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Complete search algorithms are procedures capable of deciding whether or not a decision
problem has a solution. Among these are the ubiquitous backtracking-like algorithms, where
a decision is reached through a sequence of trials and errors. Analysis of the performances
of these procedures is difficult but can be done, to some extent, using statistical physics ideas
and techniques. Here, this approach is presented and illustrated on the random Satisfiability
(SAT) and Graph Coloring (COL) problems.

8.1 Introduction

The wide variety of practical problems that can be mapped onto NP-complete problems, to-
gether with the challenge in finding an answer to one of the most important open questions
in theoretical computer science, ‘Does NP = P?’, have led to intensive studies over the
past decades. Despite intense efforts, the worst-case running times of all currently known
algorithms grow exponentially with the size of the inputs to these problems. However, NP-
complete problems are not always hard. They might even be easy to solve on average [10,
25, 44], i.e., when their resolution complexity is measured with respect to some underlying
probability distribution of instances. This ‘average-case’ behavior depends, of course, on the
input distribution.

The average-case analysis of algorithms is a well defined branch of theoretical computer
science, with close connections to probability theory and combinatorics [33, 42]. It was
recently suggested that these connections could extend up to out-of-equilibrium statistical
physics [15]. Indeed, scientists working in the fields of the analysis of algorithms and of sta-
tistical physics have common goals. They all aim to understand to the properties of dynamical
processes involving an exponentially large (in the size of the input) set of configurations. The
differences between the two disciplines mainly lie in the methods of investigation. In con-
trast to theoretical computer scientists, physicists rarely provide exact results. But concepts
and tools developed over the past decades may prove useful in tackling the study of complex
algorithms that mathematical approaches have so far failed to solve.

There is a huge variety of algorithms designed to cope with combinatorial problems [30].
Briefly speaking, one can distinguish between complete and incomplete search procedures.
The latter are capable of finding solutions quickly but are unable to prove their absence1 while

1 This statement is true from a deterministic point of view, but incomplete procedures may be able to disprove the
existence of the solution in a probabilistic manner, see [40].
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the former will always output the right answer (existence or absence of solution) however long
it takes to find it. While incomplete search procedures are sometimes related to dynamical pro-
cesses inspired from physics, e.g., simulated annealing, the operation of complete procedures
rely on very different principles, with no a priori physical motivations. In addition, their study
has a long and rich history in theoretical computer science [34]. This makes the analysis of
complete algorithms with theoretical physics tools all the more fascinating. In this chapter, we
shall focus upon an ubiquitous complete procedure, the so-called Davis–Putnam–Logemann–
Loveland (DPLL) algorithm [19,30], at the root of branch-and-bound procedures widely used
in ‘practical’ optimization. The reader is referred to [15] and references therein for a review
on recent progress in the analysis of incomplete procedures from the physics point of view.

Virtually all decision problems can be solved with DPLL. Two widely known examples of
such problems which we shall focus on throughout this chapter are:

• Satisfiability of Boolean constraints (SAT). In K-SAT one is given an instance, that is,
a set of M logical constraints (clauses) among N boolean variables, and one wants to
know if there exists a truth assignment for the variables which fulfill all the constraints.
Each clause is the logical OR of K literals, a literal being one of the N variables or its
negation, e.g., (x1 ∨ x4 ∨ x5) for 3-SAT.

• Coloring of graphs (COL). An input instance of the K-COL decision problem consists
of a graph G. The problem involves finding a mapping from the set of vertices to the set
of K colors such that no edge links vertices with the same color, or else proving there are
none.

We now illustrate the operation of DPLL on an input F of the K-SAT problem defined
over a set V of variables. Call Γj the set of clauses including j variables, L the set of literals,
U the set of unassigned variables, and depth the number of further backtrackings available
to DPLL. Initially, Γj = ∅ for all j < K, ΓK = F , L = ∅, U = V , and depth = 0. The
procedure is defined as follows:

algorithm DPLL[Γ0, Γ1, Γ2, . . . , ΓK ; L; U ; depth]
begin

for j = 1 to K {updating of clause sets};
begin

for all c = �1 ∨ �2 ∨ . . . ∨ �j ∈ Γj ;
begin

if ∃i ∈ [1; j] such that �i ∈ L then {clause to be removed?}
begin

Γj := Γj \ {c};
end;
if ∃i ∈ [1; j] such that �̄i ∈ L then {clause to be reduced?}
begin

Γj := Γj \ {c};
Γj−1 := Γj−1 ∪ {c \ �i};

end;
end;

end;
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if Γ0 = Γ1 = Γ2 = . . . = ΓK = ∅ then {all clauses are satisfied?}
begin

print ‘SATISFIABLE (by literals in L)’ ;
stop

end;
if Γ0 = ∅ then
begin {there is no violated clause}

if Γ1 �= ∅ then
begin {there is some unitary clause i.e. with a unique literal}

� := a literal (unitary clause) randomly chosen in Γ1;
x := the variable associated to literal �;
DPLL[Γ0, Γ1, Γ2, . . . , ΓK ; L ∪ {�}; U \ {x}; depth];

end;
else {there is no unitary clause};

x := a variable chosen in U according to some heuristic rule;
� := a literal equal to x, or to x̄ depending on some heuristic rule;
DPLL[Γ0, Γ1, Γ2, . . . , ΓK ; L ∪ {�}; U \ {x}; depth + 1];
DPLL[Γ0, Γ1, Γ2, . . . , ΓK ; L ∪ {�̄}; U \ {x}; depth];

end;
end
else {there is some violated clause};

if depth = 0 then
begin {further backtracking is impossible}

print ‘UNSATISFIABLE’;
stop;

end;
end;

end

The first part of the algorithm consists of updating the sets of clauses after a variable has
been assigned at a previous step, e.g., x = T . Some clauses are satisfied, e.g., c = x ∨ y ∨ z
and eliminated, other are reduced, e.g., c = x̄ ∨ y ∨ z → c = y ∨ z. The procedure is
such that, if some clauses include one variable only, e.g., c = y, the corresponding variable is
automatically fixed to satisfy the clause (y = T ). This unitary propagation is repeated up to
the exhaustion of all unit clauses. If there is no unit clause (Γ1 = ∅), a heuristic rule indicates
which variable should be selected and which value it should be assigned to. In the presence of
a contradiction, that is, two opposite unitary clauses, e.g., c = y, c′ = ȳ, DPLL backtracks to
the last assignment of literal and tries the opposite value for the attached variable. At the end
of the process, a solution is found if no clauses are left, or no backtracking is possible and a
proof of unsatisfiability is obtained.

It is convenient to represent the history of the search process, that is, the sequence of trials
and errors generated by DPLL by a search tree. Examples of search trees are given in Fig-
ure 8.1. Nodes in the tree are attached to the assignment of variables, while edges represent the
logical consequences (elimination of satisfied constraints, simplification of other constraints)
resulting from these assignments. Branch extremities are marked with contradictions C, or by
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a solution S. A good computer-independent measure of the complexity of resolution is the size
of the search tree generated by DPLL. This search tree varies with the input of the problem
under consideration and the sequence of assignments made by the search procedure.
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Figure 8.1: Types of search trees generated by the DPLL solving procedure on K-SAT. (A) Sim-
ple branch: the algorithm easily finds a solution without ever backtracking. (B) Dense tree: in
the absence of solution, DPLL builds a tree, including many branches ending with contradictory
leaves, before stopping. (C) Mixed case, branch + tree: if many contradictions arise before
reaching a solution, the resulting search tree can be decomposed into a single branch followed
by a dense tree. G is the highest node in the tree reached by DPLL through backtracking.

Analysis of the average-case performance of DPLL, that is, of the average of the search
tree size for a given decision problem, e.g., SAT, requires a definition of its input distribu-
tion. Such distributions are usually unrealistic compared to structured instances from the real
world, but are simple enough to allow for some analytical treatment. Current popular input
distributions are:

• Random K-SAT is the K-SAT problem supplied with a distribution of inputs uniform
over all instances having fixed values of N and M . The limit of interest is N, M → ∞
at fixed ratio α = M/N of clauses per variable [17, 27, 37].

• Random K-COL inputs are random graphs G after Erdős-Rényi, i.e., drawn with uniform
probability among all the graphs having N vertices and E edges. The limit of interest is
N, E → ∞ at fixed ratio c = 2E/N of edges per vertex [4, 5, 18].

Random SAT and COL both exhibit a phase transition phenomenon [23]. For small values
of their control parameter π (= α or c), and for large input sizes, the answer to the decision
problem (existence of an assignment satisfying the constraints, or of a proper coloring) is
almost definitely yes. This holds as long as π remains smaller than a (K dependent) critical
value πC called threshold. Above threshold, the answer is no with high probability. The
behavior of DPLL is, to some extent, related to this phase transition as shown in Figure 8.2.
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Three regimes can be identified:

1. For low control parameter π < πL(< πC), the answer is almost definitely yes. There
is a finite probability that a solution is found by DPLL with essentially no backtracking
[8, 9, 24]. Search trees look like Figure 8.1(A). Their size grows polynomially (linearly)
with the input size N (number of variables for SAT, of vertices for COL). In the following
we will refer to this regime as low SAT phase.

2. For π > πC , that is, when the answer is no with high probability, proving the absence of
a solution requires the building up of a search tree like the one in Figure 8.1(B), whose
size is exponentially large (in N ) [11]. This regime will be called the UNSAT phase.

3. In the intermediate regime i.e. πL < π < πC , there are solutions solutions but finding
them is hard (Figure 8.1(C)), and requires exponential effort [3,12,13]. This regime will
be referred to as the upper SAT phase.

Notice that the location πL of the easy/hard crossover depends upon the algorithm, in contrast
to πC . The purpose of this chapter is the presentation of techniques allowing the reader to
reach a quantitative understanding of Figure 8.2.

This text is organized as follows. For the sake of simplicity, we focus in the first sections
on the SAT problem. We start by introducing the useful notions of phase diagram, search
trajectories, etc., in Section 8.2, and use these to analyze the search process in the low SAT
phase where backtracking is essentially irrelevant. We turn to the opposite case of the UNSAT
phase in Section 8.3, and develop tools necessary for the study of the action of DPLL in the
presence of massive backtracking. Section 8.4 is devoted to the analysis of the upper SAT
phase, that is, of the average-case complexity and large deviations from the latter. We show
how all techniques presented in those Sections for SAT can be applied to COL in Section 8.5.
Conclusions are presented in Section 8.6. Notice that, though most of the material presented
in this chapter was previously published by the authors in various articles [15, 16, 20], Sec-
tion 8.3.4 contains a new (and exact!) solution of the partial differential equation modeling
the search tree growth.

8.2 Phase Diagram, Search Trajectories and the Easy SAT
Phase

In this section, we present some useful concepts for the understanding of DPLL dynamics of
search, and we apply them to investigate the low-ratio α regime, where a solution is rapidly
found and the search tree essentially reduces to a single branch as shown in Figure 8.1(A).
We start with some general comments on the dynamics induced by DPLL, and introduce the
notion of mixed 2+p-SAT instance distribution. These concepts are made more precise and
illustrated through the analysis of the single-branch trajectory, strongly inspired from some
previous works by Chao and Franco [9] which the reader is referred to for more details. In
the last Section 8.2.4, our numerical and analytical results for the solving complexity in the
polynomial regime are presented.

Hereafter, the ratio of the 3-SAT instance to be solved will be denoted by α0.
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Figure 8.2: Resolution time of 3-SAT random instances by DPLL as a function of the ratio of
clauses per variable α and for three different input sizes. Data correspond to the median reso-
lution time of 10 000 instances; the average time may be somewhat larger due to the presence
of rare, exceptionally hard instances. The computational complexity is maximal at αc. It is
exponential in the vicinity of the threshold and in the unsatisfiable phase, but less and less as α

increases. A similar curve is obtained for random COL with α substituted with the ratio c of
edges per vertex.

8.2.1 Overview of Concepts Useful to DPLL Analysis

The action of DPLL on an instance of 3-SAT causes changes to the overall numbers of vari-
ables and clauses, and thus of the ratio α. Furthermore, DPLL reduces some 3-clauses to
2-clauses. A mixed 2+p-SAT distribution, where p is the fraction of 3-clauses, can be used
to model what remains of the input instance at a node of the search tree. Using experiments
and methods from statistical mechanics [38], the threshold line αC(p), separating SAT from
UNSAT phases, may be estimated with the results shown in Figure 8.3. For p ≤ p0 = 2/5,
i.e., to the left of point T, the threshold line is given by αC(p) = 1/(1 − p), as rigorously
confirmed by [1], and coincides with the upper bound for the satisfaction of 2-clauses. Above
p0, no exact value for αC(p) is known.

The phase diagram of 2+p-SAT is the natural space in which DPLL dynamics takes place.
An input 3-SAT instance with ratio α shows up on the right vertical boundary of Figure 8.3 as
a point of coordinates (p = 1, α). Under the action of DPLL, the representative point moves
aside from the 3-SAT axis and follows a trajectory, very much like real-space renormalization.
This trajectory obviously depends on the heuristic of the split followed by DPLL. Possible
simple heuristics are [8, 9],

• Unit-Clause (UC): randomly pick up a literal among a unit clause if any, or any unset
variable otherwise.

• Generalized Unit-Clause (GUC): randomly pick up a literal among the shortest available
clauses.
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• Short Clause With Majority (SCWM): randomly pick up a literal among unit clauses if
any; otherwise randomly pick up an unset variable v, count the numbers of occurrences
�, �̄ of v, v̄ in 3-clauses, and choose v (respectively v̄) if � > �̄ (resp. � < �̄). When � = �̄,
v and v̄ are equally likely to be chosen.

Rigorous mathematical analysis, undertaken to provide bounds to the critical threshold
αC , have so far been restricted to the action of DPLL prior to any backtracking, that is, to the
first descent of the algorithm in the search tree2. The corresponding search branch is drawn
on Figure 8.1(A). These studies rely on the two following facts.

First, the representative point of the instance treated by DPLL does not “leave” the 2+p-
SAT phase diagram. In other words, the instance is, at any stage of the search process, uni-
formly distributed from the 2+p-SAT distribution conditioned to its clause per variable ratio
α and fraction of 3-clauses p. This assumption is not true for all heuristics of split, but holds
for the above examples (UC, GUC, SCWM) [8]. Analysis of more sophisticated heuristics
requires the handling of more complex instance distributions [32].

Secondly, the trajectory followed by an instance in the course of resolution is a stochastic
object, due to the randomness of the instance and of the assignments done by DPLL. In the
large size limit (N → ∞), this trajectory gets concentrated around its average locus in the
2+p-SAT phase diagram. This concentration phenomenon results from general properties of
Markov chains [2, 46].

8.2.2 Clause Populations: Flows, Averages and Fluctuations

As pointed out above, under the action of DPLL, some clauses are eliminated while other ones
are reduced. Let us call Cj(T ) the number of clauses of length j (including j variables), once
T variables have been assigned by the solving procedure. T will be called hereafter “time”,
not to be confused with the computational effort necessary to solve a given instance. At time
T = 0, we obviously have C3(0) = α0N , C2(0) = C1(0) = 0. As Boolean variables are
assigned, T increases and clauses of length one or two are produced. A sketchy picture of
DPLL dynamics at some instant T is proposed in Figure 8.4.

We call e1, e2, e3 and w2, w1 the flows of clauses represented in Figure 8.4 when time
increases from T to T + 1, that is, when one more variable is chosen by DPLL after T have
already been assigned. The evolution equations for the three populations of clauses read,

C3(T + 1) = C3(T ) − e3(T ) − w2(T )
C2(T + 1) = C2(T ) − e2(T ) + w2(T ) − w1(T )
C1(T + 1) = C1(T ) − e1(T ) + w1(T ) . (8.1)

The flows ej and wj are, of course, random variables that depend on the instance under con-
sideration at time T , and on the choice of the variable (label and value) done by DPLL. For a
single descent, i.e., in the absence of backtracking, and for the GUC heuristic, the evolution
process (8.1) is Markovian and unbiased. The distribution of instances generated by DPLL at
time T is uniform over the set of all the instances having Cj(T ) clauses of length j = 1, 2, 3
and drawn from a set of N − T variables [9].

2 The analysis of [24] however includes a very limited version of backtracking, see Section 8.2.2.
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Figure 8.3: Phase diagram of 2+p-SAT and dynamical trajectories of DPLL. The threshold
line αC(p) (bold full line) separates SAT (lower part of the plane) from UNSAT (upper part)
phases. Extremities lie on the vertical 2-SAT (left) and 3-SAT (right) axis at coordinates (p =

0, αC = 1) and (p = 1, αC � 4.3) respectively. Departure points for DPLL trajectories
are located on the 3-SAT vertical axis and the corresponding values of α are explicitly given.
Dashed curves represent tree trajectories in the UNSAT region (thick lines, black arrows) and
branch trajectories in the SAT phase (thin lines, empty arrows). Arrows indicate the direction of
“motion” along trajectories parameterized by the fraction t of variables set by DPLL. For small
ratios α < αL, branch trajectories remain confined in the SAT phase, end in S of coordinates
(1, 0), where a solution is found. At αL (� 3.003 for the GUC heuristic), the single branch
trajectory hits tangentially the threshold line in T of coordinates (2/5, 5/3). In the intermediate
range αL < α < αC , the branch trajectory intersects the threshold line at some point G (which
depends on α). A dense tree then grows in the UNSAT phase, as happens when 3-SAT departure
ratios are above threshold α > αC � 4.3. The tree trajectory halts on the dot-dashed curve
α � 1.259/(1 − p) where the tree growth process stops. Once the dense tree is built, DPLL
reaches the highest backtracking node in the search tree, that is, the first node when α > αC , or
node G for αL < α < αC . In the latter case, a solution can be reached from a new descending
branch while, in the former case, unsatisfiability is proven, see Figure 8.1.

As a result of the additivity of (8.1), some concentration phenomenon takes place in the
large size limit. The numbers of clauses of lengths 2 and 3, a priori extensive in N , do not
fluctuate too much,

Cj(T ) = N cj

(
T

N

)
+ o(N) (j = 2, 3) . (8.2)

where the cj are the densities of clauses of length j averaged over the instance (quenched
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disorder) and the choices of variables (“thermal” disorder). In other words, the densities of 2-
and 3-clauses are self-averaging quantities and we shall attempt to calculate their mean values
only. Note that, in order to prevent the occurrence of contradictions, the number of unitary
clauses must remain small and the density c1 of unitary clauses has to vanish.

Formula (8.2) also illustrates another essential feature of the dynamics of clause popula-
tions. Two time scales are at play. The short time scale, of the order of unity, corresponds to
the fast variations in the numbers of clauses Cj(T ) (j = 1, 2, 3). When time increases from
T to T + O(1) (with respect to the size N ), all Cj’s vary by O(1) amounts. Consequently,
the densities cj of clauses, that is, their numbers divided by N , are changed by O(1/N) only.
The densities cj evolve on a long time scale of the order of N and depend on the reduced time
t = T/N only.

Due to the concentration phenomenon underlined above, the densities cj(t) will evolve
deterministically with the reduced time t. We shall see below how Chao and Franco calculated
their values. On the short time scale, the relative numbers of clauses Dj(T ) = Cj(T ) −
Ncj(T/N) fluctuate (with amplitude 
 N ) and are stochastic variables. As above noted, the
evolution process for these relative numbers of clauses is Markovian and the probability rates
(master equation) are functions of slow variables only, i.e., of the reduced time t and of the
densities c2 and c3. As a consequence, on intermediary time scales, much larger than unity
and much smaller than N , the Dj may reach some stationary distribution that depend upon
the slow variables.

This situation is best exemplified in the case j = 1 where c1(t) = 0 as long as no con-
tradiction occurs and D1(T ) = C1(T ). Consider, for instance, a time delay 1 
 ∆T 
 N ,
e.g., ∆T =

√
N . For times T lying in between T0 = t N and T1 = T0 + ∆T = t N +

√
N ,

the numbers of 2- and 3-clauses fluctuate but their densities are left unchanged and equal to
c2(t) and c3(t). The average number of 1-clauses, called unitary clauses above, fluctuates and
follows some master equation whose transition rates (from C ′

1 = C1(T ) to C1 = C1(T + 1))
define a matrix H(C1, C

′
1) and depend on t, c2, c3 only. H has a single eigenvector µ̄(C1) with

eigenvalue unity, called equilibrium distribution, and other eigenvectors with smaller eigen-
values (in modulus). Therefore, at time T1, C1 has forgotten the “initial condition” C1(T0)
and is distributed according to the equilibrium distribution µ̄(C1) of the master equation. Cal-
culation of the equilibrium distribution µ̄(C1) of unit clauses will be sketched in Section 8.2.4.

To sum up, the dynamical evolution of the clause populations may be seen as a slow
and deterministic evolution of the clause densities on which are superimposed fast, small
fluctuations. The equilibrium distribution of the latter adiabatically follows the slow trajectory.

8.2.3 Average-case Analysis in the Absence of Backtracking

In this section, we explain Chao and Franco’s calculation of the densities of 2- and 3-clauses.
Consider first the evolution equation (8.1) for the number of 3-clauses. This can be rewritten
in terms of the average density c3 of 3-clauses and of the reduced time t,

dc3(t)
dt

= −z3(t) , (8.3)

where z3 = 〈e3 + w2〉 denotes the averaged total outflow of 3-clauses (Section 8.2.2).
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Figure 8.4: Schematic view of the dynamics of clauses. Clauses are sorted into three containers
according to their lengths, i.e., the number of variables they include. Each time a variable is
assigned by DPLL, clauses are modified, resulting in a dynamics of the container populations
(lines with arrows). Dashed lines indicate the elimination of (satisfied) clauses of lengths 1, 2
or 3. Bold lines represent the reduction of 3-clauses into 2-clauses, or 2-clauses into 1-clauses.
The flows of clauses are denoted by e1, e2, e3 and w2, w1, respectively. A solution is found
when all containers are empty. The level of the rightmost container coincides with the number
of unitary clauses. If this level is low (i.e., O(1)), the probability that two contradictory clauses
x and x̄ are present in the container is vanishingly small. When the level is high (i.e., O(

√
N)),

contradictions will occur with high probability.

At some time step T → T + 1, 3-clauses are eliminated or reduced if and only if they
contain the variable chosen by DPLL. Let us first suppose that the variable is chosen in some
1- or 2-clauses. A 3-clause will include this variable or its negation with probability 3/(N −
T ) and disappear with the same probability. Due to the uncorrelation of clauses, we obtain
z3(t) = 3c3(t)/(1 − t). If the literal assigned by DPLL is chosen among some 3-clause, this
expression for z3 has to be increased by one (since this clause will necessarily be eliminated)
in the large-N limit.

Let us call ρj(t) the probability that a literal is chosen by DPLL in a clause of length
j (= 1, 2, 3). Note that the sum of these probabilities is smaller than or equal to one, since we
are free to choose the literal irrespective of the clause content (see UC case below). Extending
the above discussion to 2-clauses, we obtain

dc3(t)
dt

= − 3
1 − t

c3(t) − ρ3(t)

dc2(t)
dt

=
3

2(1 − t)
c3(t) − 2

1 − t
c2(t) − ρ2(t) . (8.4)

In order to solve the above set of coupled differential equations, we need to know the
probabilities ρj . As we shall see below, the values of the ρj depend on the heuristic of choice
followed by DPLL and explained in Section 8.2.1. The solutions of the differential Equa-
tions (8.4) will then be expressed in terms of the fraction p of 3-clauses and the ratio α of
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clauses per variable using the identities

p(t) =
c3(t)

c2(t) + c3(t)
, α(t) =

c2(t) + c3(t)
1 − t

. (8.5)

8.2.3.1 Case of the GUC Heuristic

When DPLL is launched, 2-clauses are created with an initial flow 〈w2(0)〉 = 3 α0/2. Let us
first suppose that α0 ≤ 2/3, i.e., w2(0) ≤ 1. In other words, less than one 2-clause is created
each time a variable is assigned. Since the GUC rule compels DPLL to look for literals in the
smallest available clauses, 2-clauses are immediately removed just after creation and do not
accumulate in their container (c2 = 0). Unitary clauses are almost absent and we have

ρ1(t) = 0 ; ρ2(t) =
3c3(t)

2(1 − t)
; ρ3(t) = 1 − ρ2(t) (α0 < 2/3) . (8.6)

The solutions of (8.4) with the initial condition p(0) = 1, α(0) = α0 read

p(t) = 1 ,

α(t) = (α0 + 2)(1 − t)1/2 − 2 . (8.7)

Solution (8.7) confirms that the instance never contains an extensive number of 2-clauses. At
some final time tend, depending on the initial ratio, α(tend) vanishes: no clause is left and a
solution is found.

We now assume that α0 > 2/3, i.e., 〈w2(0)〉 > 1. In other words, more than one 2-clause
is created each time a variable is assigned. 2-clauses now accumulate, and give rise to unitary
clauses. Due to the GUC prescription, in the presence of 1- or 2-clauses, a literal is never
chosen in a 3-clause. We show in Section 8.2.4 that the probability that there is no 1-clause at
some stage of the procedure equals 1 − c2(t)/(1 − t). This probability coincides with ρ2(t)
and, thus, we have

ρ1(t) =
c2(t)
1 − t

; ρ2(t) = 1 − ρ1(t) ; ρ3(t) = 0 (α0 > 2/3) , (8.8)

as soon as t > 0. The solutions of (8.4) now read

p(t) =
4α0(1 − t)2

α0(1 − t)2 + 3α0 + 4 ln(1 − t)
,

α(t) =
α0

4
(1 − t)2 +

3α0

4
+ ln(1 − t) . (8.9)

Solution (8.9) requires that the instance contains an extensive number of 2-clauses. This is
true at small times since p′(0) = 1/α0 − 3/2 < 0. At some time t∗ > 0, depending on
the initial ratio, p(t∗) reaches back unity: no 2-clause are left and hypothesis (8.8) breaks
down. DPLL has therefore reduced the initial formula to a smaller 3-SAT instance with a ratio
α∗ = α(t∗). It can be shown that α∗ < 2/3. Thus, as the dynamical process is Markovian,
the further evolution of the instance reduces to the α0 < 2/3 case.

We show in Figure 8.3 the trajectories obtained for initial ratios α0 = 0.6, α0 = 2 and
α0 = 2.8. When α0 > 2/3, the trajectory first heads to the left (creation of 2-clauses), and
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then reverses to the right (2-clause destruction results from splits) until reaching a point on
the 3-SAT axis at small ratio α∗(< 2/3) without ever leaving the SAT region. Further action
of DPLL leads to a rapid elimination of the remaining clauses and the trajectory ends up at
the right lower corner S, where a solution is achieved (Section 8.2.3.1). As α0 increases up to
αL, the trajectory gets closer and closer to the threshold line αC(p). Finally, at αL � 3.003,
the trajectory touches the threshold curve tangentially at point T with coordinates (pT =
2/5, αT = 5/3). Note the identity αT = 1/(1 − pT ).

8.2.3.2 Case of UC and SCWM Heuristics

The above study can be extended to the other heuristics presented in Section 8.2.1. For UC and
SCWM, the probability ρ3(t) that a variable is chosen from a 3-clause vanishes for all positive
times. The set of ODEs (8.4) is thus entirely defined from the expression of the probability ρ2

that a variable is set through splitting of a clause,

ρ2(t) =
[
1 − c2(t)

1 − t

]
h(t) . (8.10)

Function h depends upon the heuristic:

• hUC(t) = 0;

• hSCWM (t) = 3a3 e−3a3 (I0(3a3) + I1(3a3))/2 where a3 ≡ c3(t)/(1 − t) and I� is the
�th modified Bessel function.

The reader is referred to Ref. [2, 22] for additional information.

8.2.4 Occurrence of Contradictions and Polynomial SAT Phase

In this section, we compute the computational complexity in the range 0 ≤ α0 ≤ αL from
the previous results. To avoid unnecessary repetitions, we specialize to the case of the GUC
heuristic.

The trajectories obtained in Section 8.2.3 represent the deterministic evolution of the den-
sities of 2- and 3-clauses when more and more variables are assigned. Below, we briefly
present the calculation3 of the distribution µ̄(C1, t) of the number C1 of 1-clauses at reduced
time t done by Frieze and Suen [24]. Call H(C1, C

′
1) the probability that the number of unit-

clauses goes from C ′
1 to C1 once a variable is fixed by DPLL, see Section 8.2.2. In the limit

of large size N , the entries of matrix H depend on the reduced time t and the average density
c2 of 2-clauses only,

H(C1, C
′
1) =

∑
w1≥0

e−a2
aw1
2

w1!
δC1−C′

1+w1−σ(C′
1)

(8.11)

where a2 ≡ c2/(1 − t), w1 is the creation flow of unit-clauses represented in Figure 8.4, and
σ(C ′

1) = 1 if C ′
1 ≥ 1, 0 if C ′

1 = 0. The evolution matrix H ensures probability conservation

3 This calculation, combined with the study of the large deviations of the densities of 2- and 3-clauses, is closely
related to the more complex analysis of the UNSAT phase presented in Section 8.3.
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since entries along any column sum up to one. µ̄(C1), the eigenvector associated to the largest
eigenvalue (equal to unity), represents the stationary distribution of the number C1 of unit-
clauses. In terms of the generating function µ of µ̄ [21],

µ(y1) =
∑

C1≥0

µ̄(C1) ey1 C1 , (8.12)

the eigenvalue equation reads

µ(y1) = (1 − a2)
eν(y1) (1 − ey1)

eν(y1) − 1
, where ν(y1) ≡ −y1 − a2 + a2 ey1 . (8.13)

Sending y1 → −∞ in (8.13) permits us to find the probability that there is no unitary clause,
µ̄(C1 = 0) = 1 − a2. This probability gives the value of ρ2(t) used in the derivation of the
branch trajectory of Section 8.2.3 in the α0 > 2/3 case.

The pole Y1 of µ, that is, the non-vanishing zero of ν, controls the asymptotic behavior of
the probability of the number of unit-clauses: µ̄(C1) � e−Y1 C1 when C1 → ∞. As long as
a2 < 1, Y1 is positive, and µ̄ is localized. The average number of unit-clauses,

〈C1〉 =
∑

C1≥0

µ̄(C1) C1 =
dµ

dy1
(y1 = 0) = a2

2 − a2

2(1 − a2)
(8.14)

is finite. As a result, unit-clauses do not accumulate too much, and the probability that a
contradiction occurs when a new variable is assigned is O(1/N) only.

To calculate this probability, we consider step number T of DPLL. There are V = N−T =
N(1 − t) not-yet-assigned variables, and C1 unit-clauses, a stochastic number drawn from
distribution µ̄ with a2 = c2(t)/(1 − t). In the absence of a unit-clause, the next variable is
assigned through splitting of a clause and no immediate contradiction is possible. Otherwise,
DPLL picks up a unit-clause and satisfies it. The probability that another given unit-clause is
contradictory is p = 1/(2V ). Since clauses are independent, the probability that no contra-
diction emerges during step T is,

Prob (T to T + 1) =
(

1 − 1
2(N − T )

)C1−1

, (8.15)

The probability that a contradiction never occurs till step T = t N is therefore [24]:

Prob (0 to T = t N) = exp
(
−
∫ t

0

dt
〈max(C1 − 1, 0)〉(t)

2 (1 − t)

)
. (8.16)

This expression, combined with (8.14) gives the probability that a contradiction arises along
the branch trajectory calculated in Section 8.2.3. Two cases can be distinguished:

• If the ratio α0 of clauses per variable is smaller than αL � 3.003, a2(t) remains strictly
smaller than unity, and the probability of success (8.16) is positive. Frieze and Suen
have shown that contradictions have no dramatic consequences. The number of total
backtrackings necessary to find a solution is bounded from above by a power of log N .
The final trajectory in the p, α plane is identical to the one shown in Section 8.2.3, and
the increase in complexity is negligible with respect to O(N).
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• When α0 > αL, the trajectory intersects the α = 1/(1 − p) line at some time t. At this
point, a2(t) = α(1 − p) = 1: the average number of unit-clauses, 〈C1〉, diverges. Unit-
clauses accumulate, and contradictions unavoidably arise. Backtracking enters massively
into play, signaling the crossover to the exponential regime.
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Figure 8.5: Complexity of solution in the SAT region for α < αL � 3.003, divided by the
size N of the instances. Numerical data are for sizes N = 50 (crosses), 75 (squares), 100

(diamonds), 500 (triangles) and 1000 (circles). For the two biggest sizes, simulations have been
carried out for ratios larger than 2.5 only. Data for different N collapse onto the same curve,
proving that complexity scales linearly with N . The bold continuous curve is the analytical
prediction γ(α) from Section 8.2.4. Note the perfect agreement with numerics except at large
ratios where finite size effects are important, due to the crossover to the exponential regime
above αL � 3.003.

From the above discussion, it appears that a solution is found by DPLL essentially at the
end of a single descent (Figure 8.1(A)) when α0 < αL (lower SAT phase). Complexity thus
scales linearly with N with a proportionality coefficient γ(α0) smaller than unity.

For α0 < 2/3, clauses of length unity are never created by DPLL. Thus, DPLL assigns the
overwhelming majority of variables through splittings. γ(α0) simply equals the total fraction
tend of variables chosen by DPLL. From (8.7), we obtain

γ(α0) = 1 − 4
(α0 + 2)2

(α0 ≤ 2/3) . (8.17)

For larger ratios, i.e., α0 > 2/3, the trajectory must be decomposed into two successive
portions. During the first portion, for times 0 < t < t∗, 2-clauses are present with a non-
vanishing density c2(t). Some of these 2-clauses are reduced to 1-clauses that have to be
eliminated next. Consequently, when DPLL assigns an infinitesimal fraction dt of variables,
a fraction ρ1(t) = α(t)(1 − p(t))dt are fixed by unit-propagation only. The number of nodes
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(divided by N ) along the first part of the branch thus reads,

γ1 = t∗ −
∫ t∗

0

dt α(t)(1 − p(t)) . (8.18)

At time t∗, the trajectory touches the 3-SAT axis p = 1 at ratio α∗ ≡ α(t∗) < 2/3. The initial
instance is then reduced to a smaller and smaller 3-SAT formula, with a ratio α(t) vanishing at
tend. According to the above discussion, the length of this second part of the trajectory equals

γ2 = tend − t∗ . (8.19)

It proves convenient to plot the total complexity γ = γ1 + γ2 in a parametric way. To do so,
we express the initial ratio α0 and the complexity γ in terms of the end time t∗ of the first part
of the branch. A simple calculation from (8.9) leads to

α(t∗) = −4 ln(1 − t∗)
3t∗(2 − t∗)

γ(t∗) = 1 − 4(1 − t∗)
(2 + (1 − t∗)2α0(t∗))2

+ t∗ + (1 − t∗) ln(1 − t∗)

−1
4

α(t∗) (t∗)2 (3 − t∗) . (8.20)

As t∗ grows from zero to t∗L � 0.892, the initial ratio α0 spans the range [2/3; αL]. The
complexity coefficient γ(α0) can be computed from (8.17) and (8.20) with the results shown
in Figure 8.5. The agreement with numerical data is excellent.

8.3 Analysis of the Search Tree Growth in the UNSAT
Phase

In this section, we present an analysis of search trees corresponding to UNSAT instances, that
is, in the presence of massive backtracking. We first report results from numerical experi-
ments, then explain our analytical approach for computing the complexity of resolution (size
of search tree).

8.3.1 Numerical Experiments

For ratios above threshold (α0 > αC � 4.3), instances almost never have a solution, but a
considerable amount of backtracking is necessary before proving that clauses are incompat-
ible. Figure 8.1(B) shows a generic UNSAT, or refutation, tree. In contrast to the previous
section, the sequence of points (p, α) attached to the nodes of the search tree are not arranged
along a line any longer, but rather form a cloud with a finite extension in the phase diagram of
Figure 8.3. Examples of clouds are provided in Figure 8.6.

The number of points in a cloud, i.e., the size Q of its associated search tree, grows ex-
ponentially with N [11]. It is thus convenient to define its logarithm ω through Q = 2Nω .
We directly counted Q experimentally, and averaged the corresponding logarithm ω over a
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Figure 8.6: Clouds associated to search trees obtained from the resolution of three UNSAT
instances with initial ratios α0 = 4.3, 7 and 10 respectively. Each point in the cloud corresponds
to a splitting node in the search tree. Sizes of instances and search trees are N = 120, Q = 7597

for α0 = 4.3, N = 200, Q = 6335 for α0 = 7, and N = 300,Q = 6610 for α0 = 10.

Table 8.1: Logarithm of the complexity ω from experiments (EXP), theory (THE) from Sec-
tion 8.3.4 and former linearization approximation (LIN) [13], as a function of the ratio α0 of
clauses per variable of the 3-SAT instance. Ratios above 4.3 correspond to UNSAT instances;
the rightmost ratio lies in the upper SAT phase.

α0 4.3 7 10 15 20 3.5
ωEXP 0.089 0.0477 0.0320 0.0207 0.0153 0.034

±0.001 ±0.0005 ±0.0005 ±0.0002 ±0.0002 ±0.003
ωTHE 0.0916 0.0486 0.0323 0.0207 0.0153 0.035
ωLIN 0.0875 0.0477 0.0319 0.0206 0.0152 0.035

large number of instances. Results have then been extrapolated to the N → ∞ limit [13]
and are reported in Table 8.1. ω is a decreasing function of α0 [7]: the larger α0, the larger
the number of clauses affected by a split, and the earlier a contradiction is detected. We will
use the word “branch” to denote a path in the refutation tree which joins the top node (root)
to a contradiction (leaf). The number of branches, B, is related to the number of nodes, Q,
through the relation Q = B − 1, valid for any complete binary tree. As far as exponential
(in N ) scalings are concerned, the logarithm of B (divided by N ) equals ω. In the following
paragraph, we show how B can be estimated through the use of a matrix formalism.
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c c
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Figure 8.7: Imaginary, parallel growth process of an UNSAT search tree used in the theoretical
analysis. Variables are fixed through unit propagation, or by the splitting heuristic as in the
DPLL procedure, but branches evolve in parallel. T denotes the depth in the tree, that is the
number of variables assigned by DPLL along each branch. At depth T , one literal is chosen on
each branch among 1-clauses (unit propagation, grey circles not represented on Figure 8.1), or
2,3-clauses (splitting, black circles as in Figure 8.1). If a contradiction occurs as a result of unit
propagation, the branch gets marked with C and dies out. The growth of the tree proceeds until
all branches carry C leaves. The resulting tree is identical to the one built through the usual,
sequential operation of DPLL.

8.3.2 Parallel Growth Process and Markovian Evolution Matrix

The probabilistic analysis of DPLL in the UNSAT regime appears to be a formidable task
since the search tree of Figure 8.1(B) is the output of a complex, sequential process: nodes and
edges are added by DPLL through successive descents and backtrackings (depth-first search).
We have imagined a different, breadth-first building up of the refutation tree, which results in
the same complete tree but can be mathematically analyzed. In our imaginary process, the tree
grows in parallel, layer after layer (Figure 8.7). At time T = 0, the tree reduces to a root node,
to which is attached the empty assignment of variables (nothing is known at the beginning of
the search process), and an attached outgoing edge. At time T , that is, after having assigned T
variables in the instance attached to each branch, the tree is made of B(T ) (≤ 2T ) branches,
each one carrying a partial assignment of variables. At next time step T → T +1, a new layer
is added by assigning, according to DPLL heuristic, one more variable along every branch. As
a result, a branch may keep growing through unitary propagation, get hit by a contradiction
and die out, or split if the partial assignment does not induce unit clauses.

This parallel growth process is Markovian, and can be encoded in an instance-dependent
evolution operator H. A detailed definition and construction of H is presented in [16]. We
limit ourselves to explaining hereafter the main steps:

• A 3N dimensional-vector space is introduced. Each vector |S〉 in the spanning basis is
in one-to-one correspondence with a partial assignment S = (s1, s2, . . . , sN ) of the N
variables (si = t, f , u if variable xi is, respectively, True, False, or Undetermined, i.e.,
not-yet-assigned).
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• Let S be a partial assignment which does not violate the (unsatisfiable) instance I under
consideration, and S(j,x), with j = 1, . . . , N and x = t, f , the partial assignment ob-
tained from S by replacing sj with x. Call hn(j|S) and hv(x|S, j) the probabilities that
the heuristic (UC, GUC, ...) respectively chooses to assign variable xj , and to fix it to
x (= t, f).

• The evolution operator H encodes the action of DPLL on I. Its matrix elements in the
spanning basis are, see Figure 8.8,

1. If S violates I, 〈S′|H|S〉 = 1 if S′ = S, 0 otherwise.

2. If S does not violate I, 〈S′|H|S〉 = hn(j|S) × hv(x|S, j) if C1(S) ≥ 1 and S′ =
S(j,x), hn(j|S) if C1(S) = 0 and (S′ = S(j,x) or S′ = S(j,x̄)), 0 otherwise. Here
S, S′ are the partial assignments corresponding to |S〉, |S′〉, and C1(S) the number
of undetermined clauses of type 1 (unitary clauses) for partial assignment S.

A B C

S S

S
(j,x)

S

S S
(j,t) (j,f)

S

Figure 8.8: Transitions allowed by the heuristic-induced evolution operator. Grey and black
nodes correspond to variables assigned through unit-propagation and split respectively, as in
Figure 8.7. A. If partial assignment S already violates the instance I, it is left unchanged. B. If
the partial assignment does not violate I and there is at least one unitary clause, a variable is
fixed through unit propagation (grey node) e.g. xj = x. The output partial assignment is Sj,x.
C. If the partial assignment does not violate I and there is no unitary clause, a variable xj is
fixed through splitting (black node). Two partial assignments are generated, Sj,t and Sj,f .

Then, the expectation value over the random assignments of variables of the size (number
of leaves) of the search tree produced by DPLL to refute I, is equal to

B =
∑
S

〈S|HN |u, u, . . . , u〉 , (8.21)

where HN denotes the N th (matrical) power of H, the sum runs over all 3N partial assign-
ments S, and the rightmost vector corresponds to the initial, fully undetermined assignment
of variables [16].

Calculation of the expectation value of the N th power of H, and of its average over the
instance distribution is a hard task. We therefore turned to a simplifying approximation, called
dynamical annealing. Call clause vector 
C(S) of a partial assignment S the three-dimensional
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vector 
C = (C1, C2, C3) where Cj is the number of undetermined clauses of length j. The
quantity we focus on is B̄( 
C; T + 1), the expectation number of branches at depth T in the
search tree (Figure 8.7) carrying partial assignments with clause vector 
C = (C1, C2, C3).
Within the dynamical annealing approximation, the evolution of the B̄s is Markovian,

B̄( 
C; T + 1) =
∑
�C′

H̄ [
C, 
C ′; T ] B̄( 
C ′; T ) . (8.22)

The entries of the evolution matrix H̄[
C, 
C ′; T ] can be calculated from the definition of the
evolution matrix H [16]. They can be interpreted as the average number of branches with
clause vector 
C that DPLL will generate through the assignment of one variable from a partial
assignment of variables with clause vector 
C ′.

For the GUC heuristic, we find [13],

H̄[
C, 
C ′; T ] =
(

C ′
3

C ′
3 − C3

) (
3

N − T

)C′
3−C3

(
1 − 3

N − T

)C3

×
C′

3−C3∑
w2=0

(
1
2

)C′
3−C3

(
C ′

3 − C3

w2

)
×


(1 − δC′

1
)
(

1 − 1
2(N − T )

)C′
1−1 C′

2∑
z2=0

(
C ′

2

z2

)(
2

N − T

)z2

×

(
1 − 2

N − T

)C′
2−z2 z2∑

w1=0

(
1
2

)z2
(

z2

w1

)
δC2−C′

2−w2+z2 δC1−C′
1−w1+1 +

δC′
1

C′
2−1∑

z2=0

(
C ′

2 − 1
z2

)(
2

N − T

)z2
(

1 − 2
N − T

)C′
2−1−z2

×

z2∑
w1=0

(
1
2

)z2
(

z2

w1

)
δC2−C′

2−w2+z2+1 [δC1−w1 + δC1−1−w1 ]

}
, (8.23)

where δX denotes the Kronecker delta function over integers X: δX = 1 if X = 0, δX = 0
otherwise. Expression (8.23) is easy to obtain from the interpretation following Eq. (8.22), and
the picture of containers in Figure 8.4 [13]. Among the C ′

3 − C3 clauses that flow out from
the leftmost 3-clauses container, w2 clauses are reduced and go into the 2-clauses container,
while the remaining C ′

3 − C3 − w2 are eliminated. w2 is a random variable in the range
0 ≤ w2 ≤ C ′

3−C3 and drawn from a binomial distribution of parameter 1/2, which represents
the probability that the chosen literal is the negation of the one in the clause. It is assumed
that the algorithm never chooses the variable among 3-clauses. This hypothesis is justified a
posteriori because in the UNSAT region, there is always (except at the initial time t = 0) an
extensive number of 2-clauses. Variables are chosen among 1-clauses or, in the absence of the
latter, among 2-clauses. The term on the r.h.s. of Eqn. (8.23) beginning with δC′

1
(respectively

1 − δC′
1
) corresponds to the latter (resp. former) case. z2 is the number of clauses (other than

the one from which the variable is chosen) flowing out from the second container; it obeys
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a binomial distribution with parameter 2/(N − T ), equal to the probability that the chosen
variable appears in a 2-clause. The 2-clause container is, at the same time, poured with w2

clauses. In an analogous way, the unitary clause container welcomes w1 new clauses if it
was empty at the previous step. If not, a 1-clause is eliminated by fixing the corresponding
literal. The branch keeps growing as long as the level C1 of the unit clauses container remains
low, i.e., C1 remains of the order of unity and the probability to have two, or more, 1-clauses
with opposite literals can be neglected. This probability enters as a multiplicative factor in
the third line of (8.23). Finally, we sum over all possible flow values w2, z2, w1 that satisfy
the conservation laws C2 − C ′

2 = w2 − z2, C1 − C ′
1 = w1 − 1 when C ′

1 �= 0 or, when
C ′

1 = 0, C2 − C ′
2 = w2 − z2 − 1, C1 = w1 if the literal is the same as the one in the clause

or C1 = w1 + 1 if the literal is the negation of the one in the clause. The presence of two δ is
responsible for the growth in the number of branches. In the real sequential DPLL dynamics,
the inversion of a literal at a node requires backtracking; here, the two edges grow in parallel
at each node according to Section 8.3.2.

8.3.3 Generating Function and Large-size Scaling

Let us introduce the generating function G( 
y ; T ) of the average number of branches B̄( 
C ; T )
where 
y ≡ (y1, y2, y3), through

G( 
y ; T ) =
∑

�C

e �y·�C B̄( 
C , T ) , 
y · 
C ≡
3∑

j=1

yj Cj , (8.24)

where the first sum runs over all triplets of positive clause numbers. The evolution equation
(8.22) for the B̄s can be rewritten in term of the generating function G,

G( 
y ; T + 1 ) = e−γ1(�y) G
(

γ(
y) ; T

)
+(

e−γ2(�y)(ey1 + 1) − e−γ1(�y)
)

G
(−∞, γ2(
y), γ3(
y) ; T

)
(8.25)

where 
γ is a vectorial function of argument 
y whose components read

γ1(
y) = y1 + ln
[
1 − 1

2(N − T )

]
,

γ2(
y) = y2 + ln
[
1 +

2
N − T

(
e−y2

2
(1 + ey1) − 1

)]
,

γ3(
y) = y3 + ln
[
1 +

3
N − T

(
e−y3

2
(1 + ey2) − 1

)]
. (8.26)

To solve (8.25), we infer the large-N behavior of G from the following remarks:

1. Each time DPLL assigns variables through splitting or unit propagation, the numbers Cj

of clauses of length j undergo O(1) changes. It is thus sensible to assume that, when the
number of assigned variables increases from T1 = t N to T2 = t N + ∆T with ∆T very
large but o(N), e.g., ∆T =

√
N , the densities c2 = C2/N and c3 = C3/N of 2- and

3-clauses have been modified by o(1).
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2. On the same time interval T1 < T < T2, we expect the number of unit-clauses C1 to
vary at each time step. But its distribution ρ(C1|c2, c3; t), conditioned to the densities c2,
c3 and the reduced time t, should reach some well defined limit distribution. This claim
is a generalization of the result obtained by [24] for the analysis of the GUC heuristic in
the absence of backtracking.

3. As long as a partial assignment does not violate the instance, very few unit-clauses are
generated, and splitting frequently occurs. In other words, the probability that C1 = 0 is
strictly positive as N becomes large.

The above arguments entice us to make the following claim. For large N, T at fixed ratio
t = T/N , the generating function (8.24) of the average numbers B̄ of branches is expected4

to behave as

G(y1, y2, y3; t N) = exp
[

N ϕ(y2, y3; t) + ψ(y1, y2, y3; t) + o(1)
]

. (8.27)

Hypothesis (8.27) expresses in a concise way some important information on the distribu-
tion of clause populations during the search process that we now extract. Call ω the Legendre
transform of ϕ,

ω( c2, c3 ; t ) = min
y2,y3

[
ϕ( y2, y3 ; t ) − y2 c2 − y3 c3

]
. (8.28)

Then, combining equations (8.24), (8.27) and (8.28), we obtain

lim
N→∞

1
N

ln B̄(C1, c2 N, c3 N ; t N) = ω(c2, c3; t ) , (8.29)

independently of the (finite) number C1 of unit clauses. In other words, the expectation value
of the number of branches carrying partial assignments with (1− t) N undetermined variables
and cj N j-clauses (j = 2, 3) scales exponentially with N , with a growth function ω(c2, c3; t)
related to ϕ(y2, y3; t) through identity (8.28). Moreover, ϕ(0, 0; t) is the logarithm of the
number of branches (divided by N ) after a fraction t of variables have been assigned. The
most probable values of the densities cj(t) of j-clauses are then obtained from the partial
derivatives of ϕ: cj(t) = ∂ϕ/∂yj(0, 0) for j = 2, 3. Let us emphasize that ϕ in (8.27)
does not depend on y1. This hypothesis simply expresses that, as far as non violating partial
assignments are concerned, both terms on the right-hand side of (8.25) are of the same order,
and that the density of unit-clauses, c1 = ∂ϕ/∂y1, identically vanishes.

Similarly, function ψ(y1, y2, y3; t) is related to the generating function of the equilibrium
distribution µ̄(C1|c2, c3, t) of unit-clause at fixed c2, c3, t, extending the definition and calcu-
lation of Section 8.2.4 valid in the absence of backtracking to the UNSAT regime,

eψ(y1,y2,y3;t)−ψ(0,y2,y3;t) =
∑

C1≥0

µ̄(C1|c2, c3, t) e y1 C1 , (8.30)

where cj = ∂ϕ/∂yj(y2, y3; t) (j = 2, 3) on the right-hand side of the above formula.

4 See [29] for a similar large deviation ansatz in the context of the relaxation dynamics of the mean-field Ising model.



160 8 Analysis of Backtracking Procedures for Random Decision Problems

Inserting expression (8.27) into the evolution equation, (8.25), we find

∂ϕ

∂t
(y2, y3; t) = −y1 +

2
1 − t

[
e−y2

(
1 + ey1

2

)
− 1
]

∂ϕ

∂y2
(y2, y3; t)

+
3

1 − t

[
e−y3

(
1 + ey2

2

)
− 1
]

∂ϕ

∂y3
(y2, y3; t)

+ ln
[
1 + K(y1, y2) eψ(−∞,y2,y3;t)−ψ(y1,y2,y3;t)

]
(8.31)

where K(y1, y2) = e−y2(e2 y1 + ey1) − 1. As ϕ does not depend upon y1, the latter may be
chosen at our convenience, e.g., to cancel K and the contribution from the last term in (8.31),

y1 = Y1(y2) ≡ y2 − ln
(

1 +
√

1 + 4 ey2

2

)
. (8.32)

Such a procedure, similar to the kernel method [33], is correct in the major part of the y2, y3

space and, in particular, in the vicinity of (0, 0) which we focus on in this paper5. We end up
with the following partial differential equation (PDE) for ϕ,

∂ϕ

∂t
(y2, y3; t) = H

[
∂ϕ

∂y2
,

∂ϕ

∂y3
, y2, y3, t

]
, (8.33)

where H incorporates the details of the splitting heuristic6,

HGUC [c2, c3, y2, y3, t] = −Y1(y2) +
3 c3

1 − t

[
e−y3

(
1 + ey2

2

)
− 1
]

+
c2

1 − t

(
e−Y1(y2) − 2

)
. (8.35)

We must therefore solve the partial differential equation (PDE) (8.33) with the initial condi-
tion,

ϕ(y2, y3, t = 0) = α0 y3 , (8.36)

obtained through inverse Legendre transform (8.28) of the initial condition over B̄, or equiv-
alently over ω,

ω(c2, c3; t = 0) =
{

0 if c3 = α0 ,
−∞ if c3 �= α0 .

5 It has, however, to be to modified in a small region of the y2, y3 space; a complete analysis of this case was carried
out in [13].

6 For the UC heuristic,

HUC = ln 2 +
3 c3

1 − t

»
e−y3

„
1 + ey2

2

«
− 1

–
+

c2

1 − t

„
3

2
e−y2 − 2

«
. (8.34)
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Figure 8.9: Snapshot of the surface ω(p, α; t) for α0 = 10 at time (depth in the tree) t = 0.05.
The height ω∗(t) of the top of the surface, with coordinates p∗(t), α∗(t), is the logarithm (di-
vided by N ) of the number of branches. The coordinates (p∗(t), α∗(t)) define the tree trajectory
shown in Figure 8.3. The halt line is hit at th � 0.094.

8.3.4 Interpretation in Terms of Growth Process

We can interpret the dynamical annealing approximation made in the previous paragraphs, and
the resulting PDE (8.33) as a description of the growth process of the search tree resulting from
DPLL operation. Using Legendre transform (8.28), PDE (8.33) can be written as an evolution
equation for the logarithm ω(c2, c3, t) of the average number of branches with parameters
c2, c3 as the depth t = T/N increases,

∂ω

∂t
(c2, c3, t) = H

[
c2, c3,− ∂ω

∂c2
,− ∂ω

∂c3
, t

]
. (8.37)

Partial differential equation (PDE) (8.37) is analogous to growth processes encountered in
statistical physics [36]. The surface ω, growing with “time” t above the plane c2, c3, or
equivalently from (8.5), above the plane p, α (Figure 8.9), describes the whole distribution
of branches. The average number of branches at depth t in the tree equals

B(t) =
∫ 1

0

dp

∫
0

dα eN ω(p,α;t) � eN ω∗(t) , (8.38)

where ω∗(t) is the maximum over p, α of ω(p, α; t) reached in p∗(t), α∗(t). In other words,
the exponentially dominant contribution to B(t) comes from branches carrying 2+p-SAT
instances with parameters p∗(t), α∗(t), that is clause densities c∗2(t) = α∗(t)(1 − p∗(t)),
c∗3(t) = α∗(t)p∗(t). Along the tree trajectory, ω∗(t) grows thus from 0, on the right vertical
axis, up to some halting time th, at which dominant branches almost surely get hit by con-
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tradictions. ωTHE = ω∗(th) is our theoretical prediction for the logarithm of the complexity
(divided by N )7.

The hyperbolic line in Figure 8.3 indicates the halt points, where contradictions prevent
dominant branches from further growing [13]. To obtain this curve, we calculate the prob-
ability µ̄∗(t) ≡ µ̄(C1 = 0|c∗2(t), c∗3(t), t) that a split occurs when a variable is assigned by
DPLL,

µ̄∗(t) = exp
(

∂ϕ

∂t
(0, 0; t)

)
− 1 , (8.39)

from (8.30) with y1 = −∞, y2 = y3 = 0 and (8.31) with y1 = y2 = y3 = 0, respectively.
The probability of split vanishes, and unit-clauses accumulate until a contradiction is obtained,
when the tree stops growing,

µ̄∗(t) = 0 → ∂ϕ

∂t
(0, 0; t) =

∂ω

∂t

(
c∗2(t), c

∗
3(t); t

)
= 0 . (8.40)

From PDEs (8.33) or (8.37), this halting condition corresponds to crossing of

α =

(
3 +

√
5

2

)
ln

[
1 +

√
5

2

]
1

1 − p
. (8.41)

Notice that the halt line in the UNSAT phase differs from the halt line α = 1/(1−p) calculated
in Section 8.2.4 in the absence of backtracking.

Equation (8.37) is a first-order PDE8 and can be solved using the characteristics method
[35]. The idea is to describe the surface ω(c2, c3; t) as the union of curves, representing the
evolution of a ’particle’ in a 3-dimensional space with coordinates c2(t), c3(t), ω(t). Denoting
by pj(t) the partial derivative ∂ω/∂cj(c2(t), c3(t); t) (j = 2, 3), we write the conditions
fulfilled by the particle to sit on the surface at any time as a set of five first-order ordinary
coupled differential equations,

dpj

dt
(t) = −∂H

∂cj

[
c2(t), c3(t),−p2(t),−p3(t), t

]
, (j = 2, 3)

dcj

dt
(t) =

∂H

∂pj

[
c2(t), c3(t),−p2(t),−p3(t), t

]
, (j = 2, 3)

dω

dt
(t) = H

[
c2(t), c3(t),−p2(t),−p3(t), t

]
+
∑

j=2,3

pj(t)
dcj

dt
(t) . (8.42)

Assume now that we focus on dominant branches only, and want to calculate the coordinates
c∗2, c

∗
3, ω

∗ of the top of the surface as a function of time, say t′, positive and smaller than the
halt time. To do this, we need to solve (8.42) for 0 < t < t′ with boundary conditions,

c2(0) = 0 , c3(0) = α0 , ω(0) = 0 , (8.43)

7 Notice that we have to divide the theoretical value by ln 2 to match the definition used for numerical experiments;
this is done in Table 8.1.

8 This statement is correct in the large-size limit only. Finite-size corrections would introduce second-derivative
terms with 1/N multiplicative coefficients. See [29] for a similar situation.
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which expresses that all trajectories describe resolution of a 3-SAT instance with ratio α0, and

p2(t′) = p3(t′) = 0 , (8.44)

to match the end of the trajectory with the top of the surface ω at time t′. Numerical resolu-
tion of equations (8.42) with boundary conditions (8.43,8.44) is shown in Figure 8.10. Clause
densities c2, c3 keep positive at any time as expected. The parametric plot of the final coordi-
nates, p∗(t′), α∗(t′), as a function of t′ defines the tree trajectories on Figure 8.3. Values of ω
obtained for various initial ratios α0 are listed in Table 8.1, and compared to the linearization
approximation developed in [13].

We have plotted the surface ω at different times, with the results shown in Figure 8.9
for α0 = 10. Values of ωTHE , obtained for 4.3 < α < 20 by solving (8.37) compare
very well with the numerical results (Table 8.1). Although our calculation is not rigorous, it
provides a very good quantitative estimate of the complexity. It is therefore expected that our
dynamical annealing approximation is quantitatively accurate. It is a reasonable conjecture
that it becomes exact at large ratios α0, where PDE (8.33) can be exactly solved.
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Figure 8.10: Clause densities c2(t), c3(t), logarithm ω(t) of the number of branches, local
derivatives p2(t), p3(t) as a function of time t for the characteristic curve reaching the top
surface at halt time th � 0.299 corresponding to ratio α0 = 4.3. Left axis scale corresponds to
c2, c3 and p2×10, p3×100; right axis scale shows values of ω. Boundary conditions (8.43,8.44)
can be seen from the curves. The vanishing of the derivative of ω at t = th stems from the halt
condition (8.40).

8.3.4.1 Asymptotic Equivalent of ω for Large Ratios

Resolution of PDE (8.37) in the large ratio α0 limit gives (for the GUC heuristic),

ωTHE(α0) � 3 +
√

5
6 ln 2

[
ln

(
1 +

√
5

2

)]2
1
α0

. (8.45)
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This result exhibits the 1/α0 scaling proven by [7], and is conjectured to be exact. As α0 in-
creases, search trees become smaller and smaller, and correlations between branches, weaker
and weaker, making dynamical annealing increasingly accurate.

8.4 Hard SAT Phase: Average Case and Fluctuations

8.4.1 Mixed Branch and Tree Trajectories

The main interest of the trajectory framework proposed in this paper is best seen in the upper
SAT phase, that is, for ratios α0 ranging from αL to αC . This intermediate region juxtaposes
branch and tree behaviors [14], see search tree in Figures 8.1(C) and 8.11.

The branch trajectory, started from the point (p = 1, α0) corresponding to the initial 3-
SAT instance, hits the critical line αc(p) at some point G with coordinates (pG, αG) after
N tG variables have been assigned by DPLL, see Figure 8.12. The algorithm then enters the
UNSAT phase and, with high probability, generates a 2+p-SAT instance with no solution. A
dense subtree, that DPLL has to go through entirely, forms beyond G up until the halt line (left
subtree in Figure 8.11). The size of this subtree can be analytically predicted from the theory
exposed in Section 8.3. All calculations are identical, except initial condition (8.36) which
has to be changed into

ϕ(y2, y3, t = 0) = αG (1 − pG) y2 + αG pG y3 . (8.46)

As a result we obtain the size 2NG ωG of the unsatisfiable subtree to be backtracked (leftmost
subtree in Figure 8.11). NG = N (1 − tG) denotes the number of undetermined variables at
point G.

G is the highest backtracking node in the tree (Figures 8.1(C) and 8.11) reached by DPLL,
since nodes above G are located in the SAT phase and carry 2+p-SAT instances with so-
lutions. DPLL will eventually reach a solution. The corresponding branch (rightmost path
in Figure 8.1(C)) is highly non-typical and does not contribute to the complexity, since al-
most all branches in the search tree are described by the tree trajectory issued from G (Fig-
ures 8.3,8.12). We expect that the computational effort DPLL requires to find a solution will,
to exponential order in N , be given by the size of the left unsatisfiable subtree of Figure 8.11.
In other words, massive backtracking will certainly be present in the right subtree (the one
leading to the solution), and no significant statistical difference is expected between both sub-
trees.

We have experimentally checked this scenario for α0 = 3.5. The average coordinates
of the highest backtracking node, (pG � 0.78, αG � 3.02), coincide with the computed
intersection of the single branch trajectory (Section 8.2.2) and the estimated critical line αc(p)
[13]. As for complexity, experimental measures of ω from 3-SAT instances at α0 = 3.5, and
of ωG from 2+0.78-SAT instances at αG = 3.02, obey the expected identity

ωTHE = ωG × (1 − tG) , (8.47)

and are in very good agreement with theory (Table 8.1). Therefore, the structure of search
trees corresponding to instances of 3-SAT in the upper SAT regime reflects the existence of a
critical line for 2+p-SAT instances. The exponential scaling of the complexity (ω > 0) in this
upper SAT regime was recently rigorously established [3].
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Figure 8.11: Detailed structure of the search tree in the upper SAT phase (αL < α < αC ).
DPLL starts with a satisfiable 3-SAT instance and transforms it into a sequence of 2+p-SAT
instances. The leftmost branch in the tree symbolizes the first descent made by DPLL. Above
node G0, instances are satisfiable while below G1, instances have no solutions. A grey triangle
accounts for the (exponentially) large refutation subtree that DPLL has to go through before
backtracking above G1 and reaching G0. By definition, the highest node reached back by DPLL
is G0. Further backtracking, below G0, will be necessary but a solution will be eventually found
(right subtree), see Figure 8.1(C).

8.4.2 Distribution of Running Times

While in the upper SAT phase, search trees almost always look like Figure 8.1(B), they may
sometimes consist of a single branch (Figure 8.1(A)). Figure 8.13 shows the normalized his-
togram of the logarithm ω of the solving times of instances with ratio α0 = 3.5 and various
sizes N [14, 31, 43]. The histogram is made of a narrow peak (left side) followed by a wider
bump (right side). As N grows, the right peak acquires more and more weight, while the left
peak progressively disappears. The abscissa of the center of the right peak reaches a finite
value ω∗ � 0.035 as N → ∞. This right peaks thus corresponds to the core of exponentially
hard resolutions: with high probability resolutions of instances requiring a time scaling as
2Nω∗

as the size of the instance gets larger and larger, in agreement with Section 8.4.1.
On the contrary, the location of the maximum of the left peak vanishes as log2(N)/N

when the size N increases, indicating that the left peak accounts for polynomial (linear) res-
olutions. We have thus replotted the data shown in Figure 8.13, changing the scale of the
horizontal axis ω = log2(Q)/N into Q/N . Results are shown in Figure 8.14. We have lim-
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Figure 8.12: Phase diagram of 2+p-SAT and dynamical trajectories of DPLL for satisfiable
instances. See caption of Figure 8.3 for definitions of critical lines and and trajectories. When
the initial ratio lies in the αL < α0 < αC range, with high probability, a contradiction arises
before the trajectory crosses the dotted curve α = 1/(1 − p) (point D). Through extensive
backtracking, DPLL later reaches back to the highest backtracking node in the search tree (G)
and finds a solution at the end of a new descending branch, see Figure 8.1(B). With exponentially
small probability, the trajectory (dot-dashed curve, full arrow) is able to cross the “dangerous”
region where contradictions are likely to occur; it then exits from this contradictory region (point
D′) and ends up with a solution (lowest dashed curve, open arrow).

ited ourselves to Q/N < 1, as the range of interest for analyzing the left peak of Figure 8.13.
The maximum of the distribution is located at Q/N � 0.2 − 0.25, with weak dependence
upon N . The cumulative probability Plin to have a complexity Q less than, or equal to N ,
i.e., the integral of Figure 8.14 over 0 < Q/N < 1, decreases very quickly with N . We find
an exponential decrease, Plin = 2−Nζ , see inset of Figure 8.14. The rate ζ � 0.011 ± 0.001
is determined from the slope of the logarithm of the probability shown in the inset.

The existence of rare but fast resolutions suggests the use of a systematic restart heuristic
to speed up resolution [28]: if a solution is not found before N splits, DPLL is stopped and
launched again after some random permutations of the variables and clauses. Intuitively, the
expected number of restarts necessary to find a solution should indeed be equal to the inverse
of the weight of the linear complexity peak in Figure 8.13, with a resulting total complexity
scaling as N 2 0.011 N , and much smaller than the one-run complexity 2 0.035 N of DPLL.
We check the above reasoning by measuring the number Nrest of restarts performed before
a solution is finally reached with the restart heuristic, and averaging log2(Nres) over a large
number of random instances. Results are reports in the inset of Figure 8.14. The typical
number Nrest = 2Nζ̄ of required restarts clearly grows exponentially as a function of the size
N with a rate ζ̄ = 0.012 ± 0.001. Within the accuracy of the experiments, ζ and ζ̄ coincide
as expected.
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by N ) for α = 3.5 and for different sizes N . Histograms are normalized to unity and obtained
from 400 000 (N = 100), 50 000 (N = 200), 20 000 (N = 300), and 5 000 (N = 400)
samples.

Experiments provide intuition about runs that are able to find a solution without back-
tracking. These are typically runs in which, although the 2-SAT subformula is supercritical
(α > 1/(1−p)) and many (O(N)) unitary clauses are present, no pair of these unitary clauses
is contradictory (Figure 8.12). Such a “miracle” occurs with an exponentially small probabil-
ity as calculated in Section 8.4.3.

This statement is supported by the analysis of the number of unit-clauses generated during
easy resolutions. We have measured the maximal number (C1)max of unit-clauses generated
along the last branch in the tree, leading to the solution S (Figure 8.1(B)). We found that
(C1)max scales linearly with N with an extrapolated ratio (C1)max/N � 0.022 for α = 3.5.
This linear scaling of the number of unit-clauses is an additional proof of the trajectory enter-
ing the “dangerous” region α > 1/(1 − p) of the phase diagram where unit-clauses accumu-
late. In the presence of a O(N) number of 1-clauses, the probability of survival of the branch
(absence of contradictory literals among the unit-clauses) will be exponentially small in N , in
agreement with the scaling of the left peak weight in Figure 8.13.

8.4.3 Large Deviation Analysis of the First Branch in the Tree

We give, in the following, a lower bound to the probability that DPLL finds a solution without
ever backtracking. Due to the absence of backtracking, the same probabilistic setting as in
Section 8.2 may be applied: the search heuristic defines a Markov chain for the evolution of
subformulas as more and more variables are set. The major difference is that we are now
considering initial densities above αL, which means that the probability of the events we
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Figure 8.14: Probability distributions of the complexity Q (divided by the size N ) for sizes
N = 100 (full line), N = 200 (dashed line), N = 300 (dotted line), N = 400 (dashed-dotted
line). Distributions are not shown for complexities larger than N . Inset: Minus logarithm of
the cumulative probability of complexities smaller or equal to N as a function of N , for sizes
ranging from 100 to 400 (full line); logarithm of the number of restarts necessary to find a
solution for sizes ranging from 100 to 1000 (dotted line). Slopes are equal to ζ = 0.0011 and
ζ̄ = 0.00115 respectively.

look for are exponentially small (in the number N of variables). In other words, rather than
considering the mean resolution trajectory (which unavoidably leads to a contradiction and
backtracking), we need to look at large deviations from this trajectory. Notice that, though we
focus on a specific algorithm, namely GUC, our approach and the spirit of our results should
hold for other heuristics.

The probability B̄( 
C; T ) that the first branch of the tree carries an instance with Cj j-
clauses (j = 1, 2, 3) after T variables have been assigned (and no contradiction has occurred)
obeys the Markovian evolution equation (8.22). The entries of the transition matrix H̄ are
given (for the GUC heuristic) by (8.23) where δC1−w1 + δC1−w1+1 replaced with δC1−w1+1

in the last line.

The generating function G associated to probability B̄ (8.24) obeys equation (8.25) with
(ey1 + 1) replaced with 1, and γ1(
y) in Eqn. (8.26) changed into

γ1(y) = y1 + ln
[
1 +

1
N − T

(
e−y1

2
− 1
)]

. (8.48)

We now present the partial differential equations (PDE) obeyed by ϕ. Two cases must be
distinguished: the number C1 of unit-clauses may be bounded (C1 = O(1), c1 = o(1)), or of
the order of the instance size (C1 = Θ(N), c1 = Θ(1)).
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8.4.3.1 C1 = O(1): A Large Deviation Analysis Around Frieze and Suen’s Result

When DPLL starts running on a 3-SAT instance, very few unit-clauses are generated and split-
tings occur frequently. In other words, the probability that C1 = 0 is strictly positive when N
becomes large. Consequently, both terms on the right-hand side of (8.25) are of the same or-
der, and we make the hypothesis that ϕ does not depend on y1: ϕ(y1, y2, y3; t) = ϕ(y2, y3; t).
This hypothesis simply expresses that c1 = ∂ϕ/∂y1 identically vanishes. Inserting expression
(8.27) into the evolution equation (8.25), we find9

∂ϕ

∂t
= −y2 + 2 g(y2, y2; t)

∂ϕ

∂y2
+ 3 g(y2, y3; t)

∂ϕ

∂y3
, (8.49)

where function g is defined

g(u, v; t) =
1

1 − t

(
e−v

2
(1 + eu) − 1

)
. (8.50)

PDE (8.49) together with initial condition ϕ(y; t = 0) = α0 y3 (where α0 is the ratio of
clauses per variable of the 3-SAT instance) can be solved exactly with the resulting expression,

ϕ(y2, y3; t) = α0 ln
[
1 + (1 − t)3

(
ey3 − 3

4
ey2 − 1

4

)
+

3(1 − t)
4

(ey2 − 1)
]

+ (1 − t) y2 ey2 + (1 − t)(ey2 − 1) ln(1 − t)
− (ey2 + t − t ey2) ln (ey2 + t − t ey2) . (8.51)

Chao and Franco, and Frieze and Suen’s analysis of the GUC heuristic may be recovered
when y2 = y3 = 0 as expected. It is an easy check that ϕ(y2 = 0, y3 = 0; t) = 0, i.e.,
the probability of survival of the branch is not exponentially small in N [24], and that the
derivatives c2(t), c3(t) of ϕ(y2, y3; t) with respect to y2 and y3 coincide with the solutions of
(8.4).

In addition, (8.51) also provides a complete description of rare deviations of the resolution
trajectory from its highly probable locus shown in Figure 8.3. As a simple numerical example,
consider DPLL acting on a 3-SAT instance of ratio α0 = 3.5. Once, e.g., t = 20% of variables
have been assigned, the densities of 2- and 3-clauses are with high probability equal to c2 �
0.577 and c3 � 1.792 respectively. Expression (8.51) gives access to the exponentially small
probabilities that c2 and c3 differ from their most probable values. For instance, choosing
y2 = −0.1, y3 = 0.05, we find from (8.51) and (8.28) that there is a probability e−0.00567N

that c2 = 0.504 and c3 = 1.873 for the same fraction t = 0.2 of eliminated variables. By
scanning all the values of y2, y3 we can obtain a complete description of large deviations from
Frieze and Suen’s result10.

The assumption C1 = O(1) breaks down for the most probable trajectory at some fraction
tD, e.g., tD � 0.308 for α0 = 3.5 at which the trajectory hits point D on Figure 8.12. Beyond

9 PDE (8.49) is correct in the major part of the y1, y2, y3 space and, in particular, in the vicinity of y = 0 which
we focus on in this paper. It has, however, to be to modified in a small region of the y1, y2, y3 space; a complete
analysis of this case is not reported here but may be easily reconstructed along the lines of Appendix A in [13].

10 Though we are not concerned here with sub-exponential (in N ) corrections to probabilities, we mention that it is
possible to calculate the probability of split, µ̄(C1 = 0), extending the calculation of Section 8.2.4 to y �= 0.
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D, 1-clauses accumulate and the probability of survival of the first branch is exponentially
small in N .

8.4.3.2 Case C1 = O(N): Passing Through the “Dangerous” Region

When the number of unit-clauses becomes of the order of N , variables are almost surely
assigned through unit-propagation. The first term on the right-hand side of equation (8.25)
is now exponentially dominant with respect to the second one. The density of 1-clauses is
strictly positive, and ϕ depends on y1. We then obtain the following PDE,

∂ϕ

∂t
= −y1 + g(−∞, y1; t)

∂ϕ

∂y1
+ 2 g(y1, y2; t)

∂ϕ

∂y2
+ 3 g(y2, y3; t)

∂ϕ

∂y3
, (8.52)

with g(u, v; t) given by (8.50). When y1 = y2 = y3 = 0, (8.52) simplifies to

dz

dt
(t) = − c1(t)

2(1 − t)
, (8.53)

where c1(t) is the most probable value of the density of unit-clauses, and z(t) is the logarithm
of the probability that the branch has not encountered any contradiction (divided by N ). The
interpretation of (8.53) is transparent. Each time a literal is assigned through unit-propagation,
there is a probability (1 − 1/2/(N − T ))C1−1 � e−c1/2/(1−t) that no contradiction occurs.
The right-hand side of (8.53) thus corresponds to the rate of decay of z with “time” t.

PDE (8.52) can be solved numerically [14], with results as shown in Figure 8.15. The
calculated values of ζ � 0.01, (c1)max � 0.022 and γ � 0.21 are in very good agreement
with numerical experiments (Section 8.4.2). This agreement extends over the whole range
αL ≤ α0 ≤ αC [14].

8.4.3.3 More on Restarts and Cut-off

This study suggests that the cut-off time, at which the search is halted and restarted, need
not be precisely tuned but is simply given by the size of the instance. This conclusion could
be generic and apply to other combinatorial decision problems and other heuristics. More
precisely, if a combinatorial problem admits some efficient (polynomial) search heuristic for
some values of control parameter (e.g., the ratio α here, or the average adjacency degree for
the coloring problem of random graphs), there might be an exponentially small probability
that the heuristic is still successful (in polynomial time) in the range of parameters where res-
olution almost surely requires massive backtracking and exponential effort. When the decay
rate of the polynomial time resolution probability ζ is smaller than the growth rate ω of the
typical exponential resolution time, restart procedures with a cut-off in the search equal to a
polynomial of the instance size will lead to an exponential speed-up of resolutions.

In principle, one could not rule out the existence of even luckier runs than linear ones.
For instance, there could exist exponentially long (complexity 2ω′N with 0 < ω′ < ω) and
rare (probability 2−ζ′N with 0 < ζ ′ < ζ) runs with ω′ + ζ ′ < ζ. If so, 2ω′N would be a
better cut-off for restart than N . A recent analysis of the distribution of exponentially long
resolutions indicates this is not so for the problem of the vertex covering of random graphs,
and that the optimal cut-off for restarts is indeed the instance size itself [39].
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Figure 8.15: Density c1 of unitary clauses (full line) and logarithm z (8.53) of the probability
of the absence of contradiction (dashed line) along the first search branch as a function of time
t (fraction of assigned variables) for an initial ratio α = 3.5. The density of unit clauses is
positive between points D and D′ along the branch trajectory of Figure 8.12; z is null before
the trajectory reaches D, and constant and equal to the exponent ζ beyond D′ .

8.5 The Random Graph Coloring Problem

In this section we apply the approach described above for random SAT to random COL. More
precisely, we analyze the performances of a complete DPLL algorithm capable of determining
whether a given graph is 3-colorable or not [20]. The algorithm is based on a combination of
a coloring heuristic, 3-GREEDY-LIST (3-GL), and of backtracking steps. We first present the
algorithm and then analyze the dynamics of its resolution time.

8.5.1 Description of DPLL Algorithm for Coloring

The action of the coloring procedure is described as follows:

• Necessary Information: while running, the algorithm maintains for each uncolored ver-
tices, a list of available colors, which consists of all the colors that can be assigned to this
vertex, given the colors already assigned to surrounding vertices.

• Coloring Order: the order in which the vertices are colored, is such that the most con-
strained vertices, i.e., with the least number of available colors, are colored first. At each
time step, a vertex is chosen among the most constrained vertices, and its color is selected
from the list of its available colors. Both choices are done according to some heuristic
rule, which can be unbiased (no preference is made between colors), or biased (following
a hierarchy between colors), see next section.

• List Updating: to ensure that no adjacent vertices have the same color, whenever a vertex
is assigned a color, this color is removed from the lists (if present) which are attached to
each of the uncolored neighbors.



172 8 Analysis of Backtracking Procedures for Random Decision Problems

• Contradictions and Backtracking: a contradiction occurs as soon as one of the lists be-
comes empty. Then, the algorithm backtracks to the most recently chosen vertex, which
has more than one available color (the closest node in the search tree – see definition
below).

• Termination Condition: the algorithm stops when all vertices are colored, or when all
coloring possibilities have been tried.

A search tree can describe the action of the algorithm as for the SAT problem. A node
in the tree represents a vertex chosen by the algorithm, which has more than one color in its
available-colors list. An edge which comes out of a node, corresponds to a possible color
of the chosen vertex. A leaf is either a solution (S) or a contradiction (denoted by C), see
Figure 8.1.

8.5.2 Coloring in the Absence of Backtracking

Let us call the 3-GL heuristic the incomplete version of the above algorithm, obtained when
the algorithm stops if a coloring is found (and outputs “Colorable”), or just after the first
contradiction, instead of backtracking (and outputs “Don’t know if colorable or not”). In
contrast to the 3-GL algorithm with backtracking, the 3-GL heuristic is not able to prove the
absence of a solution, and is amenable to rigorous analysis [5, 6].

In the simplest case, vertices and colors are chosen purely randomly without any bias be-
tween colors (Coloring Order step described above). This “symmetric” 3-GL heuristic verifies
two key properties on which our analysis relies. The first one is a statistical invariance called
the R-property. Throughout the execution of the algorithm, the uncolored part of the graph is
distributed as G((1 − t)N, p) where t is the number of colored vertices divided by N . The
second property is color symmetry. The search heuristic is symmetric with respect to the dif-
ferent colors, and the initial conditions are symmetric as well. Hence, the evolution of the
algorithm can be exactly monitored by tracking of the three numbers Nj(T ) of j-color nodes
(j = 1, 2, 3) only, without distinction between the colors available to each of these nodes.

The analysis of the evolution of these numbers in the course of the coloring was carried out
by Achlioptas and Molloy [6]. In a way very similar to Figure 8.4 and due to the R-property,
the average flows of vertices, w2(T ) from N3(T ) to N2(T ), and w1(T ) from N2(T ) to N1(T )
are c N3(T )/N and 2 c N2(T )/(3 N), respectively. Note that the last factor is due to the fact
that 2/3 of the 2-color nodes adjacent to the vertex just colored have the used color as one of
their two available colors. Hence, the evolution equations for the three populations of vertices
read,

N3(T + 1) = N3(T ) − w2(T ) ,

N2(T + 1) = N2(T ) + w2(T ) − w1(T ) − δN1(T ) ,

N1(T + 1) = N1(T ) + w1(T ) − (1 − δN1(T )) . (8.54)

where δN1(T ) = 1 if N1(T ) = 0 (a 2-color vertex is colored) and δN1(T ) = 0 if N1(T ) �= 0
(a 1-color vertex is colored). For c > 1, both N2(T ) and N3(T ) are extensive in N , and can
be written as

Ni(T ) = ni(T/N) N + o(N) . (8.55)
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The appearance of the reduced time, t = T/N , means that population densities ni(T/N)
change by O(1) over O(N) time intervals. To avoid the appearance of contradictions, the
number of 1-color vertices must remain of O(1) throughout the execution of the algorithm.
From queuing theory, this requires w1(t) < 1, that is

2
3

c n2(t) < 1 (8.56)

which means that 1-color nodes are created slowly enough to color them and do not accumu-
late. Thus, in the absence of backtracking, the evolution equations for the densities are

dn3(t)
dt

= −c n3(t) ,
dn2(t)

dt
= c n3(t) − 1 . (8.57)

The solution of these differential equations, with initial conditions n3(0) = 1, n2(0) = 0, is
n3(t) = e−c t , n2(t) = 1−t−e−c t . Equations (8.57) were obtained under the assumption
that n2(t) > 0 and hold until t = t2 at which the density n2 of 2-color nodes vanishes. For
t > t2, 2-color vertices no longer accumulate. They are colored as soon as they are created.
1-color vertices are almost never created, and the vertices colored by the algorithm are either
2-, or 3-color vertices. Thus, when t2 < t < 1, n2(t) = 0, and n3(t) = 1 − t decreases to
zero. A proper coloring is found at t = 1, i.e., when all nodes have been colored.

These equations define the trajectory of the algorithm in phase space in the absence of
contradictions, i.e., as long as condition (8.56) is fulfilled. The trajectory corresponding to
c = 3 is plotted on Figure 8.16. For c < cL ≈ 3.847, condition (8.56) is never violated, and
the probability that the algorithm succeeds in finding an appropriate coloring without back-
tracking is positive. The complexity γ(c) N of the algorithm in the absence of backtracking is
linear with N , and equals the number of nodes in the single branch of the search tree.

γ(c) = 1 − 2
3

c

∫ t2

0

dt n2(t) , (8.58)

where t2 > 0 is the first time (after t = 0) that n2(t) becomes 0.
For c > cL condition (8.56) is violated at t = td(c) which depends on c, and 1-color

vertices start to accumulate. As a result, the probability for contradictions becomes large, and
backtracking enters into play.

8.5.3 Coloring in the Presence of Massive Backtracking

The analytical study of the complexity in the presence of backtracking is inspired by the
analysis of the DPLL algorithm acting onto random 3-SAT (see Section 8.3). In the absence
of solution, DPLL builds up a complete search tree before stopping. Obviously, the order in
which the available colors of a vertex are tried does not affect the final shape of the tree. This
allows us to study the evolution of the parallel (instead of sequential) growth process of the
search tree (see Section 8.3.2 for detailed explanations).

As was pointed out before, due to color symmetry, the three-dimensional vector 
N =
(N1, N2, N3) describes the state of a graph under the action of the algorithm. Denoting by
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Figure 8.16: Trajectories of dominant search branches generated by DPLL in the uncolorable
phase (c > c3 � 4.7 [18, 41]) compared to a search trajectory in the easy colorable phase
(c < cL � 3.85). Horizontal and vertical axes represent the densities n2 and n3 of 2- and
3-color nodes respectively. Trajectories are depicted by solid curves, and the arrows indicate the
direction of motion (increasing depth of the search tree); they originate from the left top corner,
with coordinates (n2 = 0, n3 = 1), since all nodes in the initial graph are 3-color nodes. Dots
at the end of the uncol trajectories (c = 7, 10, 20) symbolize the halt point at which condition
n2 < 3 ln 2/c ceases to be fulfilled, and the search tree stops growing. Note that as the initial
connectivity increases, the trajectories halt at an earlier stage, implying the early appearance
of contradictions as the problem becomes overconstrained (large connectivity values). The col
trajectory (shown here for c = 3) represents the under-constrained region of the problem, where
the very first search branch is able to find a proper coloring (bottom left corner with coordinates
(n2 = 0, n3 = 0)).

B̄( 
N ; T ) the number of branches at time T with Ni (i = 1, 2, 3) i-color vertices (the com-
ponents of 
N ), the growth process of the search tree can be described by the evolution of
B̃( 
N ; T ) with time. Following the procedure exhibited in Section 8.3.2, we consider the
evolution matrix

H̄( 
N, 
N ′; T ) =
N ′

3∑
w2=0

(
N ′

3

w2

)
(

c

N
)w2(1 − c

N
)N3δN ′

3−N3−w2

{
{(1 − δN ′

1
)

N ′
2∑

w1=0

(
N ′

2

w1

)
(

2c

3N
)w1(1 − 2c

3N
)N ′

2−w1δN2−N ′
2−(w2−w1)δN1−N ′

1−w1+1 +

2δN ′
1

N ′
2−1∑

w1=0

(
N ′

2 − 1
w1

)
(

2c

3N
)w1(1 − 2c

3N
)N ′

2−w1−1δN2−N ′
2−(w2−w1−1) ×

δN1−N ′
1−w1

}
(8.59)



8.5 The Random Graph Coloring Problem 175

where δN is the Kronecker delta function. The matrix describes the average number of
branches with color vector 
N coming out from one branch with color vector 
N ′, as a result of
the coloring of one vertex at step T . Note that (8.59) is written under the assumption that no
3-color nodes are chosen by the algorithm throughout the growth process. This assumption
is consistent with the resultant solution which shows that in the uncolorable (uncol) region,
n2(t), namely the number of 2-color vertices divided by N , keeps positive for all t > 0.

The generating function G(
y; T ) of the number B̄( 
N ; T ) of branches satisfies an evolution
equation similar to (8.22),

G(
y; T + 1) = e−y1 G
(

γ(
y); T

)
+
(
2 e−y2 − e−y1

)
G
(−∞, γ2(
y), γ3(
y); T

)
(8.60)

where

γ1(
y) = y1 ,

γ2(
y) = y2 +
2c

3N

(
ey1−y2 − 1

)
,

γ3(
y) = y3 +
c

N

(
ey2−y3 − 1

)
. (8.61)

To solve (8.60), we make scaling hypotheses for B̄ and G, similar to those made in Sec-
tion 8.3.3. Namely,

B̄( 
N ; T ) = eN ω(�n;t)+o(N), G(
y; T ) = eN ϕ(�y;t)+o(N), (8.62)

where ω(
n; t) is the logarithm of the number of branches B̄( 
N ; T ) divided by N and 
n =
(n1, n2, n3). As in Section 8.3.3, ϕ is the Legendre transform of ω. At the initial stage of
the tree building up, there is a single outgoing branch from the root node, carrying a fully
uncolored graph. Thus, B̄( 
N ; T = 0) = 1 if 
N = (0, 0, N), 0 otherwise, and G(
y, T =
0) = eN y3 . The initial condition for function ϕ is simply, ϕ(
y; t = 0) = y3 . According
to (8.55) both N2(T ) and N3(T ) are extensive in N ; hence n2 > 0 and n3 > 0. Conversely,
as soon as N1(T ) becomes very large, contradictions are very likely to occur, and the growth
process stops. Throughout the growth process, N1 = O(1) almost surely. Thus n1 = 0 with
high probability, and ϕ does not depend upon y1. Independence of ϕ from y1 allows us to
choose the latter at our convenience, that is, as a function of y2, y3, t. Following the so-called
kernel method [33], we see that equation (8.60) simplifies if y1 = y2− ln 2. Then, from ansatz
(8.62), we obtain the following partial differential equation (PDE),

∂ϕ

∂t
(y2, y3; t) = −y2 + ln 2− c

3
∂ϕ

∂y2
(y2, y3; t)+ c (ey2−y3 − 1)

∂ϕ

∂y3
(y2, y3; t) . (8.63)

This PDE can be interpreted as a description of the growth process of the search tree
resulting from the algorithm operation. Through Legendre transformation, PDE (8.63) can
be written as an evolution equation for the logarithm ω(n2, n3; t) of the average number of
branches with densities n2, n3 of 2-, 3-colors nodes as the depth t = T/N increases,

∂ω

∂t
=

∂ω

∂n2
+ ln 2 − c

3
n2 + c n3

[
exp

(
∂ω

∂n3
− ∂ω

∂n2

)
− 1
]

. (8.64)
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The surface ω, growing with “time” t above the plane n2, n3 describes the whole distribution
of branches. Here, this distribution simplifies due to node conservation. The sum n2 + n3 of
2- and 3-color node densities necessarily equals the fraction 1 − t of not-yet colored nodes.
Therefore, ω is a function of n3 and t only, whose expression is obtained through exact reso-
lution of PDE (8.63) with the above initial condition,

ω(n3; t) =
c

6
t (1 − 2 t − 4 n3) − n3 ln n3 − (1 − n3) ln (1 − n3) −

(1 − t − n3) ln 2 + (1 − n3) ln
[
3
(
1 − e− 2 t c/3

)]
. (8.65)

Figure 8.17 exhibits ω(n3, t) for c = 10.
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Figure 8.17: Function ω (log of number of branches with densities n2 = 1 − t − n3, n3 of 2-
and 3-color nodes at depth t in the search tree) as a function of n3 and t for c = 10. The top
of the curve at given time t, ω∗(t), is reached for the dominant branch 3-color density n∗

3(t).
The evolution of ω is shown until t = th at which dominant branches in the search tree stop
growing (die from the onset of contradictions). The maximal ω at th, ω∗(th), is our theoretical
prediction for the complexity.

The maximum over n2, n3 of ω(n2, n3; t) at depth t in the tree

ω∗(t) =
c

6
t2 − c

3
t − (1 − t) ln 2 + ln

[
3 − e−2c t/3

]
(8.66)

is reached at n∗
3(t) = 2/(3 e 2 c t/3 − 1), n∗

2(t) = 1 − t − n∗
3(t), and gives the logarithm

of the average number of branches at depth t divided by N (see Section 8.3.4 and explana-
tions there). Under the action of the 3-GL algorithm, initially random 3-coloring instances
become random mixed 2 and 3-coloring instances, where nodes can have either 2 or 3 colors
at their disposal. This phenomenon indicates that the action of the 3-GL algorithm on random
3-coloring instances can be seen as an evolution in the n2, n3 phase-space (Figure 8.16). Each
point (n2, n3) in this space, represents a random mixed 2 and 3-coloring instance, with an
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Table 8.2: Analytical results and simulation results of the complexity ω for different connec-
tivities c in the uncol phase. The analytical values of ωTHE are derived from theory; ωNOD is
obtained by measuring the average value of the search tree size.

c ωTHE ωNOD

20 2.886 × 10−3 3 × 10−3 ± 3 × 10−4

15 5.255 × 10−3 5.8 × 10−3 ± 5 × 10−4

10 1.311 × 10−2 1.5 × 10−2 ± 1 × 10−3

7 2.135 × 10−2 3. × 10−2 ± 3.6 × 10−3

average number (n2 + n3)N of nodes, and a fraction n3/(n2 + n3) of 3-color nodes. Para-
metric plot of n∗

2(t), n∗
3(t) as a function of t represents the trajectories of dominant branches

in Figure 8.16.
The halt condition, analogous to (8.41) for the DPLL algorithm, is n∗

2(t) = 3 ln 2/c.
It defines the endpoints of the dominant branch trajectories in the n2, n3 dynamical phase
diagram of Figure 8.16. Call th the halt time at which the halt condition is fulfilled. The
logarithm ω∗(th) of the number of dominant branches at t = th, when divided by ln 2, yields
our analytical estimate for the complexity of resolution, ln Q/N .

To check our theory, we have run numerical experiments to estimate ω, the logarithm of the
median solving time, as a function of the initial graph degree c. Table 8.2 presents results for
ω as a function of the connectivity c in the uncol phase as found from numerical experiments
and from the above theory. Note the significant decrease in the complexity as the initial
connectivity increases. Agreement between theory and numerics is good but deteriorates at
small c. However, the high computational complexity of the algorithm for small c values, does
not allow us to obtain numerical results for large sizes N , and affects the quality of the large
N extrapolation of ω.

In the uncol region, as c increases, contradictions emerge in an earlier stage of the al-
gorithm, the probability that the same vertex appears in different branches reduces, and the
analytical prediction becomes exact. As a consequence of the early appearance of contradic-
tions, the complexity ω decreases with c. At very large c, we find

ω(c) � 3 ln 2
2

1
c2

� 1.040
c2

, (8.67)

and therefore that the (logarithm of the) complexity exhibits a power law decay with exponent
2 as a function of connectivity c.

8.6 Conclusions

In this chapter, we have explained a procedure for understanding and quantifying the com-
plexity pattern of the backtrack resolution of the random decision problem, for which input
distributions depend on a few control parameters. Under the action of the backtracking algo-
rithm, the inputs are modified and additional control parameters must be introduced to model
their distribution. The main steps in our approach are:
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1. Identify the space of parameters in which the dynamical evolution takes place; this space
will be generally larger than the initial parameter space since the algorithm modifies
the instance structure. While the distribution of 3-SAT instances is characterized by the
clause per variable ratio α only, another parameter p accounting for the emergence of
2-clauses has to be considered.

2. Divide the parameter space into different regions (phases) depending on the output of the
resolution, e.g., SAT/UNSAT phases for 2+p-SAT.

3. Represent the action of the algorithm as trajectories in this phase diagram. Intersection
of trajectories with the phase boundaries allow us to distinguish hard from easy regimes.

In addition, we have presented a quantitative study of the search tree growth, which allows
us to accurately estimate the complexity of resolution in the presence of massive backtracking.
From a mathematical point of view, it is worth noticing that monitoring the growth of the
search tree requires a PDE, while ODEs are sufficient to account for the evolution of a single
branch [2]. As shown in Section 8.4, the analysis of backtracking algorithms is not limited to
the average-case complexity, but may also capture the distribution of resolution times [14,26].

Although the approach has been illustrated on the SAT and COL problems, it has already
been applied to other decision problems, e.g., the vertex covering (VC) of random graphs [45].
In the VC problem, the parameter space is composed of the relative fraction of vertices which
are allowed to be covered, x, and the average connectivity c of the graph. Following the three
aforementioned steps, a complexity pattern of a branch-and-bound algorithm was obtained,
yielding a distinction between exponential and linear regimes of the algorithm. The emerging
pattern of complexity is similar to those of the DPLL algorithm for SAT and COL. The bound
introduced in [45], was proved to significantly reduce the time consumption of the algorithm
in the exponential regime, underlying the possibility of analyzing not only pure backtracking
algorithms but also their improved bound-including versions.

In the light of the success of our method in investigating the performance of the DPLL
algorithm, other not-yet studied backtracking algorithms, as well as more complicated heuris-
tics, are future possibilities for effective analysis using this method. However, from a math-
ematical point of view, it would be very interesting to have better control of the dynamical
annealing approximation underlying the analysis of the search tree in the presence of mas-
sive backtracking. The relative technical simplicity of the analysis of DPLL for the random
3-COL problem with respect to random 3-SAT, makes 3-COL a promising candidate for fu-
ture rigorous studies [16]. The growth partial differential equation, monitoring the evolution
of the search tree, is simpler than its 3-SAT counterpart, a consequence of the conservation
law expressing that the sum of the numbers of colored and uncolored nodes remains constant
throughout the search. We hope that progress towards greater rigor will be made in the near
future.
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Notes added in Proofs:

• Section 8.2.4: the critical regime α � αL has been recently investigated (C. Deroulers,
R. Monasson, Critical scaling of search heuristics and the unit-clause universality class,
preprint (2004)). The probability that UC or GUC succeeds in finding a solution (without
ever backtracking) scaled as exp[−N1/6 φ((α − αL) N1/3)] where φ can be explicitly
expressed in terms of the Airy function.

• Section 8.4.3 : the power law behaviour of the complexity ω at large connectivities c
depends on the number of colors (Q = 3 throughout Section 8.5). It is conjectured that
ω decreases as c−(Q−1)/(Q−2) (R. Monasson, Towards an analytical understanding of
backtracking procedures?, preprint (2004)).
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