory

connection Jij > Vth − Vi. Then, neuron i will reach the
threshold level after having received a charge 'q =
C(Vth − Vi), smaller than Jij. As a consequence, large
positive interactions can be underestimated when the
latency of neuron i from neuron j (Eq. (28)) is smaller
than τs.

To compensate for this effect we could introduce a
time-dependent value for the interaction,

Jij(t, ti,k+1) = Jij min
(

ti,k+1 − t
τs

, 1
)

, (32)

where ti,k+1(> t) is the closest firing time of neuron i.
Hence the effective interaction Jij(t, ti,k+1) is equal to
its nominal value Jij only if the synaptic current has
enough time to enter the neuron j, and is a fraction of
Jij otherwise. The modified procedure will be correct
as long as τs < τ . If the synaptic and membrane time-
scales are comparable, one needs to take into account
the complete shape of the synaptic integration kernel,
K(t). Choosing simple enough integration synaptic ker-
nel, such as the piece-wise linear function K(t) = 0 if
t < 0 or t > τs, K(t) = 2 min(t, τs − t)/τ 2

s if 0 ≤ t ≤ τs,
could lead to tractable dynamical equations for the
optimal potential and noise. The resolution of those
equations is left for future work.

4.3 Towards a more realistic inference model

The inference procedure that we have introduced here
can be extended to include realistic features such as a
refractory period, τR. To do so, we restrict the sum in
Eq. (10) to the spikes m entering the neuron i at times
larger than t0 + τR. We have run the modified inference
procedure on the recordings of the retinal activity, for
values of τR ranging from 2 to 5 ms. The couplings did
not change much with respect to the values found with
τR = 0. Note that the introduction of a propagation
delay τD in the synaptic interaction is straightforward,
as long as the integration kernel remains a Dirac distri-
bution (centered in τD).

Bounds on the values of the couplings and currents
e.g. to prevent the exponential growth of negative inter-
actions with the leaking conductance can naturally be
introduced through a prior distribution. As an example,
assume that the interactions Jij take values in [J−, J+].
Then, one could maximize L∗ −

∑

i, j

W(Jij) instead of

the log-likelihood L∗ alone, where W(J) = w
2 (J − J−)2

if J < J−, 0 if J− < J < J+, w
2 (J − J+)2 if J > J+ and w

is a large positive coefficient.
We have assumed, throughout this work, that the

values of g and Vth were known. In practical situations,
while the orders of magnitudes are known, the precise
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values of these parameters should be inferred, and
could depend on the neuron i. The inference procedure
could be modified to update the values of gi and (Vth)i

at the same time as the synaptic couplings Jij and the
current Ii. The number of parameters to infer (per
neuron) would simply increase from N to N + 2, and
the running time should not increase too much.

4.4 Inference from a limited neural population
and in the presence of a stimulus

Nowadays, multi-electrode experiments can record a
few tens, or hundreds of neurons. To which extent
do the interactions inferred from this sub-population
coincide with the interactions one would find from
the knowledge of the whole population activity? The
question does not arise in cross-correlation analysis: the
correlation between the firing activities of two neurons
is obviously independent of whether a third neuron is
recorded or not. However the issue must be addressed
as soon as a collective model for generating the activity
is assumed, such as the coupled LIF models studied
here.

A detailed analysis suggests that the interaction be-
tween a pair of neurons is not affected by the activity
of other neurons distant by more than % = 300 µm in
the case of spontaneous activity (Cocco et al. 2009).
The electrode array should be at least twice longer and
wider than %, and should be dense enough to capture all
the neurons on the recorded area. It is estimated that
about 10% of the ganglion cells are registered in the
Dark experiment, compared to more than 80% with the
denser but smaller electrode array used in the Natural
Movie experiment (Segev et al. 2005). It would thus
be very interesting to repeat our study on other multi-
electrode recordings, with sufficiently large and dense
arrays.

Taking into account the stimulus S in the inference
process would also be interesting. To do so, we could
add a stimulus-induced current, Is(t|S), to Eq. (1). A
simple expression for this current would be Is(t|S) =∫ t

0 dt′Ks
i (t − t′) Si(t′), where Ks

i is a kernel similar to the
one used in generalized linear models (Pillow et al.
2008). The expression of the current-dependent term
in the potential V(η, t) (Eq. (10)) should be modified
accordingly, while the noise-dependent term would re-
main unchanged. It is important to note that the search
procedure for contacts presented in Section 2.4 would
remain valid. However, the expressions of the noise
coefficient, the contact time and the duration of a
passive contact given in Appendix B for the case of a
constant current I should be rederived and would de-

pend on the precise temporal structure of the stimulus-
induced current Is(t|S).
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Appendix A: Active contacts

In this appendix, we justify the prescriptions in the
search for active contacts presented in Section 2.4. For
the sake of simplicity we restrict to the g = 0 case
(no membrane leakage); the extension to non-zero g is
briefly discussed in Appendix B. We consider a neuron
i, and call M the number of spikes received by this neu-
ron during its kth inter-spike interval [t0 ≡ ti,k; tM+1 ≡
ti,k+1]. The arrival times are t1 < t2 < . . . < tM, and the
corresponding synaptic strengths are J1, J2, . . . , JM. To
lighten notations we hereafter omit the index i of the
neuron.

A.1 Case of M = 0 or 1 input spike

To understand the key notion of contact, we first con-
sider the simple case of a neuron receiving no spike
during the inter-spike interval [ti,k = 0; ti,k+1 = T]. The
optimal noise is constant according to Eq. (7). Equation
(6) then shows that the optimal potential is a linear
function of the time, which is fully determined from
the boundary conditions V∗(0) = 0, V∗(T) = Vth. We
obtain

V∗(t) = Vth
t
T

and η∗(t) = CVth

T
− I . (33)

This solution is correct since the potential remains
below the threshold at all times 0 < t < T.

Let us now assume now that the neuron receives
one input from another neuron, of strength J1 at time
t1 ∈]0; T[. The effect of the input is a discontinuous
jump of the potential at time t1 and of size J1

C , shown
in Fig. 8. Repeating the calculation above, we obtain
the following expressions for the optimal potential and
noise

V∗
A(t) =

(
Vth −

J1

C

)
t
T

+ J1

C
θ(t − t1) and

η∗A = CVth − J1

T
− I (case A) , (34)
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Fig. 8 Sketches of the optimal potentials V∗ (top) and noises
η∗ (bottom) for one neuron receiving one weak (a), one strong
negative (b), and one strong positive (c) input. The jump in the
optimal noise consecutive to an active contact is always positive.
Values of the parameters used for the figure are: I = 0, t1 = T/2,
J1/(CVth) = .2 (a), −1.2 (b), 1.2 (c)

where θ is the Heaviside function: θ(x) = 1 if x > 0, 0
otherwise. This solution is sketched in Fig. 8(a). It is
valid when the potential V∗

A remains below the thresh-
old at all times. We call this situation case A. As V∗

A is
a piece-wise linear function we only need to check that
V∗

A(t−1 ) and VA(t+1 ) are both smaller than Vth. The two
conditions are fulfilled provided that

J− ≡ −CVth
T − t1

t1
< J1 < J+ ≡ CVth . (35)

What happens when the above condition is violated?
Let us consider first J1 < J− (referred to as case B
hereafter). Then V∗

A exceeds the threshold Vth before
the input enters the neuron. To prevent the potential
from crossing the threshold at time t1, the true optimal
noise, η∗B, should be smaller than η∗A. But, if η∗B < η∗A,
the potential could not reach Vth when the neuron emits
its spike at time T according to the very definition of
η∗A! The only way out is that η∗B takes two different
values corresponding to the two sub-intervals [0; t1[ and
]t1; T], which we call, respectively, η∗B,− and η∗B,+. We
expect η∗B,− < η∗A < η∗B,+. The noise can change value
in t = t1 through Eq. (9) only if the potential reaches
the threshold in t1. We find that

V∗
B(t) = Vth

t
t1

and

η∗B,− = CVth

t1
− I (case B, 0 < t < t1) , (36)

from the boundary conditions V∗(0) = 0, V∗(t−1 ) = Vth,
and

V∗
B(t) = Vth + J1

C
T − t
T − t1

and

η∗B,+ = − J1

T − t1
− I (case B, t1 < t < T) , (37)

from the boundary conditions V∗(t+1 ) = Vth + J1
C ,

V∗(T) = Vth. This solution is drawn in Fig. 8(b). It is
important to stress that the above solution is based on
the capability of the noise to abruptly change its value
when the potential touches the threshold in t = t1. A
detailed study of the behavior of the noise close to such
‘contact points’ proving that this is indeed the case is
postponed to Appendix A.2.

Finally, we turn to case C corresponding to J1 > J+.
In this case the input is so excitatory that the noise has
to be negative to prevent the neuron from emitting a
spike at a time t < t1. As in case B, the potential reaches
the threshold in t = t1 to allow the noise to change its
value after the input has entered the neuron. We find

V∗
C(t) =

(
Vth −

J1

C

)
t
t1

and

η∗C,− = CVth − J1

t1
− I (case C, 0 < t < t1) , (38)

according to the boundary conditions V∗
C(0) =

0, V∗
C(t−1 ) = Vth − J1

C . Right after the spike has been
received, the potential has reached its threshold value,
and will keep to this value until a spike is emitted at
time T, hence

V∗
C(t) = Vth and

η∗C,+ = −I (case C, t1 < t < T) . (39)

This solution is drawn in Fig. 8(c).
We now give the values of log-likelihoods L∗ corre-

sponding to the cases listed above. The value of L∗ can
be calculated from the knowledge of the optimal noise
η∗ through Eq. (16). In the case of M = 0 spike, we find,
using Eq. (33) with T = t1 − t0,

L∗(t0, t1|I) = − (CVth − I (t1 − t0))2

2(t1 − t0)
. (40)

The optimal current is then inferred by maximizing
L∗(I) with the result Î = 1

t1−t0
, which corresponds to a

vanishing value for the optimal noise, as expected.
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When M = 1 spike is received by the neuron, the
log-likelihood L∗ has three distinct expressions corre-
sponding to the cases A–C discussed in Appendix A.1.
The resulting expression is (with t2 = T):

L∗(t0, t1, t2|J1, I)

=






− (CVth − J1 − I (t2 − t0))2

2(t2 − t0)
(case A)

if J− < J1 < J+

− (CVth− I(t1 − t0))2

2(t1−t0)
− (J1 + I(t2−t1))2

2(t2−t1)
(case B)

if J1 < J−

− (CVth − J1 − I (t1 − t0))2

2(t1 − t0)
− I2

2
(t2 − t1) (case C)

if J1 > J+

.

(41)

The log-likelihood L∗ is a continuous and convex func-
tion of its argument. The first derivatives of L∗ are
continuous in J−, J+, but the second derivatives are not.

A.2 Study of the optimal noise close to an active
contact point

The noise coefficient η in Eq. (8) are constant over
the time interval separating two active contacts. The
value of η may however change upon the crossing
of an active contact. The scope of this section is to
show that the noise right after the contact can take
any value larger than the noise immediately before the
contact. This monotonicity property justifies the search
for the minimal noise coefficient done in Eq. (11), see
Appendix A.3.

To show that the noise always increases through an
active contact, we consider that the synaptic integration
is not instantaneous, but takes place over a finite albeit
small time, τs. We thus replace the expression for the
current Isyn

i in Eq. (2) with

Isyn
i (t) =

∑

j("=i)

Jij

∑

k

K(t − t j,k) (42)

where Jij is the strength of the connection from neuron
j onto neuron i, and K(τ ) is is the memory kernel of
the integration of synaptic entries (top panel in Fig. 9).
We assume that K(τ ) vanishes for τ < 0 and for τ > τs

where the integration time τs is independent of the pair
(i, j). In addition, K is positive, and its integral over the
interval [0; τs] is equal to unity.

We consider the case of a single incoming spike, as
in Appendix A.1. We want to show that, in the τs → 0

limit, the only constraint linking the values η∗− and η∗+
of the optimal noise, respectively, before and after a
spike entering at t1, is η∗+ > η∗−, as we have found for
a single incoming input in cases B and C. To do so, we
assume that the time of synaptic integration τs is small
but f inite, and consider case B. The dynamics of V∗ and
η∗ can be divided in several steps, whose numbered are
reported on Fig. 9:

1. Prior to the input, i.e. at times < t1, the optimal
noise η∗− is constant and the optimal potential V∗ is
a linear function of the time, with slope (I + η∗−)/C,
as shown in Fig. 9(left).

2. A strongly negative input of amplitude J1(< J−)

is then received by the neuron between times t1
and t1 + τs. The derivative of the potential now
decreases with the time until it vanishes at time tc
defined through

K(tc − t1) = k− where k− ≡
η∗− + I
−J1

. (43)

3. If the value of η∗− is chosen so that V∗(tc) = Vth,
the potential tangentially reaches the threshold at
tc (contact point). Then, the potential remains con-
stant and equal to Vth. The noise obeys Eq. (9) and,
therefore, increases until it reaches the prescribed
value, η∗+, at time t′c such that

K(t′c − t1) = k+ where k+ ≡
η∗+ + I
−J1

, (44)

see bottom panel in Fig. 9(left).
4. Then the potential starts decreasing from its thresh-

old value through Eq. (6), and reaches a mini-
mum in t′′c , solution of the same Eq. (44) as t′c, see
Fig. 9(top left).

5. At later times the derivative of the potential is pos-
itive from Eq. (6), and increases until time t1 + τs,
coinciding with the end of the synaptic integration.

6. At times larger than t1 + τs, the potential keeps
growing with a constant slope equal to (I + η∗+)/C.

In the τs → 0 limit, all times tc, t′c, t′′c tend to the
same value, that is, the time t1. More precisely, as the
slope of K is of the order of τ−2

s (in absolute value),
and η∗−, η∗+, V∗(t1) are finite (= O(1)), then for τs → 0,
t1, tc, t′c differ from each other by O(τ 2

s ). Hence the
change in the potential V∗ between t′c and t1 + τs equals
J1
C + O(τs). We conclude that, for τs → 0 the potential
becomes a discontinuous function of time with a dis-
continuity J1

C . In addition, the noise η∗ can also jump
abruptly from its value η∗− at t−1 to any larger value η∗+ at
time t+1 since the maximum of K tends to infinity when
τs → 0.
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Fig. 9 Behaviors of the optimal potential V∗ (middle) and noise
η∗ (bottom) close to a contact point, compared to the memory
kernel K (top). An input of total amplitude J1 enters the neuron
during the time interval t1 < t < t1 + τs. Left: J1 is strongly neg-

ative as in Fig. 8(b); italic numbers refer to the steps listed in the
main text. Right: J1 is strongly positive as in Fig. 8(c). See text for
a detailed description of the curves, of the constants k−, k+ (Eqs.
(43) and (44)), and of the times t1, tc, t′c, t′′c , τs

Note that the drawing of Fig. 9(left) tacitly assumes
that k+ > k−. A hypothetic scenario would be that
the noise exactly compensates the synaptic input for
a longer time interval (including the top of K), while
the potential would remain equal to Vth. In this case,
the peak value of the noise would be O(1/τs). The
contribution to the integral (Eq. (16)) would be of the
order of 1/τs and would diverge in the τs → 0 limit.
Hence this possibility is precluded.

The above discussion is straightforwardly extended
to case C. The optimal potential and noise are sketched
in Fig. 9(right). Note that the contact interval spreads
beyond [t′c, tc] in this case. In the generic case of more
than one incoming spikes, the contact interval is re-
stricted to [t′c; tc] as in case B. The noise can also
discontinuously change from its value η∗− < −I before
the contact to any larger value, η∗+, after the contact.

A.3 Case of M ≥ 2 incoming spikes

We now consider the general case of M input spikes.
Let V0 = 0, m0 = 1 be, respectively, the initial value of

the potential and the index of the first input spike. We
define the piece-wise linear function solution of Eq. (6)
for a constant noise η,

V(η, t, t0) = V0 + I + η

C
(t − t0) +

M∑

m=m0

Jm

C
θ(t − tm) .

(45)

We are looking for the smallest value of the noise
coefficient η capable of bringing the potential V(η, t, t0)
from its initial value V(η, t0, t0) = 0 to the threshold.
The contact time, tc, coincides with an entering spike,
i.e. tc = tm∗ for some m∗ ≥ 1. If m∗ = M + 1 then the
optimal potential is V(η∗, t, t0) throughout the inter-
spike interval [t0; tM+1], and the problem is solved. If
m∗ ≤ M, tm∗ is the first active contact point of the po-
tential. η∗ and V(η∗, t, t0) are, respectively, the optimal
noise and potential on the interval [t0, tm∗ ].

The correctness of the above statement can be estab-
lished using a proof by contradiction.

– Assume that the optimal noise, ηopt, is smaller than
η∗ on some sub-interval of [t0; tc]. Remark that the
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potential V in Eq. (45) is an increasing function of
the noise,

η′ > η =⇒ V(η′, t, t0) > V(η, t, t0) , (46)

for all t > t0. By virtue of Eq. (46) and the definition
of η∗, V(ηopt, t, t0) cannot touch the threshold at
any time so the noise is constant throughout the
interval [t0; tc]. Hence no active contact can take
place at time tc. As η∗ is the minimal value of the
noise which can drive the potential into contact
with the threshold over [t0; tM+1], we conclude that
V(ηopt, t, t0) cannot cross the threshold at any time
≤ tM+1. The neuron can therefore not spike at time
tM+1.

– Conversely, suppose that the optimal noise is
equal to ηα > η∗ on the interval [t0; tmα ] with 1 ≤
mα < m∗, and takes another value on the interval
[tmα ; tc].7 As the change of noise can take place
only through an active contact, and the change is
necessarily positive (Appendix A.2), we have ηβ >

ηα . Applying Eq. (46) to the interval [tmα ; tc], we
have

V(ηβ, tc, tmα ) > V(ηα, tc, tmα ) . (47)

Adding the value of the optimal potential in tmα to
both members of the previous inequality, we find

V∗(tc) = V(ηβ, tc, tmα ) + V(ηα, tmα , t0)

> V(ηα, tc, tmα ) + V(ηα, tmα , t0)

= V(ηα, tc, t0)

> V(η∗, tc, t0) (48)

where the last inequality comes from Eq. (46). But,
by definition of η∗, V(η∗, tc, t0) = Vth. Hence, we
find that the optimal potential in tc is above thresh-
old, which cannot be true.

The optimal noise and potential on the remaining
part [tc; tM+1] of the inter-spike interval can be deter-
mined iteratively. We replace t0 with tm∗ and V0 with Vth

if Jm∗ > 0 or Vth + Jm∗
C if Jm∗ < 0 in Eq. (45), and look

for the lowest noise producing a new contact point over
the interval [tm∗, tM+1]. The procedure is repeated until
the whole interval is exhausted. This way an increasing
sequence of noise values is obtained, each correspond-
ing to the slope of the optimal potential between two
successive contact points.

7The case of three or a higher number of values for the noise can
be handled exactly in the same way.

Appendix B: Passive contacts

When the membrane leaking conductance is non zero,
some change have to be brought to the above cal-
culation of the optimal noise and potential. First, in
the absence of inputs, the noise is no longer constant,
but rather it is an exponentially increasing (in absolute
value) function of the time (Eq. (8)). Similarly, the
potential V∗ itself is not a linear function of the time
as in Eq. (48), but is a linear combination of exp(±t/τ)

with appropriate coefficients, see Eq. (10).
The main conclusion of Appendix A still holds: the

difference between the noise values just after and be-
fore an active contact point, coinciding with a synaptic
input, is always positive (Fig. 2(a)). Consequently, the
procedure of Section 2.4, i.e. the iterative search for the
active contact points and the minimal noise coefficient
η∗, defined through Eq. (11), remains unchanged. Note
that some care must be taken to translate the statement
about the growth of the noise to the values of the
noise coefficients. Consider for instance two successive
contact times, t and t′, and call η, η′ the corresponding
noise coefficients. That the noise is larger at time t′ than
at time t implies that η × exp((t′ − t)/τ) < η′, but does
not imply that η′ is larger than η.8

There exists, however, a major difference between
the g = 0 and g "= 0 cases. When g > 0, the optimal
potential is not guaranteed to be a monotonous func-
tion of the time, as shown in Fig. 10. For given values
of g, I, and of the times and the amplitudes of the
synaptic inputs, the optimal potential V∗ may touch the
threshold at an intermediate time, tc. Such a situation is
called passive contact. It is important to note that the
value of the optimal noise during a passive contact is,
according to Eq. (9), equal to gVth − I. As the optimal
noise is a monotonous function of the time between
two active contacts, see Eq. (8), the value gVth − I can
be crossed at most once: there is at most one passive
contact in between two successive active ones. To be
more precise, there are at most A + 1 passive contacts
in an inter-spike interval with A active contacts.

To decide the existence of a passive contact in an
interval [t0; tM+1], we look for a solution of the two
coupled equations expressing that the optimal potential
touches the threshold without crossing it,

V∗(ηp, tc) = Vth and
∂V∗

∂t
(η, tc) = 0 . (49)

8This situation can not happen in the g = 0 case, where the noise
and the noise coefficient coincide.
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The solutions of these equations give the noise
coefficient ηp and the contact time tc at which the
optimal potential reaches the threshold value (Fig. 10).
The solution can be calculated analytically, with the
following result. Let us call V0 the value of the potential
of the neuron at time t+0 . For each m ≤ M we define

Vm = V0 +
∑

%:t0<t%≤tm

J%

C
e(t%−t0)/τ , (50)

where the summation runs overs the spikes entering the
neuron between times t0 and tc. A passive contact takes
place in the interval [tm; tm+1] if:

• gVth − I and Vm − Vth have the same sign;
• the noise coefficient

ηp = gVm − I −
√

(gVm − I)2 − (gVth − I)2 (51)

is smaller than the lowest noise coefficient corre-
sponding to all the possible active contacts at times
t%, with 1 ≤ % ≤ M;

• the corresponding contact time

tc = t0 − τ log
[

ηp

gVth − I

]
, (52)

where ηp is given by Eq. (51), lies in the correct
interval: tm < tc < tm+1;

• the optimal potential can reach again the threshold
at a later time, coinciding with an input spike or
with the end of the inter-spike interval. We call
'c(%) the duration of the active contact such that
the potential reaches Vth at time t%, starting from
Vth at time tc + 'c(%), see Fig. 10. The analytical
expression for the duration of the passive contact
allowing the potential to be in active contact at time
t% is

'c(%) = −τ log





1

2 Va(%)



Vb (%)

−
√

Vb (%)2 −
(

Vth −
I
g

)2







 .

(53)
where

Va(%) = ηp

2g
e(t%−t0)/τ and

Vb (%) = Vth −
I
g
−
∑

%′<%

J%′

C
e−(t%−t%′ )/τ − J%

C
θ(J%) .

(54)

We must have tc + 'c(%) < t% for at least one value
of % ≥ m + 1.

When all the conditions are fulfilled, a passive contact
is present. The duration of the contact, 'c, merely plays
the role of a latency time after which the potential V∗

resumes its course (Fig. 10). We can check that V∗ is
an increasing function of 'c. The optimal value of 'c

will therefore be equal to the smallest possible value of
'c(%), for the very same reason that we had to chose
the minimal noise when looking for active contacts, see
example in Fig. 10.

To end this appendix, we give the expression for the
log-likelihood L∗ (Eq. (16)) for an interval including a
passive contact between two active contacts. Gathering
the contributions to the integral of the squared optimal
noise coming from the three intervals [t0; tc], [tc, tc +
'c], and [tc + 'c; tm∗ ], we obtain

L∗(T |J , I) = − (gVth − I)2

2

{

'c + τ
exp
[
2(tm∗ − tc −'c)/τ

]
− exp

[
− 2(tc − t0)/τ

]

2

}

. (55)
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Differentiation of L∗ with respect to the current
and couplings gives the expressions for the gradient
and Hessian matrix needed for the Newton–Raphson
method. The expressions are easy to obtain but are
lengthy, and thus we do not reproduce them.

Appendix C: On the eigenmodes of the Hessian
matrix for weak couplings

In this appendix, we analyze the eigenmodes and eigen-
values of the Hessian matrix of the log-likelihood L∗,
and relate the eigenmodes to the fluctuations of the
effective current, Ie

i , of the current, Ii, and of the
couplings, Jij. Consider two successive spikes emitted
by neuron i and the optimal potential V∗

i (t) on the
time interval [ti,k; ti,k+1]. When the couplings Jij vanish
and passive contacts are absent, V∗

i (t) does not enter
into contact with the threshold at times < ti,k+1. By
continuity, this statement remains true if the couplings
Jij have very small amplitudes. In this regime, the sto-
chastic process undergone by the potential is simply the
Ornstein–Uhlenbeck process with a time-varying force,
and the expression for L∗ (Eq. (16)) is exactly given by

L∗(T |J , I) = −1
2

∑

i,k

µ
(i)
k

×
(

C Vth −
∑

j("=i)

Jij φ
(i)
k, j − Ii τ φ

(i)
k,i

)2

(56)

where

µ
(i)
k = 2

τ

(
1− e−2(ti,k+1−ti,k)/τ

)−1

, (57)

and

φ
(i)
k, j =






∑

l

e−(ti,k+1−t j,l)/τ θ
(
ti,k < t j,l < ti,k+1

)
if j "= i ,

1− e−(ti,k+1−ti,k)/τ if j = i .

(58)

The Hessian matrix of L∗, attached to neuron i, is the
N × N matrix (Eq. (17)) with elements

σ 2H(i)
jj′ =

∑

k

µ
(i)
k φ

(i)
k, j φ

(i)
k, j′ , (59)

H(i) is a positive matrix according to Eq. (59). To
study its spectrum let us first consider the case of

very weak leakage (very large τ ). In this limit, calling
't(i)k = ti,k+1 − ti,k the duration of the kth ISI of neuron
i, we have

µ
(i)
k → 1

't(i)k

, φ
(i)
k,i →

't(i)k

τ
,

φ
(i)
k, j → nb. of spikes of neuron j in the

kth ISI of neuron i. (60)

Let us define the firing rate f (i)
k, j of neuron j("= i) in the

kth ISI of neuron i, and f (i)
ki = 1

τ
. We obtain

σ 2

T
H(i)

jj′ = 1
T

∑

k

't(i)k f (i)
k, j f (i)

k, j′ . (61)

where T is the duration of the recording. The right hand
side of the above equation can be interpreted as the
covariance matrix of the rates f (i)

k, j, where each ISI of
neuron i is weighted proportionally to its duration. For
vanishing couplings, these instantaneous rates are de-
coupled from neuron to neuron. Hence, f (i)

k, j fluctuates
around the average firing rate f j (number of the spikes
fired by neuron j, divided by T), with a variance we
denote by 〈 f 2

j 〉c. This statement holds for j "= i; in ad-
dition we define fi = 1

τ
. Neglecting terms of the order

of τ−2, we end up with the following approximation for
the Hessian matrix,

σ 2

T
H(i)

jj′ = f j f j′ + δ j, j′ ω j where

ω j =
{ 〈 f 2

j 〉c if j "= i ,

0 if j = i .
, (62)

which becomes exact in the limit of infinitely long
recordings.

The matrix H(i) is the sum of a rank one matrix plus a
diagonal matrix. For small values of σ , the fluctuations
of the firing rates, represented by the ω j’s, are ex-
pected to be small compared to the product of any two
average firing rates. We immediately deduce that the
largest eigenvector of the matrix, vmax, has components
(vmax) j = f j for all j = 1, . . . , N. The associated eigen-
value, λmax, is given by

σ 2

S
λmax = T

S

∑

j

( f j)
2 , (63)

where S is the total number of spikes. If the neu-
rons have quantitatively similar firing rates 1 〈 f 〉,
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then σ 2λmax/S 1 〈 f 〉. The probability density of vector
v(i) is

P({v(i)}|T ) 1 P({v̂(i)}|T )

×exp



−1
2

∑

i, j, j′

(
v

(i)
j − v̂

(i)
j

)
H(i)

j, j′
(
v

(i)
j′ −v̂

(i)
j′
)


 .

(64)

A fluctuation δv = {δ(Iiτ), δ Jij} around the most likely
values for the current and the couplings, and along
vector vmax, will change the log-likelihood by

δ

(
log P

S

)
= −λmax (δv · vmax)

2

2 S (vmax)2

= − T
2 σ 2 S

(
δIi +

∑

j("=i)

Jij f j

)2

1 − (δIe
i )

2

2 σ 2 N 〈 f 〉 . (65)

Hence the effective current Ie
i is associated to the

largest eigenmode, and is the parameter requiring the
least number of data to be inferred.

We now look for the smallest eigenvalue, λmin. Nu-
merical investigations suggest that the associated eigen-
vector, vmin, correspond to fluctuations of the current Ii

only. We thus assume that the components of vmin are:
(vmin)i = 1, and (vmin) j = −ε j with ε j 3 1. The eigensys-
tem we need to solve is

σ 2 λmin = T
τ

(
1
τ
−
∑

j′("=i)

ε j′ f j′

)
(66)

−σ 2 λmin ε j = T f j

(
1
τ
−
∑

j′("=i)

ε j′ f j′

)

− T ω j ε j ∀ j("= i) . (67)

According to Eqs. (67) and (66), we have, for all j("= i),

ε j = f j τ σ 2 λmin

ω j T
+ O(σ 2 λmin ε j) . (68)

Inserting this expression for the components ε j of the
eigenvector into Eq. (66), we obtain

σ 2

S
λmin = T

τ 2
(

1 +
∑

j("=i)

f 2
j

ω j

)
S

. (69)

If all neurons have quantitatively similar firing rates,
〈 f 〉, and variances, 〈 f 2〉c, we obtain σ 2λmin/S 1
〈 f 2〉c/(N2〈 f 〉3τ 2). According to Eq. (68), the com-
ponents ε j of the eigenvector are very small, ε j 1

1/(N2τ 〈 f 〉), for all j "= i. Hence vmin is localized
on its current component only. A fluctuation δv =
{δ(Iiτ), δ Jij}, where the δ Jij’s are chosen to be orthog-
onal to all the other eigenmodes of H(i), modifies the
log-likelihood by

δ

(
log P

S

)
= −λmin (δv · vmin)

2

2 S (vmin)2 1 − 〈 f 2〉c
(
δIi
)2

2 σ 2 N2 〈 f 〉3 . (70)

We conclude that the current Ii is the hardest parame-
ter to infer, i.e. the one requiring the largest number of
data.

When the membrane leaking time becomes of the
order of, or smaller than the average ISI duration, the
above calculation has to be modified. From a qualita-
tive point of view, the average firing rate f j must now
be defined as the mean number of spikes emitted by
the neuron j in a time-window of duration τ preceding
a spike of neuron i, divided by τ (20). The eigenvector
of H(i) with largest eigenvalue λmax is still given by
(vmax) j = f j, with fi = 1/τ , and

σ 2

S
λmax 1

τ

N

∑

j

( f j)
2 . (71)

Again, these fluctuations are associated to the effective
current, with the newly defined average firing rates fi.
As τ gets smaller and smaller, all the rates f j with
j "= i become smaller and smaller compared to fi, and
the effective current Ie

i gets closer and closer to the
true current Ii. Obviously, the inference of the synaptic
coupling Jij is possible if the firing rate f j defined on a
time-window of duration τ preceding a spike of neuron
i is much larger than 1/T.

Appendix D: Fluctuations of the potential around
the optimal path at small noise

In this appendix, we derive formula (14) for the
fluctuations of the potential around its optimal value at
the mid-point of the ISI. A useful formulation for pF PT

in Eq. (3) can be given in terms of a path integral over
the potential,

pF PT(ti,k+1|ti,k, {t j,l}, {Jij}, Ii)

= − ∂

∂ti,k+1

∫ Vi(t−i,k+1)<Vth

Vi(t+i,k)=0
DVi(t)

× exp
(
− 1

2σ 2 L[Vi(t); k, T ,J , I]
)

. (72)

The measure DVi(t) in the path-integral (Eq. (72))
is restricted to the potentials Vi(t) remaining smaller
than the threshold Vth at all times t. The upper bound
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Vi(t−i,k+1) < Vth means that the integral is performed
over all the values of the potential smaller than Vth at
time t−i,k+1, while Vi(ti,k) is constrained to be zero.

We introduce the dimensionless variable ψi(t) =
(Vi(t)− V∗

i (t))/Vth to represent the time-dependent
fluctuation of the potential (Fig. 2(c)). According to
Eqs. (72) and (4), the log probability density of a path-
fluctuation ψi(t) on the inter-spike interval [ti,k; ti,k+1] is,
after multiplication by σ 2,

L[ψi(t) Vth + V∗
i (t); k, T ,J , I]

= L[V∗
i (t); k, T ,J , I] + V2

th

2

∫ ti,k+1

ti,k
dt′

×
∫ ti,k+1

ti,k
dt ψi(t′)

δ2L
δV∗

i (t′) δV∗
i (t)

ψi(t) + O(ψ3
i )

= L∗(T |J , I)

− V2
th

2

∫ ti,k+1

ti,k
dt ψi(t)

[
− C2 d2

dt2 + g2
]
ψi(t) + O(ψ3

i ) ,

(73)

up to an additive term independent of ψi. Note that
we have used the optimality condition (5) to exclude
terms linear in ψi in Eq. (73). We now want to perform
the path integral over the fluctuations ψi(t) in Eq. (72).
When σ is small we may discard the cubic and higher
order terms in ψi. The boundary condition on ψi are
ψi(ti,k) = ψi(ti,k+1) = 0: the values of the potential Vi(t)
are constrained right after and before the emission of
a spike, and, hence, cannot fluctuate (Fig. 2(c)). We
therefore write the fluctuations ψi(t) as the following
Fourier series,

ψi(t) =
∑

n≥1

ψn sin
(

n π (t − ti,k)
ti,k+1 − ti,k

)
, (74)

where the ψn are stochastic coefficients. The integral on
the last line of Eq. (73) can be calculated with the result

V2
th

2

∫ ti,k+1

ti,k
dt ψi(t)

[
− C2 d2

dt2 + g2
]
ψi(t)

= ρ (CVth)
2

4τ

∑

n≥1

[
1 +
(

nπ

ρ

)2 ]
ψ2

n , (75)

where

ρ = ti,k+1 − ti,k
τ

(76)

is the duration of the ISI measured in units of the
membrane leaking time. Hence, if we relax the con-
straint that the fluctuating potential should remain

below threshold at all times, the ψn’s are independent
Gaussian variables with zero means and variances

λn = 2 τ σ 2

(CVth)2

ρ

ρ2 + n2π2 = 2 σ̄ 2 ρ

ρ2 + n2π2 , (77)

where σ̄ is defined in Eq. (13). We may now calculate
the variance of ψi at the mid-point of the ISI, see
Fig. 2(c),
〈

ψi

(
ti,k + ti,k+1

2

)2
〉

=
〈[
∑

n≥1

ψn sin
(nπ

2

)]2〉

=
∑

p≥0

λ2p+1 . (78)

Summing up the series over p in Eq. (78) gives expres-
sion (14).

Appendix E: Expression of the moving threshold
and alternative procedures

In Section 2.6 we explain that the value of the moving
threshold, VM

th , is estimated from the intersection of the
tangent to the probability of survival in V = Vth with
the ps = 1

2 line. Hence,

VM
th = Vth +

(
2

dps

dV
(δt|V = Vth)

)−1

. (79)

The slope of ps can be expressed in terms of a series of
parabolic cylinder functions (Alili et al. 2005),

dps

dV
(δt|V = Vth)

= −
∑

i≥0

exp(−ni δt/τ)

ni Li
D′

ni

(√
2gC
σ

(
I
g
− Vth

))2

,

(80)

where D′
n(z) denotes the derivative of Weber’s func-

tion of order n, Dn(z), with respect to its argument z.
The normalization coefficients are

Li =
∫ Vth

−∞
dV Dni

(√
2gC
σ

(
I
g
− V
))2

. (81)

The orders ni, i = 0, 1, 2, . . ., are the roots of the equa-
tion (Mei and Lee 1983)

Dn

(√
2gC
σ

(
I
g
− Vth

))

= 0 (82)

with 0 < n0 < n1 < n2 < . . .. The gap between succes-
sive levels, ni+1 − ni, is larger than 1. Note that the
contributions from high orders ni decay exponentially
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with δt/τ in Eq. (80). Hence, in practice, the summation
can be carried out over a finite number of terms.

The Moving Threshold procedure was designed to
take into account the effects of a moderate noise level,
σ . An alternative approximate procedure consists in
subtracting to the log-likelihood a cost-function pre-
venting the current, or the effective current from get-
ting too close to gVth. For a quantitative treatment
consider a single neuron in the absence of synaptic in-
put, for which pF PT can be calculated under the form of
a series of parabolic cylinder functions, see above. We
denote by pcl

F PT the approximation to pF PT obtained
when taking into account the optimal path only. We
define the cost-energy function

U(I; g, σ, τ ) = log

[
pF PT(δt; g, σ, I)
pcl

F PT(δt; g, σ, I)

]

. (83)

for the current I. We show in Fig. 11 the shape of U
for different values of g, σ , and the inter-spike interval
δt. As expected from above, this cost function is es-
sentially flat when I/(gVth) 3 1, and is repulsive when
I/(gVth) → 1. The repulsion is strong when the inter-
spike interval, δt, the membrane conductance, g, and
the noise standard deviation, σ , are large.

In presence of synaptic inputs, we approximate
the non-perturbative corrections by subtracting
(Ni − 1) U(Ie

i ) to our log-likelihood, where Ni is the
number of spikes of neuron i, and Ie

i its effective
current. This simple approximation preserves the
concavity of the log-likelihood and is computationally
simple since U has to be calculated only once for

-0.5 0 0.5

0

10

20

30

40

U

-0.5 0 0.5 1
I/(gVth)

-0.5 0 0.5 1

(A) (B) (C)

Fig. 11 Cost-energy function U over the current as a function
of the ratio I/(gVth) for different values of σ (a), g (b), and
the inter-spike interval δt (c). Values of the parameters are:
(a) δt/τ = .025, and σ/(Vth

√
gC) = .016, .16, .32, .64 from right

to left; (b) g = 1, 5, 10, 40 C/δt from top to down on the left side,
with σ/

√
δt = I; (c) σ/(Vth

√
gC) = .32, and δt/τ = 1, 10, 50, 100

from bottom to up

each step and neuron. Simulations show that the
performance of the inference algorithm with the cost
function U is quantitatively similar to the one obtained
with the Moving Threshold procedure.
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