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Abstract 

A toy model of particle packing is presented, which consists in arranging hexagons on a 
triangular lattice according to local stability rules. The number of stable packings is analytically 
computed and found to grow exponentially with the size of the lattice, which illustrates the 
concept of packing entropy first proposed by Edwards and collaborators. The analysis is carried 
out for both the monodispersed case and the more interesting, i.e. more disordered, bidispersed 
case. 

PACS: 81.35+k; 05.50÷q 

I. Introduction 

Particle packings are present in many industrial problems involving powders or gran- 

ular materials [1], and have also been extensively studied in physics since hard sphere 

packings have been proposed as a model  o f  simple liquids [2]. One o f  the major diffi- 

culties arising in the description o f  packings is that, for a given macroscopic external 

stress such as gravity or a confining pressure, there exist a multiplicity o f  arrangements, 

all stable from the mechanical  point o f  view. As for granular media thermal effects are 

negligible, these metastable states cannot decay down to lower-energy states and are 

therefore observable, depending on the dynamics used to create the packings. 
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For example, in the extensively studied problem of the regular sphere packings under 
gravity [3], arrangements can be built with different volume fractions. Gently rolling the 
particles in a container gives rise to the loose packing with a volume fraction around 0.6 
[3, 4] (which goes down to 0.55 in the limit of zero gravity [5]), whereas vibrating the 
particles yields the random close packing [2-4, 6-14] with a volume fraction of 0.635, 
which is the highest density that can be reached by collectively handling the particles. 
Higher volume fractions can be obtained by individually deposing the spheres in an 
ordered fashion, the maximum being attained for the face-centered cubic lattice [ 15, 16]. 
In order to acquire a better understanding of particle packings it is thus necessary to 
first determine and characterize the numerous packings that are mechanically stable, 
before studying the role of the dynamics in the selection of a particular packing. 

Counting and characterizing metastable states is a problem often encountered in 
statistical physics of disordered systems, e.g. spin glasses or neural networks. Such 
systems are indeed known to display very complicated free-energy landscapes leading 
to a huge number of metastable states, in which they can get trapped depending on the 
particular dynamics considered. Due to the striking analogy with the particle packing 
problem, it is thus tempting to approach the latter in a statistical mechanics framework. 
The first attempt has been proposed by Edwards and collaborators [17-20]. Their ap- 
proach is based on an analogy between the packing volume V and the energy E in 
conventional statistical systems. They introduced the concept of the packing entropy S 
as the logarithm of the number of packings at a given volume and defined the com- 
pactivity X = OV/OS, that is the corresponding (microcanonical) "temperature". These 
attractive concepts have been applied to the study of packing of spheres or packing 
of mixture of particles. Unfortunately the calculations are not straightforward and have 
been carried out so far only at the cost of drastic simplifications [20]. Another difficulty 
arising from this analogy between particle packing and classical thermodynamic sys- 
tems comes from the notion of compactivity which plays the role of the temperature. 
Whereas the temperature is a parameter that can easily be controlled in conventional 
thermodynamic system, the compactivity does not seem to be an accessible parameter 
in granular packing. This discrepancy leads to some difficulties in the interpretation of 
the results found within this approach. 

In this paper we are interested in the study of the packing statistics in a two- 
dimensional lattice model. By opposition with the studies cited above, our model is 
simple enough to allow an exact calculation of the statistics of the stable configurations 
without any a priori analogy with usual statistical mechanics. It therefore represents 
a good toy model to discuss the relevance of some concepts such as the entropy or 
the compactivity for particle packings. Our model is a modified version of the hard 
hexagon model first introduced to study the liquid-solid transition and analytically 
solved by Baxter 15 years ago [21]. It consists in arranging hexagons on a triangular 
lattice according to some realistic local stability rules. The whole statistics of the 
stable packings can be calculated using a transfer matrix method [22] to estimate 
the number of arrangements at a given density of occupation. We present results for 
both monodispersed medium and bidispersed medium. In the monodispersed case the 
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boundary conditions are found to play a major role and no thermodynamic limit can be 
found. This feature disappears in the bidispersed case and we show that in the limit of 
large lattice the entropy is indeed extensive for volume fractions lying between a lower 
and upper bounds, which coincide with the loose and close packings, respectively. 

The hexagon model and the packing entropy are defined in Section 2, while the 
method of calculation is exposed in Section 3. Results for monodispersed packings of 
hexagons and for a binary mixture are presented, respectively, in Section 4 and 5. In 
Section 6 we present some conclusive remarks. 

2. The hexagon packing model 

The classical hard hexagon model was first introduced as a model of simple liquid. 
It consists in hexagons placed at the nodes of a triangular lattice (Fig. 1). The inter- 
actions are of hard-core type and prevent the hexagons from overlapping each other. 
Remarkably, the properties of this two-dimensional model may be analytically studied 
in the limit of infinite lattices [21]. In particular, the hard hexagon system has been 
shown to exhibit a liquid-solid transition [21-23] at high densities. 

In this paper, we introduce a version of the hexagon model suitable for studying the 
properties of particle packings. An essential difference between the liquid and the pack- 
ing problematics is that, in the latter case, there must exist a contact network between 
the particles in order to resist external stresses (e.g. gravity, confining pressure, etc.) 
and achieve the mechanical equilibrium. Our procedure is thus to introduce a stability 
condition in the hard hexagon model exposed above, and to discard the configurations 
which we shall judge as unstable configurations and to keep only the remaining stable 

ones. The exact stability condition would be to calculate all the forces between the par- 
ticles, and to check the mechanical stability of each particle. However, the calculation 
of the forces network in particles packing is still an open problem [24-27] far beyond 
the scope of this paper. Moreover, our purpose is to develop a model simple enough to 
allow theoretical calculations. We therefore choose to apply a local geometrical stability 

(a) (b) 

Fig. 1. The stability condition adopted in our packing hexagon model: (a) hexagon A is stable; (b) hexagon 
A is unstable along the arrow direction. 
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rule instead of  the real stability criterion. The rule adopted in our model is presented 
in Fig. 1: a hexagon is considered to be stable if blocked by other hexagons, that is 
if all six local moves along the network axis are forbidden. In Fig. l(a), hexagon A 
is considered as stable whereas in Fig. l(b) it is unstable since it can be moved along 
the arrow. A stable configuration is a packing for which all the hexagons are stable 
in the previous sense. The same kind of realistic but ad hoc stability conditions have 
already been adopted in other studies [28, 29]. 

As we stressed in the introduction, we shall mainly be interested in counting the 
number of packings as a function of their densities. In the following, we call density 
of  a packing p the number of hexagons it contains normalized with respect to the total 
number N of lattice sites. A more natural quantity is the packing fraction q which char- 
acterizes the fraction of the total area of the lattice occupied by the hexagons of the 
packing. The packing fraction is simply related to the density through q -- 3p. Note that 
the proportionality factor three entering the previous expression depends only on the 
geometry of the particles (and has to be modified in the case of polydispersed packings 
- see below). We then define C(p,N) ,  the number of packings with density equal to 
p that satisfy both hard-core repulsion and stability conditions . As usual in statistical 
mechanics, C(p ,N)  is a combinatorial quantity that is expected to scale exponentially 
with the number of sites N of the lattice. We therefore define the entropy S at a den- 
sity p as the (normalized) logarithm of the number of possible packings having this 

density 

1 
S(p) = lim In C(p ,N)  (1) 

N---~ oo N 

Note that this definition is less straightforward that it might appear at first sight. The 
existence of a well-defined thermodynamic limit when N ~ oo is not assured at all. 
We shall come back to this important point in Section 4. 

Fig. 2. Example of a stable packing in the bidispersed model for m = 10. 
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Up to now, our packings include identical hexagons only. A natural extension of 
the model is to consider polydispersed packings, introducing a new type of particle 
shown in Fig. 2 (for simplicity, the large side of the latter will always be parallel to 
the horizontal axis of the lattice). In the following, we shall call big particles (or big 
hexagons) the new particles, while small particles (or small hexagons) will refer to 
the hexagons considered so far. The stability criterion for the big hexagons remains 
unchanged, namely all local moves are forbidden. The packing is now characterized 
by the two densities Ps and Pb, respectively, defined as the numbers of small and big 
particles per site. The corresponding packing fraction of big particles is obviously given 
by ~/h = 5pb. As previously, we may define the entropy S(ps, Pb) as the (normalized) 
logarithm of stable packings at fixed densities of small and big particles. 

3. Analytical method 

The entropy (1) being a microcanonical quantity, its calculation is a difficult task. 
A possible way to circumvent this difficulty is to introduce the generating function 

N 
n N , ) 

n = l  

where the new variable z is called fugacity. For small fugacities z ~ l ,  the sum (2) 
is dominated by low n, i.e. sparse packings while large z favours high-density stable 
configurations. Therefore, in the thermodynamic limit, the knowledge of the function 

p ( z ) =  lim --1 lnE(z,N) (3) 
N ~  N 

for all fugaeities z > 0 allows to obtain a parametric representation {p(z),S(z)} of the 
entropy curve S(p) through the Legendre identities 

p(z) = z ~ ( z ) ,  
a ;  z 

S(z) = p(z) - z ~zz(Z) In z .  (4) 

One may notice that the slope of the curve at fugacity z 

dS p(z) d--p : - In z (5) 

is related to the compactivity X introduced by Edwards and his collaborators [17-20] 
through the relation X = 1/In z. Contrary to the previous authors, we, however, stress 
that the entire curve S(p) is spanned when z runs from zero to infinity and that no a 
priori restriction on the sign of the slope (5) has to be imposed. 

In order to calculate the generating function (2), we take advantage of the locality of 
the interactions between the particles and use a transfer matrix method. To do so, we 
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impose periodic boundary conditions to the lattice. It thus lies on a parallelogram 
comprised of L ranks and m tilted columns (with N -- m × L), see Fig. 4. The 
transfer matrix method has been used in the hard hexagon liquid case and is exposed 
in [22]. Briefly speaking, it consists in propagating the hard-core repulsion from one 
horizontal level to the next one, which can be written in a matricial way. We have 
modified this approach to take into account the stability criterion in addition to the 
non-overlapping condition. The structure of the matrix is more complicated due to the 
next nearest neighbor interactions. In this framework, the generating function reads 
E(z,m,L) = Trace [Qm(z)L], where the transfer matrix Qm depends on the fugacity z. 
Therefore, once we have computed Qm(z), the limit L ~ c~ is straightforward since 
the problem reduces to finding the largest eigenvalue A(z, m) of Qm(Z). If the latter is 
non-degenerate, it must be real and we obtain 

E(z,m,L)L~>l A(z,m) L (non-degenerate real case). (6) 

However, since Qm contains zero elements, the largest eigenvalues (in modulus) may 
be complex. In this case, there are q eigenvalues having the same (maximal) modulus 
A(z, m) but different arguments Ol(z, m), . . . ,  Oq(Z, m). The generating function then reads 

q 

"Z(z,m,L) L~l A(z,m) c Z ¢ iOj(z'm) ( q-fold complex case). (7) 
j--I 

In both cases, we deduce the entropy curve of the stable packings for a lattice of 
width m and infinite length from relations (4), (6) and (7). All the results which will 
be presented in this paper thus correspond to packings lying on an infinite (tilted) 
vertical cylinder (L --+ cx~) including m sites on its perimeter. In practice, A(z,m) is 
obtained by diagonalizing the transfer matrix numerically, or analytically for small m. 
The size of Qm growing exponentially with m, the largest widths we could reach extend 
to m -~ 10 typically. Fortunately, this is already sufficient to draw some conclusions as 

shown in next section. 
In the case of polydispersed packings, the calculation of the entropy S(ps, Pb) requires 

the introduction of a generating function E(Zs,Zb,N) similar to (2) with an additional 
fugacity Zb accounting for big particles. The use of two fugacities is necessary to 
compute the two densities and thus obtain the complete description of the bidispersed 
packings. As a consequence, the studies using a single compactivity [17-20] are able 
to determine the total density only, the relative concentrations of the species being 

uncontrolled. 

4. Results for monodispersed packings 

The calculation of the entropy can be analytically carried out for narrow systems, 
namely when the width of the lattice m is small. First, we present the results ob- 
tained for m = 3. The system is in this case too small to be representative of the 
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thermodynamic limit we are interested in. However,  the analytical calculation of  the 

entropy for m = 3 leads to non-trivial results on the statistics o f  packing, and moreover 

brings to light some problems concerning the thermodynamic limit, problems that are 
related to the periodicity of  the stable packings made of  monodispersed particles. 

The non-zero eigenvalues )~ of  Q3(z) are the roots of  the polynomial 

P()~ , z )  = 29 - (3z 2 + Z3)26 + 3Z4)t 3 --Z 6 . (8) 

As a consequence, if  2 is an eigenvalue, so are 2e 2i~/3 and 2e -2i~/3. This degeneracy 

of  the modulus of  the eigenvalues implies that the number L of  sites o f  the lattice in 
the vertical direction has to be a multiple of  three in order to get a non-zero number 

of  stable configurations. This periodicity problem will be discussed later in the paper. 
The modulus of  the three largest eigenvalues is 

[( 27 ( 
l +  l + ~ z  z 1 +  

Z 

A ( z )  = 7 

/27/ j3] 
for any positive fugacity. 

The loosest packings are obtained in the small z limit. Expanding the modulus A 
around z = 0 and using identity (4), we find 

Z 
a ( Z ) z ~ O  z2/3 + ~ + " "  

1,1/3 ~(z)_~2+~ + - - ,  

~7 zl/3 (10) 
S ( z )  ~- - - -  l n z + . . .  ~_ - ½ ( t / -  2) l n O / -  2 ) + - . .  

The densest packings are found in the large z limit. The asymptotic expression of  the 
modulus reads 

A ( z )  ~- z + l + . . .  / 1 
t/(z) --~ 1 z + " "  

( l l )  
I i 

S ( z )  ~- ~ In z + . . ~ - ~ ( l  - q )  I n ( l  - y/) + . - .  

The entropy curve S as a function of  the packing fraction t/ is displayed Fig. 3. 
Stable packings exist only for packing fractions ranging from t / =  32- to F/ = 1 which 
represent, respectively, the loose and dense packings. The entropy S vanishes in these 
two limits and continuously varies in between, exhibiting a maximum S = 0.1274 at 
q = 0.8057 for z = 1. This packing fraction can be understood as the most probable 
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rl 
Fig. 3. Packing entropy S versus packing fraction ~/ for the monodispersed case m=3. 

one: any unbiased dynamics exploring all possible configurations will necessarily leads 
to this volume fraction. 

In this simple case of m = 3, the results can be easily interpreted in terms of 
the geometrical structure of the packings. The dense packings q = 1 correspond to 
the complete paving of the plane (Fig. 4(a)). The loose packing is also given by a 

2 perfectly periodic pattern represented in Fig. 4(b) with a volume fraction equal to 3' 
Between these two limits, packings can be built by filling the free sites of the loose 
packing, which leads to intermediate volume fractions. However, the reader can easily 
convince himself (herself) that all stable configurations are not obtained in this way: a 
simple combinatory calculation shows that the entropy would be in this case equal to 

S(q) = -~1 In 3 - l (q  _ 2) l n 0 / _  ] )  _ l(1 _ r/) ln(1 - q) , (12) 

which gives the correct asymptotic behaviors. However, the maximum of (12) is given 
by S -~ 0.077 for q = 0.833 and does not coincide with the transfer matrix result given 
above. The discrepancy means that there exist other stable packings which do not 
derive from the loose packing family. One is displayed in Fig. 4(c). This packing and 
the related ones obtained by filling more or less the free sites represent another family 
of stable packings. Both types of arrangements shown in Fig. 4(b) and (c) can indeed 
coexist in the same stable configuration. Notice that this geometrical interpretation 
indicates that the whole entropy curve is indeed physically meaningful, from the loose 
to the close packing densities. Therefore, the left part of the curve, which corresponds 
to a negative slope cannot be discarded. In other words, the compactivity X is not 
constrained to be positive. It is indeed well- known that the entropy of systems with 
a finite number of configurations (e.g. spins models) is not necessarily an increasing 
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(a) (b) 

(c) 

Fig. 4. Monodispersed packings for m=3: (a) close packing (q = 1); (b) loose packing (~ = ~ ); (c) packing 
with ~ = 3. The underlying periodic cells are drawn; their heights are multiple of three (see text). 

function o f  the energy. We believe that the fugacity z, and equivalently the compactivity 

X, have no particular physical relevance since they cannot be controlled in experiments, 
contrary to the density or the external stress for instance. In our approach, the fugacity 

is introduced for mathematical purpose only. 

This simple example of  m = 3 shows that, even in the case of  narrow systems, 
the statistics o f  packing is non-trivial, exhibiting a whole range of  available packing 

fractions and a maximum of  the entropy. However, all the stable arrangements we found 
exhibit an underlying periodicity that is essentially due to the monodispersed character 
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Table 1 
Degeneracy, packing fraction and maximum entropy 
for different widths of the lattice in the monodispersed 
case (z = l) (note that the entropy does not seem to 
converge toward a unique limit as m grows, compared 
to Table 2) 

Width Degeneracy Packing fraction Entropy 
m q q S 

3 3 0.8057 0.1274 
4 2 0.7500 0.0866 
5 5 0.8006 0.0856 
6 3 0.8323 0.1123 
7 7 0.7907 0.0637 
8 8 0.8219 0.0802 
9 3 0.8368 0.1112 
10 5 0.8052 0.0671 

of  the mixture. The periodic boundary conditions imposed in our model  thus play an 

important role, and give rise to problems in the definition of  the thermodynamics limit. 

We have already mentioned that in the case o f  m = 3 the characteristic polynomial  

(8)  o f  the transfer matrix is a function o f  ,~3 only where 2 is an eigenvalue. Con- 

sequently, the generating function (2), according to formula (7), is equal to zero if  

L = 3 p  + 1 or L ---- 3 p  + 2 where p is an integer, and is non-zero only for L -- 3p.  

From a physical  point o f  view, the degeneracy can be seen as a problem of  compati- 

bil i ty between the periodici ty imposed by the stability rule (Fig. 4), and the periodic 

conditions imposed to the lattice. 

This effect persists when increasing the lattice width m, as shown in Table 1. This 

table presents the degree o f  degeneracy q o f  the maximal  eigenvalue o f  the transfer 

matrix, the maximum entropy and its corresponding packing fraction for increasing 

values o f  m, in the limit of  infinite number L o f  ranks. The degree o f  degeneracy q 

varies in a non-trivial way with m. We have found numerically that the arguments o f  

the maximal  eigenvalues, see (6)  and (7), are equally distributed, Oj = 27rj/q, meaning 

that the number o f  packings vanishes when L is not a multiple o f  q. Notice that 

this degeneracy is not usually encountered in classical transfer matrix problems as the 

elements o f  the matrix cannot vanish 3 (except for zero temperature). 

Since, at fixed m, the limit L -~ cxD is ill defined, the thermodynamic limit does 

not exist from a rigorous mathematical standpoint. However,  the physical  quantities 

converge towards well-defined limits (depending on m) when L is sent to infinity as 

3An alternative way to understand the degeneracy is to consider the correlation length of the system which 
is usually given by the ratio of the second largest eigenvalue (in terms of modulus) of the transfer matrix 
over the first one. However, in our degenerate problem there is no second and first eigenvalues as they both 
have the same modulus and thus the correlation length diverges: there exists a long-range order in the stable 
packings. 
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a multiple of the degree of degeneracy q(m) .  One may then wonder whether all these 

(m-dependent) limits converge towards a unique value when m ~ oc. Table 1 suggests 

that it might not be so but no definitive conclusion can be drawn from such rather small 
systems. It is indeed experimentally well known that the properties of  bidimensional 
monodispersed packings are dramatically influenced by the boundaries [30]. One way 

to prevent such peculiar situation consists in mixing two different sizes of particles. 

5. Results for polydispersed packings 

Hereafter, we consider the binary mixture model consisting in small particles that 

are hexagons, and big particles that are elongated hexagons. In order to compare with 

the monodispersed case, we first study the simple case of lattice width m = 3. The 
maximal eigenvalue 2 of  Q3(zs,zb) is the largest root of the polynomial 

P( 2,zs,zb ) 25 - z~24 - 3zb23 + ( 3z, zb 2 2 = - z  s)2 -6zZzb .  (13)  

It is straightforward to check that the expression (9) of the monodispersed case is 
recovered when the big particle fugacity zb vanishes. On the other hand, when con- 

sidering big hexagons only (zs = 0), one finds 2 = ± ~ .  The whole entropy curve 
I In 3. This result may be easily understood " shrinks to a single point qb = ~ and S = g 

when m = 3, half of the horizontal lines of  the lattice have to be unoccupied and there 
are three different ways of placing the big particles on every remaining rank. 

When mixing big and small particles, the situation becomes more interesting. The 

polynomial (13) has a non-degenerate and real maximal root as soon as z0 is non-zero, 
that is as soon as there is a finite packing fraction of big particles. The introduction of 

big particle is therefore sufficient to break the periodicity of  the stable configurations. 

This result holds for larger value of m (Fig. 2). The role of the boundary conditions 

being no longer crucial for the bulk properties of disordered packings, the thermo- 
dynamic limit is now well defined as suggested by the result of Table 2. Note that 

instead of considering the entropy per site S as a function of q,~ and q0 , we hereafter 
choose the more common description in terms of qtot = qs-'k qb and of the concentration 

of big particles C0 = r i b / r / t o t  which is usually introduced in binary mixture problems. 
Table 2 shows that the maximum entropy (found for zs = Zb = 1) and its correspond- 

ing total packing fraction and concentration of big particles seem to converge to the 

well-defined limits S ~_ 0.20, ~/tot - 0.82, C0 -~ 0.5 for increasing m. 
We then consider the binary mixture on a lattice that is ten sites wide. The size of the 

transfer matrix Q10 equals 8294 × 8294 and thus allows the numerical calculation of the 
maximum eigenvalue for any fugacities zs, z0 in a reasonable time [31]. This calculation 
is carried out for all positive zs and z0 to obtain the whole surface S(qtot, C0). Notice 
that the mapping between the (zs,zb) plane and the (t/tot, C0) plane is highly non-trivial. 
Consequently, it is difficult to scan in a homogeneous way the latter. 

Fig. 5 displays the two-dimensional contour plot of the entropy S in the 
01tot, Ch) plane. We first see that the entropy is non-zero, i.e. that stable packings are 
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Table 2 
Total packing fraction, concentration of big particles 
and maximum entropy for different widths of the lat- 
tice in the polydispersed case (zs = Zb = 1) (note 
that packing fractions, relative concentrations of big 
particles and entropies seem to converge toward well- 
defined limits as m grows, compared to Table 1 ) 

Width Packing fraction Concentration Entropy 
m Utot Cb S 

3 0.7891 0.5608 0.2634 
4 0.8050 0.5542 0.2212 
5 0.8105 0.5523 0.1894 
6 0.8066 0.4742 0.1977 
7 0.8169 0.5116 0.2007 
8 0.8197 0.5522 0.1968 
9 0.8177 0.5151 0.1941 
10 0.8185 0.5041 0.1959 

0.9 

0.8 

0.7 

0.6 

Cb O.5 
0.4 

0.3 

0.2 

0.1 

0 
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

I"] tot 

Fig. 5. Contour plot of the entropy S for the bidispersed model. Stable packings only exist in the shaded 
region of the plane (rlto~,Cb). 

exponent ia l ly  numerous ,  only  in a certain range o f  the total packing fraction and of  

the concentra t ion o f  b ig  particles (shaded region on Fig. 5). There exist two curves 

r/loose(Cb), inc luding  points  B,C,D and r/close(Cb), inc luding points A,F,E that del imit  

the domain  o f  existence o f  the stable ar rangements  in the plane (rltot, fb). The cal- 

culat ion of  the entropy thus leads to the predict ion o f  the avai lable range of  packing 

fractions for the stable packings.  
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Fig. 6. Three-dimensional plot of the entropy S versus packing fraction ~/tot and concentration of big panicles 
Cb. 

The close (respectively, loose) packing curve may be in turn divided into two differ- 
ent parts. On the FE (resp. CD) segment, the total packing fraction is constant ~]tot z 1 
(resp. /']tot ~--- 2 )  and the entropy vanishes. On the other hand, from points A to F 
(resp. B to C), i.e. for Cb <~ ¼, the entropy is non-zero as can be easily seen in Fig. 6 
which shows a three-dimensional view of the entropy surface as a function of the to- 
tal packing fraction and of the concentration of big particles. Therefore, keeping the 

i fraction of big particles constant Cb < ~ and varying the total volume fraction lead 
to a curve for the entropy, that is similar to the one obtained in the monosized model 
of Fig. 3, except that the two extreme points corresponding to the loose and dense 
packings present a non-zero entropy. These discontinuities in the entropy curve mean 
that the number of configurations corresponding to the loose and dense volume frac- 
tions grows exponentially with the size of the system. The jump in the entropy curve 
decreases to zero for fractions of big particle going to zero, that is when the mixture 
becomes pure, or to one-fourth as we shall explain below. Notice that the same kind of 
entropy discontinuity has been previously observed by Roux et al. in a different model 
of packing based on links percolation [28]. 

The above remarks on the general structure of the entropy surface can be better 
understood by means of a more thorough inspection of the microscopic nature of the 
packings corresponding to points A to G. The geometrical picture of the packing cor- 
responding to point F is drawn Fig. 7(a). A simple computation shows that the corre- 
sponding concentration Cb indeed equals one-fourth. Similarly, point C may be obtained 
by inserting a column of big particles into the loose packing patterns for small particles 
displayed in Fig. 4(b). The resulting packing is given in Fig. 7(b) with a volume frac- 
tion equal to ~tot = 2. Points E and D denote the closest and loosest packings made 
of big particles only, and their geometrical structure may be understood as simple 
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(a) (b) 

(c) 

Fig. 7. (a) Packing at point F; (b) packing at point C; (c) packing at point G. See Figs. 5 and 6 for the 
definition of the points. 

dilatations along the horizontal axis of  Fig. 4(a) and (b) respectively. On the bottom 

side of Fig. 5, for Cb = 0, one recovers the small particles arrangements extending 
between B (loosest packing) and A (closest packing). In between, the entropy curve 

as a function of the volume fraction exhibit the usual bell shape visible on the front of  
Fig. 6. To end with this description, we consider point G lying on the close packing 
segment EF, at a given concentration Cb ranging between one fourth and unity. The 
corresponding arrangement is shown in Fig. 7(c). It consists in mixing E and F pat- 
terns by first achieving the correct Cb. Clearly, to ensure that the resulting void fraction 
vanishes in the thermodynamic limit, i.e. ?]tot = l ,  the number of interfaces between E 
and F patterns has to remain finite, giving rise to a non-extensive entropy. Note that a 
similar argument, based on combining D and C packings can be made to explain the 
loose packing segment DC. 

Far from the borders, the entropy surface roughly looks like a bump whose maximal 
height, Smax --~ 0.20, is much higher than maximal entropies obtained for monodispersed 
packings. However, one must keep in mind that part of  Smax is due to mixing effects. 
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While monodispersed arrangements are made of indistinguishable particles, bidispersed 
mixtures deals with two physically different types of beads. We then must take into 
account a mixing entropy contribution, which one can evaluate as P to t [ - (1-  Cb) ln(l - 
Cb) - Cb In Cb] where Ptot equals the total number of particles per site. Maximum of 
this additional contribution is reached when Cb lies around one-half, precisely the result 
we have found in Table 2. Moreover, its numerical estimate is of the order of Sma×. 
It might therefore well happen that the entropy excess in bidispersed packings with 
respect to the monodispersed case mainly results from such mixing effects. 

Of higher relevance is the difference between the packing structures taking place on 
the frontier of the entropy surface (Fig. 5) and the central region. As mentioned above, 
in the former region, packings are expected to strongly reflect the lattice periodicity 
(Fig. 7), as in the monodisperse case. In the latter, stable arrangements will more likely 
to be disordered, see Fig. 2, and less influenced by the boundaries and the lattice pa- 
rameters, namely its width m. This provides explanation for the fast convergence of 
typical quantities related to the maximum of the entropy surface we have already noted 
from Table 2. 

6. Conclusion 

In this paper, we have introduced a toy model of particle packings, which has allowed 
us to study the relevance of the concept of packing entropy. First of all, we have 
shown that the parameters plane (density, relative concentration of big particles) can 
be divided into two different regions: a first region where stable packings exist and a 
second region where stable packings cannot be built. The frontier between both regions 
correspond to the loosest and closest packings. 

Secondly, when stable packings exist, we have shown that a huge number of arrange- 
ments can be built having the same density and relative concentration of big particles. 
More precisely, despite the strong constraints resulting from the stability conditions, 
the number of packings is found to grow exponentially with the area of the lattice and 
the entropy defined as the logarithm of this number is extensive. 

Of course, the hexagon packings model we have presented here is a crude approxi- 
mation of real packings. The first simplification lies in the ad hoc stability rule adopted 
to discriminate between the stable and unstable configurations, which does not take into 
account the forces network. A second criticism one could address is related to the lat- 
tice nature of the model. Understanding to what extent our results could be transposed 
to packings embedded in a continuous space would be of interest. 
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