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Supporting Information Appendix, Section 1:

Inference of couplings and of their accuracy within the inverse Ising model

I. INFERENCE AND MINIMIZATION OF THE ISING ENTROPY

A multi-electrode recording provides the firing times of N recorded cells during a time interval of duration T . In
the Ising inverse approach the recording interval is divided into time windows (time-bins) of width ∆t and the data
are encoded in T/∆t configurations s = (s1, s2, . . . , sN ) of the N binary variables si, (i = 1, . . . , N) called spins (by
analogy with magnetic systems described by the Ising model). The value of each spin variable is: sτ

i = 1, if the cell i
is active in the time-bin τ (τ = 1, . . . , B = T/∆t), si = 0 otherwise. Let pi be the probability that the cell i is active
in a given time-bin, and pij be the joint probability that the cells i and j are both active in the same bin.

The Maximum Entropy Principle (MEP) states that the probabilistic model, P (s), which reproduces the best the
observed one cell {pi} and two-cell firing probabilities {pij} in the time-bin, ∆t, is the one that maximizes the entropy
of the distribution

S[P ] = −
∑

s

P (s) ln P (s) (1)

under the constraints that the average values of the spins and of the spin-spin correlations coincide with, respectively,
the observed one-cell and two-cell firing probabilities [1, 13]. In practice, these constraints are enforced by introducing
Lagrange multipliers:

SMEP [{pi}, {pij}] = min
hi,Jij ,λ

max
P (s)

[

S[P ] + 2
∑

i

hi

(

pi −
∑

s

P (s) si

)

+ 4
∑

i<j

Jij

(

pij −
∑

s

P (s) si sj

)

+ λ

(

1 −
∑

s

P (s)

)



 . (2)

Note the presence of the additional multiplier λ to ensure the normalization of P . The maximization condition over
P [s] shows that the MEP probability corresponds to the equilibrium Boltzmann-Gibbs distribution of the Ising model:

P (s) =
exp(−E(s))

Z[{hi}, {Jij}]
(3)

where E is the energy function of the Ising model

E(s) = −4
∑

i<j

Jijsisj − 2
∑

i

hisi (4)

and

Z[{hi}, {Jij}] =
∑

s

exp(−E(s)) (5)

is its partition function. The optimal values for the Lagrange multipliers Jij and hi can therefore be interpreted in
terms of the couplings and the fields of the Ising model. The presence of the factor 4 multiplying the couplings in
eqs. (2) and (4) ensures that the couplings Jij , defined here for the variables si taking values 0, 1, are equal to the
couplings for the magnetic systems, in which spins take values ±1 [1]. From eq. (2) the values of the couplings and
fields are then found through the minimization [19] of

S[{hi}, {Jij}] = log Z[{hi}, {Jij}] − 4
∑

i<j

Jij pij − 2
∑

i

hi pi . (6)

Since S is a convex function of its variables, the minimum is always well defined, however, it may be located at
infinity. For a simple example of such a situation consider one spin (N = 1) with firing rate f . The probability p that
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the spin variable equals 1 is then p = 1− exp(−f∆t), and it is close to zero for time-bin widths ∆t much smaller than
the typical times between spikes, 1/f . If the number B of time-bins is much smaller than 1/(f ×∆t) the spin is likely
to be equal to 0 in all configurations. Hence, the measured firing probability is p = 0, and the field h, the solution of
the inverse problem, would be h = −∞. Similarly, if a pair of cells are never active together in the same time-bin (for
all available configurations) the corresponding coupling will be infinite. This problem can be easily cured by adding
to the Ising entropy an extra term:

SM [{hi}, {Jij}] = S[{hi}, {Jij}] +
Γ

2





∑

i<j

J2
ij +

∑

i

h2
i



 . (7)

While the Ising entropy S can be thought of as representing the cost of describing the data within the Ising model, the
extra term in SM is expressing the cost of describing the model itself: it is the length of the model in the language of
Minimum Message Length (MML) theory [2]. This additional contribution has also a simple meaning in the Bayesian
framework, where it represents minus the logarithm of the prior probability over the fields and couplings (chosen
here to be Gaussian). The presence of a quadratic contribution in (7) ensures that SM grows quickly to +∞ when
N(N + 1)/2 fields and couplings get away from the origin. This proves the existence, uniqueness, and finiteness of
the solution to our inverse problem. Note that the choice of the Gaussian prior is arbitrary; any log prior growing
faster than linearly would be acceptable.

The parameter Γ in (7) is equal to 1/(B σ2), where σ2 is the variance of the a priori probability of the fields and
couplings. For the data we find that the optimal value for Γ is of the order of 10−6, e.g. for the Flicker stimulus
(see below) B = 2 105, and we have chosen σ2 = 5. In practice, we observe that the choice of Γ does affect the
values of a few couplings, but is irrelevant for most of the couplings and for all fields. The reason is intuitively clear
from the discussion above: only the interactions between cells never spiking together, or with a very limited number
of coinciding firing events will depend on Γ (see Figure 2 and the attached comments below). Note that Γ tends to
zero for very large size B of the data set: the MEP couplings and fields always coincide with the MML predictions.
Indeed, sampling is perfect in this limit.

II. AN INVERSE ALGORITHM TO OBTAIN THE VALUES OF COUPLINGS AND FIELDS

The calculation of the partition function Z, Eq. (5), requires, for a given set of fields and couplings, a computational
effort growing exponentially with the number of cells. Therefore, the entropy S cannot be obtained directly using
definition (6) for N exceeding, say, 15. Fortunately, since the time-bin width ∆t (about 10 ms) is much smaller than
the average spacing between spikes (more than 1 s for the analyzed recordings) the firing probabilities are close to zero,
and we need to know S for large values of the fields hi only. Therefore, we have extended the large-field expansions
used in statistical physics of magnetic systems, so to:

1. deal with the case of non-uniform (cell-dependent) couplings and fields;
2. carry out the minimization over these (large) fields and the couplings in Eq. (7) in order to obtain S, and then

SM , at fixed one- and two-cell firing probabilities.
We briefly present the outcome of this large-field expansion, and how it can be turned into a practical algorithm

to calculate the couplings Jij and fields hi as function of the firing probabilities pi and the probability that two
cells spikes in the same time window pij . For large fields, the entropy S can be hence decomposed into a sum of
contributions coming from all the k-plets of distinct spins,

S[{pi}, {pij}] =

N
∑

k=1

∑

i1<i2<...<ik

Sk[i1, i2, . . . , ik; {pi}, {pij}] (8)

The first term S1 in this expansion corresponds to the entropy of a single spin at fixed firing probability pi,

S1[i; pi] = −pi log pi − (1 − pi) log(1 − pi) . (9)

The second term, S2, represents the entropy of a system of two spins with imposed firing probabilities and pairwise
firing probabilities minus the sum of the two single-spin contributions S1. Its exact expression is

S2[i, j; pi, pj , pij ] = −pi,j log (pij) − (pi − pi,j) log (pi − pi,j)

− (pj − pi,j) log (pj − pi,j) − (1 − pi − pj + pi,j) log (1 − pi − pj + pi,j) . (10)

Higher-k terms have similar interpretations: informally speaking, Sk is the contribution to the entropy of a set of k
spins (with their average values and correlations fixed, i.e. restricted by the corresponding k and k(k−1)/2 constraints)
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that cannot be obtained from the entropies of smaller subsets of these k spins. Although for k ≥ 3 we are not able
to provide an analytical expression for Sk, we can calculate it numerically for small enough values of k. In practice,
for k ≤ kmax = 7, the sum over 2k spin configurations in the partition function Z (5) can be explicitly evaluated, and
the expression (6) can be minimized over the fields and couplings, leading to a high accuracy approximation for the
entropy S.

For a given pair a, b of spins, we can consider all the subsets of k = 2, 3, . . . , kmax spins containing this pair,
Rk = (i1, i2, . . . , ik−2, a, b), and for each such subset, we can calculate the value of the couplings Jab(Rk) minimizing
Sk[Rk; {pi}, {pij}]. The inferred coupling are then given by

Jab =

kmax
∑

k=2

(−1)kmax−k

(

N − k − 1

kmax − k

)

∑

Rk

Jab(Rk) . (11)

The presence of the combinatorial factors with alternate signs in the above equation originates from the so-called
exclusion-inclusion principle, which avoids multiple counting of the same contributions to the total coupling. A
similar procedure provides us with the approximate values of the fields hi.

The above expression is a good approximation for the true couplings as long as the contributions from the sets
containing more than kmax spins are small. This is indeed the case for small time-bin widths ∆t. To see this, let us
assume that all firing probabilities pi are small, i.e. pi < ǫ for some ǫ > 0; one may for instance chose ǫ = maxi(fi)×∆t,
where fi is the firing rate of cell i. Then Sk < Ck ǫk, where Ck is a constant. As an example, it is easy to check from
(10) that S2 = O(ǫ2). This property allows us to truncate the sum in (8) to the terms k < kmax only, and to estimate
the accuracy of the resulting approximation for the entropy, the couplings, and the fields.

III. TEST OF THE INVERSE ISING ALGORITHM

We have tested our inverse Ising algorithm on three published multi-electrode recordings from salamander ganglion
cells:

• A recordings of the spontaneous activity of 60 cells observed during 2000 seconds in total darkness (here called
Dark) [6].

• A 4450 second-long recording of 51 cells from the same retina illuminated with randomly flickering bright squares,
hereafter called the Flicker stimulus [6]; 32 cells are common to Flicker and Dark data sets (both sets of data
courtesy of M. Meister). The vast majority of these cells are of OFF-type.

• A recording from 40 cells in another retina presented with a 120 second-long natural movie repeated 20 times
[1] (data courtesy of M. Berry).

Our test procedure was based on a comparison of the couplings and fields found with our inference algorithm and the
ones obtained from an iterative numerical procedure, called Boltzmann learning in statistical inference literature [5].
The principle of this last procedure can be summarized as follows:

1. one starts from some presumed values for the fields hi and couplings Jij ;

2. based on these initial values and using a Monte Carlo routine, one calculates then the firing probabilities pi and
two-spin connected correlations cij = pij − pi pj ;

3. one compares these values to their experimental counterparts, pexp
i and cexp

ij . The procedure is stopped if

|pi − pexp
i | < ǫ for every cell i, and |cij − cexp

ij | < ǫ for every pair i, j, where ǫ is the desired accuracy. Otherwise

the fields and couplings are updated accordingly, e.g. Jij is increased if cij < cexp
ij , or decreased if cij > cexp

ij .

Then one repeats the procedure (starting with point 2.)

In practice, we used the couplings Jij and fields hi obtained from our inference algorithm, based on the large fields
expansion, as an educated guess for the initial values of the learning procedure. This starting point is already very
close to the true set of couplings and fields, and allows the learning procedure to converge much faster than if it
were started from randomly chosen initial values. Figure 1 shows the quality of reconstruction of the correlations cij

and the firing probabilities pi for the 32 cells common to Flicker and Dark recordings after the Boltzmann-learning
algorithm. This figure clearly shows that the couplings and fields found by the learning procedure are the correct
ones.
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FIG. 1: Comparison of firing probabilities pi (left) and correlations cij (right) found through the learning procedure with their
experimental values. Results are shown for N = 32, ∆t = 20 ms, and Flicker stimulus. Note that the correlations measured
for (0, 1) spins are 4 times smaller than their counterparts for ±1 spins used in Ref. [1].

Figure 2 compares, for every pair i, j, the coupling Jij found by our algorithm with the expansion up to the order
kmax = 5 vs. the value obtained from the learning algorithm for ǫ = .0001. The error bars for the inferred couplings,
due to the finite amount of data, are also depicted (see the previous section in Supporting Information). For all three
stimuli and ∆t ranging from 5 to 20 ms, and for almost all pairs of cells, the discrepancy between the values of the
coupling Jij calculated with our algorithm and with the learning procedure is smaller than the uncertainty due to the
finite size of the data set. This result confirms the high accuracy of our algorithm.

The algorithm with kmax = 5, and N = 32 runs in a couple of minutes on a personal computer. The running time
increases with the number of cells as N5, from about 0.4 sec, for N = 10, to about 1 hour, for N = 60.
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FIG. 2: Comparison of couplings Jij found by the Ising inference with their values after running a Boltzmann-learning algorithm.
Results are shown for N = 32, ∆t = 20 ms, and Flicker stimulus. The error bars show the uncertainty on the couplings due to
the finite sampling. The dashed line represents the y = x line.
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IV. CALCULATION OF THE ERROR ESTIMATES FOR THE INFERRED PARAMETERS

We now report how the errors for the inferred fields and couplings, due to the finite sampling, can been calculated.
We assume for the moment that the data are generated from an Ising model (4) with given fields {hi} and couplings
{Jkl}. The probability of inferring from such data a set of fields {h′

i} and couplings {J ′
kl} is then proportional to

exp(−B SM [{h′
i}, {J ′

ij}]). When B is very large this probability is strongly concentrated around the values corre-
sponding to the minimum of SM , i.e. around {hi}, {Jkl}. The difference between the inferred and the true fields and
couplings is encoded in the N(N+1)/2-dimensional vector with components ({h′

i − hi}, {J ′
kl − Jkl}); the distribution

of such vectors is asymptotically Gaussian, with a covariance matrix equal to the inverse of the Hessian matrix HM of
SM (over B). The existence of this Gaussian distribution is a central result of asymptotic Bayesian inference, where
HM is called Fisher information matrix.

In order to calculate HM we proceed in two steps. We first calculate the Hessian matrix H of the Ising entropy S
(6) by noticing that the entries of H are simply related to the multi-spin correlations of the Ising model,

H =

(

∂2S
∂hi∂hi′

∂2S
∂hi∂Jk′l′

∂2S
∂hi′∂Jkl

∂2S
∂Jkl∂Jk′l′

)

=

(

4 (〈si si′〉 − 〈si〉〈si′〉) 8 (〈si sk′ sl′〉 − 〈si〉〈sk′ sl′〉)
8 (〈si′ sk sl〉 − 〈si′〉〈sk sl〉) 16 (〈sk sl sk′ sl′〉 − 〈sk sl〉〈sk′ sl′〉)

)

, (12)

where 〈·〉 denotes the average with the Gibbs measure (3). Once H is known, we obtain HM by adding Γ× Identity,
see (7), and invert HM with standard linear algebra routines.

The only difficulty is, therefore, to calculate the multi-spin correlations in (12). In principle, one should infer the
couplings and fields, check through Monte Carlo simulations that the experimental magnetizations and correlations
are correctly reproduced, and use the same simulations to calculate the entries of H. In practice, we obtain an
excellent and time-inexpensive approximation to H by computing the correlations directly from the data. The error
bars obtained from the two procedures are very similar.

Figure 2 shows the statistical uncertainty associated with the inferred couplings for the Flicker data set. Ten
pairs (over 496) of cells have very large error bars ≃ 2. As discussed in Section I these pairs of cells never spike
together within the data set, and their couplings would be thus minus infinity if it were not for the regularizing term
proportional to Γ in (7), see formula (36) in Supporting Information 4. These pairs correspond to localized zero modes
of H, and the error bars on their couplings are equal to the a priori standard deviation σ. The other couplings in
Fig. 2 have a statistical error much smaller than σ, and are not affected by the value of the parameter Γ.

Figure 3 shows the histograms of the couplings for the 32 cells common to the Flicker and Dark recordings. The
full black histograms corresponds to reliable couplings i.e. the couplings with relative error smaller than 30%. Note
that the absolute values of most unreliable couplings are small, and are compatible with the zero value.
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FIG. 3: Histogram of couplings Jij for N = 32, ∆t = 20 ms, and Dark and Flicker stimulus. The couplings for which the
relarive sampling uncertainty is smaller than 30% are black (called reliable) and others (unreliable) in brown.
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Supporting Information Appendix, Section 2:

Limitations of the inverse Ising model: higher-order cell correlations and couplings

The inverse Ising model is well suited to reproduce the cell average activities and pair correlations. We can test
the quality of this representation of the cellular activities by comparing the higher order correlations extracted from
experiments to the predictions obtained from the Ising model.

Let si = 1, if the neuron i fires at least once in the given time-bin and si = 0, otherwise. We consider

pExperiment
ijk = 〈si sj sk〉Experiment (13)

where the average is performed over the recorded data: this is the experimental probability that the triplet of cells
(i, j, k) fire together in a single time-bin. We also consider the quantity:

pIsing
ijk = 〈si sj sk〉Ising (14)

where the average is now taken over the Ising Gibbs measure, with fields and 2-spin couplings found through the
maximum entropy principle (not taking into account 3-spin correlations). To be more precise, given the number N
of cells, the bin width ∆t, and the stimulus, we first calculate the firing probabilities of the single cells, pi, and of the
pairs of cells, pij ; we then deduce the Ising couplings and fields, and finally we calculate the probability of triplets
(14) with Monte Carlo simulations.

In order to test the validity of the Ising representation, we then compare, for each triplet of cell (i, j, k), the 3-cell
connected correlations:

cijk = pijk − pi pjk − pj pik − pk pij + 2 pi pj pk , (15)

obtained from the experiments and via the Ising model inference. The outcome is depicted in Figure 4 for the Flicker
and Natural Movie stimuli. For both stimuli, there is a good correlation between the predicted and measured values
of cijk, even though the Ising 3-cell correlations are systematically larger than the experimental ones.
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FIG. 4: 3-cell connected correlation cijk predicted from the Ising model (y axis) compared to their experimental values (x
axis) for Flicker (left, N = 32 cells) and Natural Movie (right, N = 40 cells). Results are shown for ∆t = 20 ms. The 3-cell
correlation for Flicker are reported in the Natural Movie panel for comparison.
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One can match the predicted and experimental values of the firing activity correlations, if one introduces higher-
order couplings between the cells. Indeed, let us consider a new 3-cell contribution

E(3) = −8
∑

i<j<k

Jijk si sj sk (16)

which we add to the energy E of the Ising model, Eq.(5). We can calculate the 3-cell couplings Jijk within linear

response theory, which is asymptotically correct for vanishing differences between pExperiment
ijk (13) and pIsing

ijk (14).
Within the linear response theory:

Jijk =
1

8

∑

i′<j′<k′

[

M−1
]

ijk,i′j′k′

(

pExperiment
i′j′k′ − pIsing

i′j′k′

)

, (17)

where M−1 denotes the inverse matrix of the multi-spin susceptibility

Mijk,i′j′k′ = 〈sisjsksi′sj′sk′〉Ising − 〈sisjsk〉Ising 〈si′sj′sk′〉Ising . (18)

In practice, the elements of the M matrix are calculated through Monte Carlo simulations of the Ising model. The
resulting 3-cell couplings are depicted in Fig. 5 for Flicker stimuli (qualitatively similar results are also obtained for
Dark and Natural Movie stimuli, with a higher probability for triplets in the latter case). It is useful to note here
that:

• the 3-cell couplings Jijk corresponding to the triplets of cells (i, j, k) firing often together, i.e. those with large

pExperiment
ijk , are small (in absolute value) compared to the 2-cell couplings in the Ising model. In other words,

the difference between the experimental and Ising values for the 3-cell connected correlations, though visible in
Fig. 4, can be corrected by adding a small 3-cell coupling.

• on the contrary, the couplings associated with triplets of cells that are rarely active simultaneously, may take
any finite value. Note, however, that the linear response theory cannot be quantitatively trusted for too large
(absolute) values of the couplings.
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FIG. 5: Three-spin couplings Jijk obtained through the linear response theory, as a function of the triplet-firing probability

pExperiment

ijk . These results were obtained for N = 32 cell, ∆t = 10 ms, and the Flicker stimulus. Similar results can be obtained
for Dark.

The discrepancy between the experimental and the Ising values for the 3-cell connected correlations shown in
Fig. 4 is a delicate issue from the numerical point of view. Our Ising prediction for cijk are indeed marred with
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numerical errors coming from the Monte Carlo simulations. To avoid this problem, we have looked at small subsets
of n = 10 neurons, for which the firing probabilities and correlations can be calculated exactly from the knowledge
of the couplings and fields. With our inference algorithm, keeping clusters with kmax ≤ 7 spins, we have found the
couplings and fields reproducing the firing probabilities pi and pij within 10−5 for the first ten cells of the Flicker
data set. We have then calculated the 3-cell connected correlations; the outcome is shown in Fig. 6. As in Fig. 4, the
Ising predictions for the large correlations are generally higher than the experimental values. This result seems to be
independent of the time-bin width ∆t (Figure 6).
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FIG. 6: 3-cell connected correlation cijk predicted from the Ising model (y axis) compared to their experimental values (x axis)
for the first ten cells of the Flicker data set, and two bin widthes ∆t = 20, 50 ms. The values found for cijk for the first 120
triplets of cells are very similar to the one calculated from the whole set of 32 cells in Figure 4 (left).

In conclusion, we find that the Ising model representation of the spiking activities (defined with 2-cell couplings Jij

only) is good for the most likely configurations, while rare events require the introduction of higher order multi-cell
couplings. Whether the latter result is due to a failure of the Ising representation or to the insufficient sampling of
the tail of the activity distribution remains unclear.

We can thus clarify the reasons underlying the success of the Ising model representation. For Dark stimulus, for
instance, if we consider all N = 60 recorded cells (and not only the 32 cells shared with the Flicker recordings) and
take ∆t = 20 ms, we then have at our disposal B ≃ 105 experimental configurations to sample the space of total
2N ≃ 1.15 × 1018 configurations. Since the sampled configurations s = {s1, s2, . . . , sN} are far from being uniformly
distributed, the entropy

S = −
∑

s

p(s) log2 p(s) (19)

is smaller than N . In practice, we estimate S ≃ 4.42 bits. Hence the number of ’effective’ configurations is

Neff = 2S ≃ 21.5 . (20)

It is thus not surprising that a good fit of the frequencies of those configurations can be obtained with only N × (N +
1)/2 = 1830 degrees of freedom (the number of the 2-cell couplings Jij and the fields hi in the Ising representation).
This argument holds also for Flicker stimuli: S ≃ 3.29 bits for N = 51 cells.

To test the quality of the representation of rare configurations, we can also consider the probability P (k) that k
cells are active in the same time-bin. The results are shown in Fig. 7 for the Flicker stimulus (similar results are
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obtained for Dark). The agreement is good for small k, and worsens as the number of simultaneously active cells
increases. This finding strengthens the conclusion that rare events are not adequately taken into account by the Ising
representation. Notice that in Ref. [1] a better agreement between the experimental and calculated p(k) was indeed
found for Natural-Movie, a structured stimulus for which the global activity is higher than in Flicker or in Dark.
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FIG. 7: Probability that k cells are active in the same time-interval bin calculated from the Ising model and experimental data.
Results are shown for Flicker and ∆t = 20 ms. Events with probabilities of the order of, or smaller than, 1/B ≃ 2 10−5 cannot
be sampled from the data set.
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Supporting Information Appendix, Section 3:

Algorithm for the Inverse Integrate-and-Fire Problem

The Leaky Integrate-and-Fire (LIF) model is defined in the Methods section of the main paper. In the following
the equations (4), (5), (6) in the main paper will be referred to as, respectively, (M4), (M5), and (M6).

For given values of the couplings Gij and of the average currents Ii, equations (M4,M5,M6) implicitly express the
likelihood P [{ti,k}|{Gij , Ii}] that the population of N neurons emit spikes at times {ti,k}, as a product of first-passage
times (FPT) probabilities [20]:

P [{ti,k}|{Gij , Ii}] =
∏

i,k

PFPT

[

ti,k+1|{Gij , Ii}, {tj,l < ti,k+1}, ti,k
]

. (21)

The (i, k) term in the product denotes the probability that the potential of cell i, starting from the zero value at time
t+i,k, will reach the threshold value for the first time at t−i,k+1, given the values of the currents, of the couplings and of

all firing times tj,ℓ ∈ [ti,k, ti,k+1] of spikes by other cells. To lighten notations, we will omit below the dependence on
firing times in PFPT , and write only the explicit dependence on couplings and currents. Each one of the first-passage
time probabilities can be expressed as a path-integral over the time-traces of the potentials,

PFPT [ti,k+1|{Gij , Ii}] = − d

dti,k+1

∫ Vi(ti,k+1)<1

Vi(ti,k)=0

DVi(t) exp

[

−A[Vi(t)|{Gij , Ii}]
2σ2

]

(22)

with

A[Vi(t)|{Gij , Ii}] =

∫ ti,k+1

ti,k

dt

(

dVi

dt
(t) + g Vi(t) − Isyn

i (t) − Ii

)2

(23)

The integration domain in (22) is restricted to sub-threshold potential Vi(t) < 1 , ∀ i, t. The boundary conditions are
Vi(ti,k) = 0, while the integral is performed over all possible values Vi < 1 of the potential at time ti,k+1.

In principle, the path-integral (22) can be calculated by solving many Fokker-Planck equations, one for each spike in
the data set, associated to one-dimensional Ornstein-Uhlenbeck processes with moving boundaries [7, 11]. In practice,
however, this approach is inadequate to deal with the data sets consisting of hundreds of thousands of spikes. We have,
therefore, resorted to an approximation for P , which is asymptotically exact when the amplitude σ of the synaptic
noise (M6) tends to zero. Indeed, for small σ the path integral (22) is dominated by the contribution coming from a
single path for the potential, called the classical path in physics [8] and the optimal path in large deviation theory
[9]. The optimal potential, hereafter referred to as V ∗

i (t), is simply the one minimizing the action A [10] with the
boundary conditions:

Vi(t
+
i,k) = 0 and Vi(t

−
i,k+1) = 1 . (24)

The outcome of the minimization of A can be written as follows:

• Let us assume first that V ∗
i (t) < 1. Then, the functional derivative of A, eq. (23), with respect to V ∗

i (t) must
vanish, which gives

−d2V ∗
i

dt2
(t) + g2 V ∗

i (t) +
dIsyn

i

dt
(t) − g Isyn

i (t) − g Ii = 0 . (25)

We now turn this second order differential equation for the optimal potential into a first order differential
equation at the price of introducing a new function, η∗

i (t), and a new first order differential equation for this
function. It is straightforward to check that the solution of

dV ∗
i

dt
(t) = −g V ∗

i (t) + Isyn
i (t) + Ii + η∗

i (t) (26)
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is a solution of the optimization equation (25) provided η∗
i (t) fulfills

dη∗
i

dt
(t) = +g η∗

i (t) . (27)

Note the change of sign in front of g in (27) with respect to (26) [8].

The similarity between equations (M4) and (26) allows us to interpret η∗
i (t) as a current noise. However, this

noise is no longer stochastic, but rather it follows the deterministic path solution of eq. (27). We will, therefore,
in the following refer to η∗

i (t) as the optimal noise. Solving (27) shows that the noise term is an exponential of
the type

η∗
i (t) = ηc

i exp(g t), (28)

where ηc
i is a constant, provided that the potential remains below the threshold.

• It may happen that the optimal potential only touches the threshold without actually crossing it at intermediate
times. When this is the case, the optimal potential equals V ∗

i (t) = 1 and its derivative with respect to the time
vanishes. The value for the optimal noise can be then calculated from Eq. (26), with the result

η∗
i (t) = g − Isyn

i (t) − Ii . (29)

This equation merely gives the value, which the noise has to take, for the potential to remain at the threshold
(without crossing it).

The set of the coupled equations (26), (28) and (29) cannot be solved directly due to the interplay between the
sub-threshold and threshold regimes. There exists, however, an efficient solving procedure for the case of the synaptic
integration times, ts, much smaller than the membrane characteristic time 1/g. In this case, the noise coefficient ηc

i

in (28) can change its value at discrete times, coinciding with the instants of the input spikes only. At these isolated
‘contact points’, the potential reaches the threshold (without crossing it). A detailed study of the dynamical equations
(M4) and (28,29) shows that, in the ts → 0 limit, the noise η∗

i (t+c ) assumed immediately after a contact point at time
tc, can take any value larger than its value η∗

i (t−c ) assumed immediately before tc. Such simple contact rule suggests
a fast procedure to determine the optimal noise path. For the sake of simplicity, we now describe this procedure for
the case of g = 0 only, although it should be stressed that it can easily be adapted for non-zero g values as well.

Let t1 < t2 < . . . < tL be the times of the spikes received by the cell i between its own two successive spikes, emitted
at times t0 ≡ ti,k(< t1) and tL+1 ≡ ti,k+1(> tL). Let us call Jl the value of the coupling from the cell emitting a
spike at time tl to the cell i. We calculate, for each l = 1, 2, . . . , L + 1 the value of the noise coefficient ηc

i (l) such
that the solution of (26) matches the boundary conditions Vi(ti,k) = 0 and Vi(tl) = 1, if the coupling Jl is negative,
Vi(tl) = 1 − Jl, if Jl is positive. By taking now the smallest noise coefficient, obtained for, say, l = l0, we obtain the
optimal potential and noise in the time interval [t0; tl0 ]. The procedure can now be iterated to determine the optimal
paths for the potential and the noise in a next time interval [tl0 ; tl1 ], with l1 > l0 [21], and so on, until completion of
the whole inter-spike interval [t0; tL+1]. The procedure is then repeated for all the inter-spike intervals of the cell i.
An example of optimal paths for the noise and potential is shown in Figure 8.

Once we have determined the optimal noise (and potential) of cell i, for a given set of couplings Gij and currents
Ii, we can obtain the a posteriori probability for the latter from the Bayes formula

P [{Gij , Ii}|{tjℓ}] = P [{tjℓ}|{Gij , Ii}] × P0[{Gij , Ii}]/P1[{tjℓ}] = exp

[

− 1

2σ2

∑

k

(A[V ∗
i (t)|{Gij , Ii}] + o(1))

]

(30)

in the small σ limit, where the sum runs over the spikes emitted by cell i. The couplings and currents with maximal
probability are the one maximizing the likelihood −A[V ∗

i (t)|{Gij , Ii}] (23). As A is clearly a convex function of Gij

and Ii [11] its minimum is easily found through the gradient descent or Newton-Raphson method. As in the Ising
model case the knowledge of the Hessian matrix of A gives access to the uncertainty (error bars) on the couplings and
currents.

It is important to note that the small σ approximation made here is actually quantitatively reliable even for finite
noise variances. Let us consider the (small) contribution to the first-passage time probability coming from paths close
to, but not coinciding with the optimal path. Such a close path for the potential can be expressed as V ∗

i (t) + δVi(t),
where δVi(t) is the deviation from the optimal potential of the cell i at time t. Here δVi(ti,k) = δVi(ti,k+1) = 0 in

12
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FIG. 8: Optimal potential and noise for the first cell of the Flicker data set for g = 0 (black line), g = 10 sec−1 (green line) and
g = 20 sec−1 (blue line). Only two inter-spike intervals (delimited by the red edges) are shown, during which the cell receives
20 and 10 (in the first and the second interval, respectively) inputs from the other 31 cells. The number and the locations of
the contact points depend on the value of g. For g = 0 there are 3 contact points, corresponding to 4 increasing steps in the
noise, and 4 slopes of the potential. The couplings J1j and current I1 are set to their most likely values for g = 0.

order to satisfy the boundary conditions (6). The corresponding action is equal to the optimal action plus a positive
increment,

δA =

∫ ti,k+1

ti,k

dt δVi(t)

(

− d2

dt2
+ g2

)

δVi(t) . (31)

Integrating over these paths generates an additive correction of the order of σ2 to the optimal action A in the
exponential on the right hand side of (30). The key point is that this correction does not depend on the couplings
and currents as can be seen from (31), and is therefore irrelevant for the inverse problem.

Our I&F model can also be made more realistic by taking into account the refractory period present in real neurons.
To do this, we discard the inputs received by a neuron during a delay tr after a spike emission. In practice, tr is of the
order of a few ms, and is much smaller than the typical inter-spike interval. In consequence, the couplings inferred
with or without the refractory period are very similar. However, the presence of a refractory period is important for
a simulation of the I&F model, see Supporting Information 4.
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Supporting Information Appendix, Section 4:

On Cross-correlograms: Analysis of Data, Relationship with Couplings, and
Simulations

We compare here the correlation index introduced in the analysis of cross-correlograms [12] and the effective
couplings calculated within the inverse Ising model framework. Section I goes over the definition of the correlation
index. The relationship with couplings Jij is explained in Section II. We then study the dependence of correlation
indices and couplings upon stimuli (Section III) and the width ∆t of time-interval bins (Section IV). The cross-
correlograms obtained from the Integrate-and-Fire model are compared to the experimental measures in Section
V.

The cells are numbered from 1 to 32 in Dark and Flicker data sets. The pairs of cells denoted by a, b, c, d in the
main paper correspond to, respectively, pairs 5-17, 3-18, 11-26, 1-22.

I. DEFINITION OF THE CORRELATION INDEX

The cross-correlogram for the cells i and j is the histogram of the delays between their spiking times,

Hij(τ) =
T

Ni Nj

∑

a,b

δ(τ − tj,b + ti,a) . (32)

Here Ni and Nj represent the number of spikes emitted by the cells i and j, respectively, and T is the total duration
of the recordings. As before, ti,a is the time of emission of the ath spike of cell i, a = 1, 2, . . . , Ni. Examples of
cross-correlograms for various pairs of neurons and for both Dark and Flicker stimuli are shown in Figure 2 of the
main text.

We observe that fj×Hij(τ) can be interpreted as the instantaneous firing rate of the cell j at time τ , conditioned on
the existence of a spike of the cell i at time 0. Based on the cross-correlogram Hij one can define the cross-correlation
index (CI) on time-scale τ :

CIij(τ) =
1

τ

∫ τ/2

−τ/2

dτ ′Hij(τ
′) . (33)

CIij(τ) is the number of spikes emitted by the cells i and j with a delay smaller than τ/2 (in absolute value), divided
by the number of times the two cells would fire in the same time window if they were independent. Note that when
the cross-correlogram is flat around the origin, then the integral in (33) grows linearly with τ , and the correlation
index remains constant.

Consider now a binning of the emission times of width ∆t much smaller that the typical inter-spike intervals of
single cells. The probability that the cell i emits a spike in a given bin is pi ≃ fi ×∆t, where fi is the firing rate; the
joint probability that the pair of cells (i, j) both emit a spike in the same bin is pij = CIij(∆t) × pi × pj , where this
last equality follows from the definition of the correlation index. Hence

CIij(∆t) =
pij

pi pj
. (34)

We stress that this equality is correct when each cell is likely to emit at most one spike in a single time-interval bin.

II. CONNECTION BETWEEN CORRELATION INDEX AND COUPLINGS

As sketched in Supporting Information 1 the couplings can be systematically expanded in powers of the connected
correlation cij = pij − pi pj with the following results:

• to the lowest order (linear) in the expansion one finds

Jij ≃ cij

4 pi pj
=

1

4

(

CIij(∆t) − 1
)

. (35)

This expression coincides with the Hebb ’s rule for learning synaptic coefficients from correlated spiking activities.
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• if we sum all the contributions (to any power) including cij only, and discards all the terms including correlation
between other cells, we find the 2-cell approximation for the couplings. For small ∆t (or more precisely when
pi and pj are small):

J2−cell
ij ≃ 1

4
log

(

CIij(∆t) −
ΓJ2−cell

ij

pi pj

)

(36)

This self-consistent equation simplifies to

J2−cell
ij ≃ 1

4
log CIij(∆t) , (37)

when CIij(∆t) ≫ Γpipj , i.e. when the frequency of occurrence of the simultaneous spiking of the two cells is
non-zero in the experimental data set. For pairs that never spike together in a time-bin ∆t the presence of the
factor Γ prevents the coupling to be minus infinite, see Supporting Information 1. Expression (37) coincides
with the ’synchrony index’ defined in [13]. A generalization of the 2-cell approximation, valid for large ∆t, can
be obtained from equation (10) of Supporting Information 1. The 2-cell formula (37) provides a very accurate
approximation for the couplings of some pairs of cells, such as 5 and 17, see Figure 1A in the main paper.

• Larger orders of the diagrammatic expansion provide the coupling Jij as a global function not only of cij , but
also of correlations ckl, with k 6= i or l 6= j. Network contributions ckl are for example important for cells
3 and 6 in Figure 1B (main paper): these cells have a positive coupling J3,6, and are both strongly coupled
to cells 1 and 21. The indirect interactions between cells 3 and 6 through cells 1 and 21 are responsible for
a substantial fraction of the correlations between cell 3 and 6. As a consequence, coupling J3,6 cannot be
accurately approximated by the 2-cell approximation (37). Network contributions are even more important in
the case of Figure 1C (main paper): the direct coupling between cells 1 and 22 is negative, while their correlation
is positive due to indirect strong interactions through cells 6 and 27.
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FIG. 9: Histogram of the two-cell approximation to the couplings J2−cell
ij for N = 32, ∆t = 20 ms, and Dark and Flicker

stimuli. Black/brown values correspond to reliable/unreliable couplings i.e. with relative errors smaller/larger than 30%.

The histograms of J2−cell
ij in Fig. 9 can be compared to the histograms of Jij in Fig. 3 for Flicker and Dark data.

The main difference is the absence of negative-valued couplings in the 2-cell couplings histograms, apart for some
weakly negative and unreliable interactions.

To assess the accuracy of the 2-cell approximation more precisely, we show in Figure 10 the difference 1
4 log CIij−Jij

versus the value of the couplings, Jij . The 2-cell approximation is relatively accurate for large positive couplings,
while it is generally bad for negative couplings. Negative couplings seem to be more sensitive to network effects and
thus not directly noticeable from the knowledge of the correlation index.
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ij − Jij as a function of Jij for Flicker recordings. Only pairs with reliable interactions are shown.

Here ∆t = 20 ms. Error bars on Jij are shown along the horizontal axis.

III. CONSERVATION OF CORRELATION INDICES UNDER DIFFERENT STIMULI

Principle component analysis has been used in our study to show that some couplings are conserved under a change
of stimulus, see Figure 2 in the main text for details. We repeat the same analysis here for pair-wise correlations
cij = pij − pi pj and correlation indices:

• Pair-wise correlations (Figure 11): we calculate the three correlation coefficients

〈cD cD〉 =
1

496

∑

i<j

cD
ij × cD

ij

〈cD cF 〉 =
1

496

∑

i<j

cD
ij × cF

ij

〈cF cF 〉 =
1

496

∑

i<j

cF
ij × cF

ij (38)

where the subscripts D,F stand for Dark, Flicker. The sums run over the 32 × 31/2 = 496 pairs of cells. We
then diagonalize the covariance matrix

M =

(

〈cD cD〉 〈cD cF 〉
〈cD cF 〉 〈cF cF 〉

)

. (39)

The eigenvectors are v1 = (1, 0.52) and v2 = (1,−1.91) with corresponding eigenvalues λ1 = 9.45 10−7 and
λ2 = 2.14 10−7. The principal axes do not correspond to the (1, 1) and (1,−1) directions as is the case in the
analysis of the couplings.

• Correlation indices (Figure 12): the above analysis is repeated for correlation indices CIij(∆t) instead of corre-
lations cij . The eigenvectors of the correlations matrix are v1 = (1, 1.08) and v2 = (1,−0.92) with corresponding
eigenvalues λ1 = 6.00 and λ2 = 0.34. The alignment of the principal axes with the (1, 1), (1,−1) directions is
better than in the correlation case, and comparable to the one found in the coupling analysis. The distribution
of the CIs is not centered around 0, and the covariance matrix is dominated by pairs of cells with strong posi-
tive CIs. These pairs correspond to most of the strong positive couplings, accurately estimated from the 2-cell
approximation, see Figure 10. Note that the coupling J3,6 in Figure 1B (main paper) is conserved in Flicker and
Dark (equal to 0.4 in both cases), while the CI is not: 1

4 log CI = 0.34, 0.48 in Dark and Flicker, respectively.
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Figure 13 shows how correlation indices are conserved in Flicker and Dark conditions. As in Figure 2 of the main
text we separate reliable and unreliable 2-cell couplings J2−cell

i,j , and mark the four pairs a, b, c, d with the error bars.
The positive-positive quadrants in Figure 2 of the main text and Fig.13 are similar, e.g. see pair a. However, the
pairs b, c, d, with negative couplings in Dark and/or Flicker conditions, have larger and reliable values, in the Figure
2 of the main text than in Fig. 13, and are better distinguished and clusterized.

IV. COUPLINGS AND CORRELATION INDICES AS FUNCTIONS OF ∆t.

The Ising model takes into account only correlations between cells spiking in the same time-bin, of size ∆t. Temporal
correlations on longer time scales can be taken into account by increasing ∆t. Here, we study the behavior of the
couplings and correlation indices as a function of ∆t ranging from 5 to 50 ms[22], for four representative pairs of cells
recorded in Dark and Flicker (shown in Figure 2 of the main text).

Figure 14 shows the correlation indices CIij(∆t) and the couplings Jij(∆t) and their 2-cell approximations obtained
from the improved formula, valid also at large ∆t, for pairs:

• 5-17 (pair a in Figure 2 of the main text): strong coupling conserved in Dark and Flicker;

• 3-18 (pair b in Figure 2 of the main text): negative and conserved in Dark and Flicker;

• 11-26 (pair c in Figure 2 of the main text): positive in Flicker and negative in Dark;

• 1-22 (pair d in Figure 2 of the main text): positive in Dark and negative in Flicker.

For the corresponding cross-correlograms Hij(τ), see Figure 2 of the main text.
Pair 5-17 is characterized, both in Flicker and Dark, by a peak of half-width of 20 ms in the cross-correlograms.

The couplings are large and have small error bars. Couplings are slightly larger in Dark than in Flicker conditions.
Coupling values decrease increasing ∆t . The 2-cell approximation is very accurate for this pair.

Pair 3-18 is characterized both in Flicker and in Dark by a flat cross-correlogram. For this pair network effects are
important; indeed, the 2-cell approximation provides a positive coupling while the real value of the coupling, due to
the overall correlations in the network, is negative. Couplings value are quite similar in Flicker and Dark and do not
change noticeably with ∆t.

Pair 11-26 is characterized by cross-correlogram with a peak in Flicker and a dip of width ≃ 50 ms in Dark. The
coupling is negative in Dark and positive in Flicker, and reasonably constant, up to ∆t = 50 ms. Although this
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coupling is long-range in the receptive fields plane (see Figure 2 in main text) it is very accurately estimated by the
2-cell approximation, and is therefore not influenced by network effects.

Pair 1-22 is characterized by a peak in the cross-correlogram, located off the origin and corresponding to a delay τ
(τ is about 40 ms in Flicker and 10 ms in Dark). The coupling starts to increase when ∆t exceeds 2 τ . The binning
size ∆t = 20 ms used in Figure 2 of the main text, is therefore not sufficient to take into account the positive and
time-delayed correlation between pair 1 and 22 in Flicker. The resulting coupling is negative in Flicker, while it is
positive in Dark where the delay τ is smaller. The 2-cell approximation overestimates the true value of the coupling.

To summarize, couplings that are positive in both Dark and Flicker recordings correspond to cross-correlograms with
a strong positive peak. Couplings positive in Dark and negative in Flicker have often cross-correlograms characterized
by a larger delay in Flicker than in Dark. Long-range couplings, which are positive in Flicker and negative, or close to
zero, in Dark correspond to peaked cross-correlograms in Flicker and to flat or ’bumpy’ cross-correlograms in Dark.

V. CROSS-CORRELOGRAMS WITH THE I&F MODEL

In this section we compare the cross-correlograms obtained from the Integrate-and-Fire model to their experimental
counterparts. We first infer the I&F couplings and currents for the 32 cells in Dark and Flicker, with dynamical
parameters g = 0 (no-leaking of the membrane) and ts = 0 (immediate synaptic integration). We then simulate the
coupled dynamics of the 32 cells with these inferred couplings and currents and a refractory period tr = 5 ms. The
network of the 32 cells is in a state of persistent dynamical activity when the variance of the noise is chosen to be
σ2 = 1.

In Figure 15 and Figure 16 we compare the correlation histograms obtained from the simulated dynamics with the
experimental histograms for the four pair of cells 5-17, 3-18, 11-26, 1-22, both in Dark and Flicker. Generally speaking,
the I&F model is able to reproduce the qualitative difference between cross-correlograms with a positive peak and
those with a dip at, or close to, the origin. We analyze first the differences between simulations and experiments:

1. Case of experimental cross-correlograms with a peak centered in ∆t = 0, e.g. pair 5-17 both in Flicker and Dark,

pair 11-26 in Flicker only. The histograms obtained from I&F simulations have a large peak centered at ∆t = 0,
which does not spread beyond a window of about 50 ms, as is the case for the experimental data. The reason
for this difference is that in the I&F model the synaptic integration time, ts, vanishes. Therefore, within this
model there is no synaptic delay between cells, and correlations in spiking activity are mostly simultaneous.

2. Case of experimental cross-correlograms with a delayed positive peak, e.g. pair 1-22 in Dark and Flicker. Again,
the I&F model reproduces a positive peak, but not the experimental offset of the cross-correlogram. The reason
is the same as in case 1, above. To support our interpretation, we have checked that, both in case 1 and case
2, the correlation index (integral of H, see equation (33)) has similar values for the experiments and the I&F
simulations over a time window ∆t = 100 ms.

3. Case of flat correlograms, e.g. pair 3-18 in Flicker and Dark, and correlograms with a dip, e.g. pair 11-26 in

Dark. These cross-correlograms are well reproduced by the I&F model.

We have also simulated the I&F dynamics of a pair of cells in presence of the recorded spikes of the 30 other cells.
Figure 17 show that the resulting correlograms are very similar to the ones obtained by the simulation of the whole
network of 32 cells. However, the delayed peak of the pair 1-22 is better reproduced; indeed the activity of other cells,
being truly experimental, includes delayed correlations.

In conclusion, despite its extreme simplicity and the crude assumptions made about its parameters, the I&F model
is capable of reproducing the essential features present in the experimental cross-correlograms.
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FIG. 16: Same as Figure 15 for Flicker.
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FIG. 17: Cross-correlograms for pair 1-22 obtained from the simulation of the I&F dynamics of the two cells with couplings
and currents inferred from the analysis of Dark (left) and Flicker (right) data set. Same parameters as in Figure 15.
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Supporting Information Appendix, Section 5:

Correspondence between Integrate-and-Fire and Ising Inverse Models

The Ising and Integrate-and-Fire (I&F) models are a priori very different in their assumptions and definitions.
Nevertheless, there is a strong interrelation between the values of the couplings found with these two models as
shown in Figure 3 of the main paper and Figure 18 below. This figure shows that positive Ising couplings, Jij , and
symmetrized Integrate-and-Fire (I&F) couplings, 1

2 (Gij + Gji), are very similar up to a multiplicative factor close to
0.6 in Dark and in Flicker. This is also the case for structured stimulus, called Natural Movie (Supporting Information
1, Section IV). For negative couplings, the slope is smaller and the dispersion around the linear fit is larger, especially
for Flicker and Natural Movie stimuli.
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FIG. 18: Ising couplings Jij vs. Integrate-and-Fire symmetrized interactions (Gij +Gji)/2 for Dark (left), Flicker (middle) and
Natural Movie (right) stimuli. The leak conductance g is assumed to be zero; results are unchanged as long as 1/g is larger
than the average inter-spike interval (from 100 ms to 10s depending on the neuron). I&F couplings are expressed in the units
of threshold potential Vth. Lines show linear fits of reliable positive couplings and reliable negative couplings. The slopes of
the fits are 0.62 for positive and 0.35 for negative couplins in Dark (left); 0.66 for positive and 0.07 for negative couplings in
Flicker (middle), and 0.56 for positive and 0.18 for negative couplings in Natural Movie (bottom). Notice how the dispersion
of negative couplings around the linear fit line increases as one goes from Dark to Natural Movie, see text. Flicker and Dark
figures are the same ones as in Figure 3 of the main paper, except that we have extended the range of linear fit. In particular,
the fit calculated from negative reliable couplings in Dark seems to extrapolate to a few pairs of cells with positive couplings
(large in Ising and small in I&F). These pairs of cells have unusual cross-correlograms compared to typical pairs with positive
couplings e.g. pair 5-17, see below.

We now present a simple argument to explain this simple piece-wise linear relationship. For this, we consider a set
of two interacting cells. We use approximate expressions for the I&F couplings (Section I) and establish a connection
between the approximate expressions of the Ising and I&F couplings through the cross-correlograms of emitted spikes
(Section II). Finally, we study the difference between the couplings Gij and Gji for a given pair of cells i, j in the I&F
model (Section III).
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I. APPROXIMATE EXPRESSION FOR THE I&F COUPLING

A. Calculation of the I&F coupling

Let N1 and N2 be the number of spikes emitted by the cells 1 and 2, and t1,a with a = 1, . . . , N1 and t2,b with
b = 1, . . . , N2 be the times of spiking. f1 = N1/T , f2 = N2/T , where T is the duration of the recording, are the
average spiking rates of the cells.

We are going to infer the coupling GIF from cell 2 to cell 1 within a non-leaky I&F model (with infinite membrane
decay time, i.e. in practice larger than the typical inter-spike intervals). Another quantity of interest is the external
current I incoming onto cell 1.

Consider the potential V1(t) of the first cell. The threshold potential is Vth. Right after the ath spike of the cell
1 we have V1(t

+
1,a) = 0 while V1(t

+
1,a+1) = 1. We consider the limit of small noise variance σ2 and we look for the

optimal path for the potential satisfying those two boundary conditions and increasing by GIF each time the second
cell emits a spike. For the sake of simplicity we relax the constraint that V1 never crosses the threshold potential Vth

at intermediate times; this approximation makes the problem much simpler but is justified only for small couplings.
The log-likelihood of the optimal path for the potential is

L = − 1

2σ2

N1−1
∑

a=1

(Vs − GIF na − I ∆a)2

∆a
(40)

where na is the number of spikes emitted by the cell 2 in the ath inter-spike interval of the cell 1, and ∆a = t1,a+1−t1,a.
L is a quadratic function of the current I and the coupling GIF . Its maximum is reached when the coupling is equal
to

GIF

Vth
=

Q1 T − (N1 − 1) N2

Q2 T − N2
2

(41)

where

Q1 =

N1−1
∑

a=1

na

∆a

Q2 =

N1−1
∑

a=1

(na)2

∆a
. (42)

From now on we set Vth to unity, which means that couplings are measured in units of Vth.

C

spikes of cell 1

A

B

FIG. 19: A simple example of recording where both the first and the second cell emit 3 spikes each. A: the second cell emits
two spikes in the second inter-spike interval of the first cell, and one spike in the first interval. B: the second cell emits all three
spikes in the first interval. C: the second cell emits all three spikes in the second interval.
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B. Illustration by a simple example

A simple example helps to understand the meaning of formula (43). Assume that the first cell emits N1 = 3 spikes
with inter-spike intervals ∆1 = 1, ∆2 = 2 × ∆1, see Figure 19; the total duration is T = 3. The number of spikes
emitted by the second cell is N2 = 3. Three cases are possible:

• Case A: When the instantaneous rate of the second cell in each inter-spike interval of the first cell is equal to
the average rate, we obtain Q1 = 2 from (42) and the coupling GIF = 0.

• case B: When all three spikes are emitted in the first (shorter) inter-spike interval, we obtain Q1 = 3, Q2 = 9
and GIF = 1

6 > 0.

• case C: When all three spikes are emitted in the second (longer) inter-spike interval, we obtain Q1 = 3
2 , Q2 = 9

2

and GIF = − 1
3 < 0.

The interpretation of the coupling signs is rather straightforward. In case B, for instance, comparing the first and
the second inter-spike intervals of the first cell, we observe that the presence of the spikes emitted from the second
cell effectively shortens the inter-spike interval duration, hence the coupling is expected to be positive. In case C, on
the other hand, the spikes from the second cell effectively render the second inter-spike intervals longer and thus the
coupling is negative.

C. The case of Poisson statistics

We now approximate Q2 with its value for independent cells with Poisson spiking statistics. This additional
approximation is justified for small couplings since it amounts to neglecting O(GIF ) terms in the denominator of
(41), and thus does not affect the leading order contribution to GIF . The number of spikes na fired by the second
cell during the time interval ∆a (when uncorrelated with the first cell) obeys a Poisson distribution with parameter
f2∆a. Its second moment is (f2∆a)2 + f2∆a, from which we deduce Q2 = N1 × (f2 +(f2)

2/f1) (Note that, in general,
N1 ≫ 1 and O(1/N1) terms can be neglected). Finally, we end up with the simpler expression for the coupling

GIF

Vth
=

Q1

N1 f2
− 1 . (43)

II. RELATIONSHIP WITH THE CROSS-CORRELOGRAMS

We recall that the definitions of cross-correlograms and of the correlation index are given in Supporting Information
4.

A. From the correlation index to the Ising coupling

Our approximation for the Ising coupling is identical to the lowest order approximation described in Supporting
Informations 1&4. Let ∆t denote the time-bin width. We call p1 (or p2) the probabilities that cell 1 (or 2) emits one,
or more spikes in a time-interval bin, and p12 the probability that they are both active. To the lowest order of our
diagrammatic expansion, the Ising coupling between the two cells can be expressed as:

JIsing =
1

4

(

p12

p1p2
− 1

)

. (44)

from Eqs. (34) and (35). We check that ∆t is much smaller than the typical inter-spike interval durations of the two
cells (in Flicker and Dark the firing rates range from 0.1 to 2 Hz, while ∆t is of the order of 10 ms). Then multiple
spikes of the same cell in a bin are very unlikely.

B. From the correlation index to the I&F coupling

To calculate Q1, we need to know how many spikes of the second cell enter the first one in an inter-spike interval.
Let us assume that all the inter-spike intervals of the first cell have equal durations 1/f1. Then the delay between
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FIG. 20: I&F vs. Ising couplings from the CI approximation (45) for two values of ∆t.

a spike of the second cell and spikes of the first cell, defining the boundaries of the inter-spike interval, is equal at
most to 1/(2f1), and Q1 coincides with the correlation index on this time scale, Q1 ≃ N1 f2 CI(1/f1). Due to the
variability of the durations of the inter-spike intervals of the first cell this estimate for Q1 is not exact: we should
average CI over those durations rather than calculating the correlation index for the average duration.

C. Conclusion

We end up, therefore, with the following approximate expressions for the couplings

JIsing ≃ 1

4

(

CI(∆t) − 1
)

GIF (2 → 1) ≃ CI(1/f1) − 1 , GIF (1 → 2) ≃ CI(1/f2) − 1 . (45)

No obvious relationship exists between the I&F couplings from the first to the second cell and from the second to the
first cell, except when the rates f1 and f2 are close to one another.

As evoked above, the typical inter-spike interval is of duration 1 sec in Flicker or Dark, while ∆t is much shorter.
Hence, for cross-correlograms with a positive peak (Flicker in Figure 2 of the main text) JIsing will be larger than
GIF . On the other hand, for cross-correlograms with a negative dip (Dark in Figure 2 of the main text) JIsing will
be lower than GIF . These statements qualitatively reproduce what was observed in Figure 18.

We also see that the 0.6 slope observed in Figure 18 is an average property. The ratio GIF /JIsing depends on
the firing rates of each cell. However, most of positive couplings correspond to cross-correlograms with a strong
positive peak, centered in zero, as in Figure 2 of the main text (Flicker). For the latter cross-correlogram, we estimate
JIsing ≃ 1.5 and GIF ≃ 0.6 from (45). Hence, the ratio between the two couplings of this particular pair is equal to
0.4.

As ∆t varies the CI changes, as shown in Figure 14 in Supporting Information 4, and so does the Ising coupling.
For large ∆t the Ising couplings are expected to be similar to their I&F counterparts as shown in Figure 20.

Some negative Ising couplings Jij correspond to cross-correlograms Hij with a shifted positive peak, i.e. with
a delay larger than ∆t. Contrary to the Ising model the I&F model is able to capture such delayed and positive
correlations, with the result that Gij is positive. Hence, we expect a strong discrepancy between Ising and I&F
couplings for those pairs of cells. This can indeed be seen on Figure 18, where the dispersion around the linear fit for
negative couplings is weak for Dark, for which few delayed cross-correlograms are found, and gets larger for structured
stimuli such as Flicker and, above all, Natural Movie.
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III. ON THE SYMMETRY OF COUPLINGS IN THE I&F MODEL

The above sections have shown a piece-wise linear relationship between the Ising couplings and the symmetrized
I&F couplings, 1

2 (Gij + Gji). Hereafter we study how symmetric are the couplings in the I&F model.
In Figure 21 we compare the couplings Gij and Gji extracted from the Integrate-and-Fire model for every pair i, j

of cells. While Gij strongly differs from Gji for some pairs of cells expecially in Dark, there is a clear interrelation
(positive correlation) between Gij and Gji for most pairs of cells.

It is tempting to interpret the above results from a physiological point of view. Couplings in the third quadrant,
i.e. such that both Gij and Gji are negative are compatible with lateral inhibition effects. The quasi-absence of pairs
(i, j) such that Gij and Gji have opposite signs suggest that some pathways from the photo-receptors to the ganglion
cells may inhibit another pathways to different ganglion cells, but that the inhibition is not reciprocal.

Let us stress that Fig. 21 has been obtained in the limit of a vanishing leak-conductance g. It would interesting to
study how the pattern of symmetry changes with the value of g.
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FIG. 21: Integrate-and-Fire model effective couplings Gij versus Gji: Full circles represent the top 10% of reliable couplings,
i.e. the couplings with the smallest relative errors, empty circles represent the remaining couplings. The dashed line has slope
unity.
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Supporting Information Appendix, Section 6:

Spatial features of the inferred couplings

Here we deal with two related questions:

• how do the coupling Jij vary with the distance between the (receptive fields of the) cells i and j? As a
complement to Figure 5 in the main text, we show here the map of smallest Ising couplings and the map of
largest correlations in the retinal plane. This issue is discussed in Section I below.

• how much does the inferred value for the coupling Jij depend on the activity of other cells located at some
distance of cells i and j? This last question is of fundamental importance since most cells are not recorded in
the experiments, and it is legitimate to wonder whether the couplings inferred from only a small portion of the
retina are meaningful. To answer this question we use linear response theory (Section II), which allows us to
quantify changes in the couplings when some cells are removed from the recordings. Conclusions are presented
in Section III.

I. DEPENDENCE OF THE COUPLINGS ON THE DISTANCE BETWEEN CELLS

Figure 5 in the main paper shows the network of interactions in the retina obtained from Ising and I&F strong
couplings, for Dark (40 links) and Flicker (48 links) stimuli. In Figure 22 we plot the network of interactions between
cells obtained from the smallest (including negative) reliable couplings in Dark and Flicker. We keep the number
of couplings the same as in Figure 5 of the main paper in order to allow for a comparison. The ’nearest-neighbour’
nature of the interaction network, obtained from the large couplings in Dark and from the large couplings conserved
in Flicker and Dark is not reproduced with small couplings. In Flicker long-range couplings are much more frequent
than in the Figure 5 of the main paper. This comparison supports the idea that the network of interactions defined
from the set of strong positive couplings is very far from being random.
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FIG. 22: Maps of the smallest reliable couplings (top) in the retinal plane for Dark (left) and Flicker (right) stimuli. The circles
represent the centers of the receptive fields of the 32 cells. Each edge correspond to one of the smallest M reliable couplings
Jij (top) or largest M connected correlations cij (bottom), with M = 40 in Dark and M = 47 in Flicker. The numbers of links
are chosen to be the same as in Figure 5 of the main text to facilitate the visual comparison with this figure.
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Figure 23 (top) shows the graphs obtained from the largest correlations cij instead of the couplings Jij (with the
same numbers of links). The structure of the coupling and correlation networks are not identical; in particular some
cells are much more connected (have higher ’degree of connectivity’) in the correlation network than in the coupling

network. The map of the largest correlation indices, or, equivalently, the largest 2-cell couplings J2−cell
ij , shown

in Fig. 23 (bottom) is in a better agreement with Figure 5 of the main text. Indeed, as discussed in Supporting

Information 4, the large and positive J2−cell
ij are a good approximation to large and positive couplings in the two

analyzed data sets.
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FIG. 23: Maps of largest connected correlations (top) and largest correlation index in the retinal plane for Dark (left) and
Flicker (right) stimuli. The circles represent the centers of the receptive fields of the 32 cells. The numbers of links are chosen
to be the same as in Figure 5 of the main text to facilitate the visual comparison with this figure. Top: Each edge correspond
to one of the largest M connected correlations cij (top), with M = 40 in Dark and M = 48 in Flicker. Bottom: Each edge
represents one of largest M correlation indices with M = 40 in Dark i.e. J2−cell

ij = log CIij/4 > 0.26, and M = 48 in Flicker

i.e. J2−cell
ij = log CIij/4 > 0.23.
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II. CALCULATION OF THE LINEAR RESPONSE TO THE REMOVAL OF A COUPLING OR A FIELD

We aim to calculate the change in the inferred coupling or field values when some cells are removed from the pool
of measured neurons. We first calculate the couplings for a large set of M + n cells, then remove M cells and want to
calculate the changes in the couplings {Jij} between the n cells (Figure 24). By removing the cells we mean ignoring
them or, to be precise, not imposing the pair-wise correlations between those cells. The constraints enforcing that
the spin-spin correlations in the Ising model are equal to their experimental values are released by setting all the
couplings {Jkl} inside a subset M and the couplings {Jik} between subsets M and n to zero.

l

n cells

M cells

n cells

M cells

i
j

k

l

i
j

k

FIG. 24: Set of M + n neurons (left) from which M neurons are removed (right). The constraints on the pair-wise correlations
between two removed cells, or one removed cell and one remaining cell are released by setting the corresponding couplings to
zero, see text.

When turning off those couplings the firing probability {pi} and correlations {cij} inside the remaining set of n cells
would change if the fields {hi} and couplings {Jij} were left unaltered. Of course, the constraints on the correlations
between the remaining cells are not released, hence the corresponding values of fields and couplings will change by
{∆hi} and {∆Jij}, respectively. The average activities and correlations of the subset of n cells after turning off
the outside couplings, {p̃i}, {c̃ij}, are calculated from the values inferred before turning off the couplings, {pi}, {cij},
Within the framework of linear response theory:

p̃i =
1

2

∂ lnZ

∂hi
[{hi + ∆hi}, {Jij + ∆Jij}, {hk}, {Jkl + ∆Jkl}, {Jik + ∆Jik}]

c̃ij =
1

4

∂ lnZ

∂Jij
[{hi + ∆hi}, {Jij + ∆Jij}, {hk}, {Jkl + ∆Jkl}, {Jik + ∆Jik}] . (46)

Expanding to first order in the fields and couplings around their values before the removal of cells with changes
∆Jkl = −Jkl, ∆Jik = −Jik and imposing that the average activities and correlations have not changed, {p̃i = pi},
{c̃ij = cij}, we obtain:

∑

a′={{i′},{i′,j′}}

Ha,a′∆va′ =
∑

b′={{i′,k′},{k′′,l′}}

Ha,b′Jb′ (47)

where ~∆v = (∆h1, . . . ,∆hn,∆J12 . . . ∆Jn−1,n) is the vector of fields and couplings variations in the remaining subset of

cells with n×(n−1)/2 components; ~J = (J1,n+1, . . . , Jn,M , Jn+1,n+2, . . . , JM−1,M ) is the vector of removed couplings;
and the susceptibility matrix is

H =

(

∂2 ln Z
∂hi∂hi′

∂2 ln Z
∂hi∂Jk′l′

∂2 ln Z
∂hi′∂Jkl

∂2 ln Z
∂Jkl∂Jk′l′

)

=

(

4 (〈si si′〉 − 〈si〉〈si′〉) 8 (〈si sk′ sl′〉 − 〈si〉〈sk′ sl′〉)
8 (〈si′ sk sl〉 − 〈si′〉〈sk sl〉) 16 (〈sk sl sk′ sl′〉 − 〈sk sl〉〈sk′ sl′〉)

)

, (48)

where 〈·〉 denotes the average with Gibbs measure given by the Ising model, and i = 1, . . . , N , 1 ≤ k < l ≤ N . Calling

Ĥ the restriction of the matrix H to the subset of n cells we obtain
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∆va =
∑

a′={{i′},{i′,j′}}

∑

b′={{i′,k′},{k′′,l′}}

(

Ĥa,a′

)−1
Ha,b′ Jb′ (49)

In practice, we calculate the susceptibility matrix H from the 4-spin correlations in the data, rather than through
the Monte-Carlo simulations. We have checked that the choice of this method, which requires much less computation
time, does not affect the results.

A. Applications

In this section, we call D(i, j) the distance between the centers of the receptive fields of cells i and j in the plane
of the retina. The largest distance in the analyzed data sets is equal to about 1.5 mm. All results are presented for a
binning time ∆t = 20 ms, except Figures 27 and 28 for which ∆t = 10 ms.

1. Removal of a single cell

We now apply the linear response theory to study how the couplings change when one cell is removed from the
set of registered neurons. More precisely, we turn off the couplings between 31 cells and the cell number k, and then
calculate the change ∆Jij of the interactions between the 31× 30/2 = 465 pairs of remaining cells. Each change ∆Jij

is plotted versus the distance between the pair i, j and the cell k defined as

d(i, j; k) =
1

2

[

D(i, k) + D(j, k)
]

. (50)

Results are shown in Figure 25 for two examples of the choice of the removed cell, the cells 2 and 13. The cell 2
seems to be representative of the most of recorded cells. The observed changes in Dark are of amplitude 0.1 or less,
and do not spread above distances of 500-600 µm. The amplitude in Flicker conditions is much (about 10 times)
smaller. This is due to the increased number of spikes under Flicker stimuli, which makes smaller the number of
pairs never firing together in the same bin. The smallest eigenvalue of the susceptibility matrix of large assemblies of
cells are thus smaller in Dark than in Flicker, and are of the order of the Bayesian a priori parameter Γ. Hence, the
response to a change is often larger in Dark than under Flicker stimuli.

Figure 25 shows that the typical response to removal of the cell 13 in Dark is 10 times smaller than for the cell 2,
and even smaller than its value in Flicker conditions. The cell 13 is located on the distant part of the retinal map,
far away from most other neurons. It is weakly connected to any other cell (except the cell 19, see retinal map), and
removal of cell 13 basically does not affect other couplings.

2. Removal of all but two cells

We now consider another extreme case. We start from the set of 32 cells, and remove all cells but two, say, i and
j. In practice, we turn off 30 × 29/2 − 1 = 435 couplings between the 30 removed cells, and 30 × 2 = 60 interactions
between one of those 30 cells and one of the two remaining neurons i, j. The change in the coupling between the cells
i, j is calculated as a linear superposition of all changes in the 495 couplings and plotted versus the distance between
pairs i, j and k, l defined through

d(i, j; k, l) =
1

2

[

min(D(i, k),D(j, k)) + min(D(i, l),D(j, l))
]

. (51)

Results are shown in Figure 26 for four pairs of cells i, j. It appears that the response in Dark vanishes for distances
above 600 µm, see cells 13-19 and 4-15, which are the only pairs with strong positive couplings allowing us to explore
such distances. Notice also the pair 1-2, for which the response in Dark vanishes at smaller distances than in Flicker.
In Flicker response at larger distances exists for some pairs (e.g. 13-19) while it is absent for other pairs (e.g. 4-15).

It is interesting to note that the pair 11-26, which corresponds to a strong positive coupling at a large distance in
Flicker, and has a negative coupling in Dark, responds only very weakly to the removal of all other cells in Flicker.

The behavior of the response is correlated to the velocity of convergence of the inference algorithm (see Figure 1 in
the main paper). For some pairs of cells the 2-cell approximation (all diagrams with those 2 cells only) is excellent,
the convergence is fast and the susceptibility is small. For other pairs the susceptibility is larger or decreases at larger
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distances and one needs to take into account larger orders in the diagrammatic expansion to obtain a good estimate
of the coupling. These two behaviors may be found for the same pair when changing the stimulus, e.g. the pair 13-19
with the response smaller in Flicker than in Dark.

3. Change in the couplings with the number of cells

We see from the above Figures that the amplitude of responses is small (between .01 and .1), compared to the value
of strong couplings (with value about 1). In addition, the responses may be positive or negative, with an average
value close to 0.

This statement explains the apparent lack of changes in the couplings, seen in Figure 27, when shifting from 9
to 12 cells. From a similar picture with a small number of cells (about 10), Schneidman et al. [1] concluded that
the couplings do not change with the number of cells, N . Figure 28 clearly shows that the couplings change values
when one extends the analysis from 12 to 32 cells. That many strong couplings are relatively insensitive to N is not
surprising: they are very well approximated by the 2-cell formula and do not depend on the neighboring activities.
On the contrary, small or negative couplings are often network properties and are affected by the number of cells.

4. Conclusion

From the above analysis it appears that:

• Changes in Dark do not spread over distances larger than 500-600 µm.

• Long-range couplings, which are stimulus-dependent (present in Flicker, but not in Dark, e.g. the pair 11-26)
may not be sensitive to removal of other cells. In other words the range of a coupling Jij (distance between the
cells i, j) has nothing to do with the range of the susceptibility (distance over which Jij responds to removal of
one cell).

• Removal of one distant cell (e.g. 13) has less consequence on the couplings than removal of a central cell (e.g.
2).

• Couplings that are accurately inferred from the 2-cell approximation are insensitive to removal of other cells
(apart from the two cells in the pair). This means that they are accurately predicted even if only a small area
of the retina is recorded. Negative couplings, on the other hand, are more affected by other cells (and by the
number of cells, N , see Figure 28).
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FIG. 25: Changes in the coupling Jij between the cells i and j, when the cell k is removed from the pool of 32 recorded neurons,
as a function of the distances between pairs i, j and cell k, Eq. (50), and for cells k = 2 and 13. Only reliable pairs i, j, i.e.

such that the relative error on the inferred couplings with the full set of 32 neurons is smaller than 30%, are shown.
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FIG. 26: Change in the coupling Jij between cells i and j, when the correlations between cells k, l are no longer imposed, as a
function of the distances between the pairs i, j and k, l (51), and for pairs i, j = 1, 2; 4, 15; 11, 26; 13, 19. Only reliable pairs k, l
are shown, i.e. pairs with the relative error on the inferred couplings (with the full set of 32 neurons) smaller than 30%
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more cells are added. Black circles are deduced from an exact calculation, while red squares are results from the linear response
theory after the removal of the last 3 cells from the set of 12, see Section II.
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Supporting Information Appendix, Section 7:

On states and the large-N limit in the Ising model

Schneidman et al. discuss in [1] the dependence of the values of the couplings and fields with the number N of neurons
in the data set. Based on the analysis of a small number of neurons (N < 15), they state that the average value of J
does not change with N . This scaling, extrapolated to large sizes N , is unusual for Ising models, where the average
coupling generally decreases with N [23]. According to Schneidman et al. the extrapolation indicates that the energy
becomes much larger than the entropy or, in other words, that the effective temperature of the Ising model tends
to zero as N increases. If this were true, only the configurations minimizing the energy would have a non negligible
probability in the large N limit. These configurations, called frozen states, are reminiscent of spin-glass states and
are claimed to play an important role in error correction in [1].

The extrapolation to large values of N , much larger than the population of the registered cells, raises several
concerns. First it is not clear whether the Ising representation of the firing activity is really accurate when N grows,
see Supporting Information 2. Secondly, we have found in Supporting Information-6 that the coupling between a pair
of cells generally depends on the activity of nearby cells, and hence may vary with N . Thirdly, the uncertainty on
the inferred couplings depend on N too, which could make the extrapolation quantitatively unreliable.

Hereafter, we show that there is no need to actually solve the inverse Ising problem to decide whether one or
multiple states are present. Our approach is based on the spectral analysis of the correlation matrix (Section I) and
its relationship with the existence of one or more states (Section II). We mainly focus on a recording of the activity of
40 neurons in a retina presented with a natural movie stimulus (data courtesy of M. Berry) to allow the comparison
with ref [1] (Section III). Our analysis provides strong support for the existence of only one state in Natural-Movie,
when the time-bin interval ∆t is a few tens of ms; this result holds for Flicker and Dark stimuli as well.

I. SPECTRAL ANALYSIS OF THE CORRELATION MATRIX

For the simplicity of the presentation it is convenient to consider spins with ±1 values; we thus define σi = −1+2 si =
±1, where si = 0, 1 are the variables defined in the main text (0 if cell i is silent in a given bin, 1 if it is active).
The Ising model Gibbs measure (Supporting Information-1, formula 1) over the si-spins induce a measure over the
σi-spins. We use the notations mi = 〈σi〉 for the spin magnetization, and Cij = 〈σiσj〉 for the spin-spin correlation
(not connected).

Let Ca, a = 1, . . . , N be the eigenvalues of the correlation matrix Cij , and {va
i ; i = 1, 2, . . . N} the components of

the corresponding eigenvectors. The normalization is chosen in the way to ensure
∑

i(v
a
i )2 = 1. Figure 29 shows the

largest three eigenvalues as a function of the number N of cells considered in the Natural Movie data set (qualitatively
similar plots are obtained for Dark and Flicker). For small time-bin widths ∆t = 2 ms, the largest eigenvalue scales
linearly with N , while all smaller eigenvalues tend to finite limits as N grows. On the contrary, for very large time-
bin widths, e.g. ∆t = 2 s, all three top eigenvalues are proportional to N . As Cij is bounded (by 1 in absolute
value) the eigenvalues Ca proportional to N are associated to eigenvectors spreading over a finite fraction of the sites:

va
i = O(1/

√
N). Such eigenvectors are called extended [15].

II. RELATIONSHIP WITH THE EXISTENCE OF STATES

How can we extract information about states from the above spectral analysis? The key point is that, when a
single eigenvalue of the correlation matrix is extensive in N , there can be only one state. We briefly explain below
this statement; see [14] for a detailed analysis.

An important quantity in statistical physics is the response Rij of the spin i to a perturbation in j, defined as
follows. Assume the field on spin j changes by a small amount, hj → hj + δhj . This perturbation will, in turn,
produce a small change in the magnetization of spin i, mi → mi + δmi. Then, the response Rij is the value of the
ratio δmi/δhj for an infinitesimal perturbation. The thermodynamical stability of a state requires that the response
Rij , for a fixed j, can be strong (finite) over a vanishingly small fraction of the spins i only. Informally speaking, a
local perturbation cannot spread over the whole system.
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FIG. 29: Largest three eigenvalues of the correlation matrix for the Natural Movie stimulus and for ∆t = 2 ms (left) and
∆t = 2 s (right) as a function of the number N of cells included in the data set. The largest, second largest and third largest
eigenstate are shown, in order, in black, red, and green colors. In the left panel, the second and third eigenvalues are hardly
distinguishable.

The fluctuation-dissipation theorem tells us that the response coincides with the connected correlation,

Rij = Cij − mi mj =
∑

a

Ca va
i va

j − mi mj . (52)

Let us fix the location of the perturbation (site j). From Eq. (52) we can see that the perturbation will be transmitted
by all the eigenmodes having both sites i and j in their support, i.e. having non zero components in i and j. Many
eigenvectors have a finite size (not increasing with N) support, and induce a localized response to the local pertubation
in j (Figure 30).

j i

FIG. 30: The square box symbolizes the whole set of spins. The pertubed spin j belongs to the supports of some eigenvectors
of the correlation matrix (three of them are sketched). A non extensive number of spins i, belonging to the supports of one
of the localized eigenvectors (dark hatches), will strongly respond to the perturbation. Extended eigenvector (light hatches),
which spread over a fraction of all spins, trigger a global response of the system.

We now consider the response triggered by extended eigenmodes. As extended eigenmodes have O(1/
√

N) compo-
nents their contribution to Rij is small unless the associated eigenvalues are large. Let K(≤ N) be the number of
extensive eigenvalues Ca. The contribution of extended eigenmodes to the response reads

Rext
ij ≃

∑

a≤K

Ca va
i va

j − mi mj , (53)

where we have Ca = O(N), va
i = O(1/

√
N) for all i and for all a ≤ K. It is clear from (53) that Rext

ij is non zero for
almost all pairs i, j unless

K = 1 and mi ≃
√

C1 v1
i . (54)

We deduce that, in the presence of a single state, there is only one extensive eigenvalue.
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What happens if there is more than one state? The situation is reminiscent of the phase coexistence in first
order phase transitions where different physical, e.g. liquid and gazeous states coexist [17]. Let us call wα the
thermodynamical weight of state α, that is, the exponential of minus its free energy. Each state, or phase, is
thermodynamically stable. Hence Cα

ij , the spin-spin correlation matrix for state α, has a single extensive eigenvalue
and the associated eigenvector fulfills (54) where the magnetization is now mα

i , the average value of spin i in state α.
Unfortunately, the data do not give access to each state correlation matrix but only to their weighted sum,

Cij =
∑

α

wα Cα
ij . (55)

The weighted correlation matrix C has more than one extensive eigenvalues. To be more precise, the number K
of extensive eigenvalues of C is simply the dimension of the space spanned by the magnetization vectors ~mα =
(mα

1 ,mα
2 , . . . ,mα

N ), and is larger or equal to 2. These magnetization vectors would be in one-to-one correspondence
with the frozen states in Schneidman et al.’s paper.

III. ANALYSIS OF EXPERIMENTAL DATA

We now turn to the analysis of the experimental recordings. The overlap between spin configurations is defined as

q ≡ 1

N

N
∑

i=1

m2
i . (56)

In the presence of a single state this overlap coincides, from (54), with

q =
C1

N
. (57)

Identity (57) can be checked from the experimental data without solving the inverse problem. We need only to
calculate the local magnetizations, diagonalize C, and compare the overlap q to the largest eigenvalue C1 of C. The
outcome is shown in Figure 31. For small ∆t (up to 10 ms for Natural Movies data and 100 ms for Dark data) the
agreement between the overlap and the largest eigenvalue is excellent, and a single state is expected an no freezing
into multiple states occurs [24]. A departure from (57) is clearly visible for large ∆t, e.g. for ∆t > .5 s, which may
signal the existence of more than one state. However, for large values of ∆t the Ising encoding of the spiking activity
is questionable. No distinction is made between the firing of one or more spikes in the same time-bin, the latter
causing a loss of information when ∆t is larger than the typical inter-spike interval ≃ .7 s in Natural-Movie.

Our analysis of the spectral properties of the correlation matrix does not allow us to decide whether the freezing
mechanism suggested by Schneidman et al. takes place or not. However, it contradicts the existence of multiple quasi
ground-states lying far away from each other, and the spin-glass picture put forward by these authors [1].
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FIG. 31: Overlap q (sum of squared magnetizations (57, blue line) compared to the largest eigenvalue, and the sum of the
largest two eigenvalues, of the correlation matrix as a function of ∆t for Natural Movie (left) and Dark (right, all 60 cells) data.
The sum of the two largest eigenvalues, divided by N , is a lower bound to the Edwards-Anderson overlap used in spin-glass
literature [14, 16].

38



Bibliography and footnotes:

[1] E. Schneidman, J.J. Berry II, R. Segev, W. Bialek. Weak pairwise correlations imply strongly correlated network states in
a neural population. Nature 440, 1007-1012 (2006).

[2] C.S. Wallace, Statistical and Inductive Inference by Minimum Message Length, (Springer-Verlag, Information Science and
Statistics, 2005).

[3] T. Plefka. Convergence condition of the TAP equation for the infinite-ranged spin glass model. J. Phys. A 15, 1971 (1982).
[4] A. Georges, J. Yedidia. How to expand around mean-field theory using high-temperature expansions. J. Phys. A 24, 2173

(1991).
[5] D. McKay, Information Theory, Inference, and Learning Algorithms, (Cambridge University Press, 2003).
[6] M. Schnitzer, M. Meister. Multineuronal Firing Patterns in the Signal from Eye to Brain. Neuron 37, 499-511 (2003).
[7] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edition, (North-Holland, 2007)
[8] S. Coleman, Aspects of Symmetry, (Cambridge University Press , 1988)
[9] A. Dembo, O. Zeitouni, Large deviation techniques and applications, 2nd edition, (Springer, 1993)

[10] L. Paninski. The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of

Computational Neuroscience 21, 71-87 (2006).
[11] L. Paninski, J. Pillow, E. Simoncelli. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding

model. Neural Computation 16, 2533 (2004).
[12] M. Meister, L. Lagnado, D.A. Baylor. Concerted signaling by retinal ganglion cells. Science 270, 1207-1210 (1995).
[13] J. Shlens, G.D. Field, J.L. Gauthier, M.I. Grivich, D. Petrusca, A. Sher, A.M. Litke, E.J. Chichilnisky. The structure of

multi-neuron firing patterns in primate retina. Journal of Neuroscience 26, 8254-8266 (2006).
[14] J. Sinova, G. Canright, A.H. MacDonald. Nature of ergodicity breaking in Ising spin glasses as revealed by correlation

function spectral properties. Phys. Rev. Lett. 85, 2609 (2000); J. Sinova, G. Canright, H.E. Castillo, A.H. MacDonald.
Extensive eigenvalues in spin-spin correlations: A tool for counting pure states in Ising spin glasses. Phys. Rev. B 63,
104427 (2001).

[15] D.J. Thouless, Percolation and Localization, in Ill-Condensed Matter Proceeding Les Houches , R. Balian, R. Maynard, G.
Toulouse, editors, (North-Holland, 1979).

[16] K.H. Fisher, J.A. Hertz, Spin glasses, (Cambridge University Press, 1991).
[17] S.K. Ma, Statistical Mechanics (World Scientific Publishing Company, 1985)
[18] D. Sherrington, S. Kirkpatrick. Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792 - 1796 (1975).
[19] We have to minimize here rather than maximize since the true Lagrange multipliers take imaginary values, the couplings

and fields being their imaginary part.
[20] Equation (4) in the main paper requires the initial conditions for the potentials Vi, e.g. that the potentials are initially

equal to their rest value. When the number of recorded spikes for each cell is large, the inferred couplings and currents are
largely insensitive to these initial conditions.

[21] The boundary conditions are now: Vi(tl0) = 1 if Jl0 > 0, 1 + Jl0 if Jl0 < 0, and Vi(tl1) = 1 if Jl1 < 0, 1 − Jl1 if Jl1 > 0.
[22] The temporal resolution of the recordings (about 1 ms) and the small number of occurrences of pairs of spikes for time-

interval bins smaller than 5 ms do not allow us to calculate the coupling when ∆t < 5 ms.
[23] For instance, in the Curie-Weiss model for the study of the paramagnetic/ferromagnetic transition, all couplings are equal

to J/N where J is a constant [17]. In finite-dimensional models couplings are independent of N; however the average
coupling scales as 1/N e.g. it is equal to 2dJ/(N − 1) on a d-dimensional cubic lattice with nearest-neighbour interactions

of amplitude J . Couplings may also scale as 1/
√

N when they are random variables with zero mean, as in the Sherrington-
Kirkpatrick model for the study of the spin-glass phase [16, 18].

[24] Notice that there could exist two mirror states with opposite magnetizations even when only one eigenvector is extended.
This possibility is ruled out, however, through inspection of the probability that ℓ among N cells fire together in the same
bin. A coexistence of opposite states would mean a bimodal distribution for ℓ, with local maxima in ℓ = 0 and ℓ = N ,
which is clearly not seen from the experimental data

39


