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Transition paths in Potts-like energy landscapes: General properties
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We study transition paths in energy landscapes over multicategorical Potts configurations using the mean-field
approach introduced by Mauri et al. [Phys. Rev. Lett. 130, 158402 (2023)]. Paths interpolate between two fixed
configurations or are anchored at one extremity only. We characterize the properties of “good” transition paths
realizing a trade-off between exploring low-energy regions in the landscape and being not too long, such as their
entropy or the probability of escape from a region of the landscape. We unveil the existence of a phase transition
separating a regime in which paths are stretched in between their anchors from another regime where paths
can explore the energy landscape more globally to minimize the energy. This phase transition is first illustrated
and studied in detail on a mathematically tractable Hopfield-Potts toy model, then studied in energy landscapes
inferred from protein sequence data.
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I. INTRODUCTION

Characterizing transition paths in complex, rugged energy
landscapes is a relevant issue in statistical physics and in other
fields. In evolutionary biology, for instance, a fundamental
problem is to sample mutational paths that, starting from a
given protein (described as a given sequence of amino acids),
introduce single mutations at each step, in such a way that
all the intermediate sequences do not lose their biological
activity. Characterizing these paths would be crucial to better
understand the navigability of fitness landscapes [1,2]. From
a statistical mechanics point of view, substantial efforts have
been done to characterize how systems dynamically evolve in
complex, e.g., glassy, landscapes to escape from metastable
local minima and reach lower-energy equilibrium configura-
tions. In this context, recent works have focused on p-spin-like
energy functions with quenched interactions, generally giving
rise to very rugged landscapes [3,4].

Of particular interest is the case of energy functions E (v)
defined over Potts-like configurations v = (v1, v2, . . . , vN ),
where the variables vi can take one out of A categorical values
[5]. Consider a path starting from a configuration vstart, and
exploring T subsequent configurations. The last configuration
(extremity) of the path, vend, can be free or fixed, depending
on the problem of interest. Intermediate configurations along
the path can a priori take any of the AN possible values, which
we refer to as global configuration space below. However, the
initial and final configurations define for each variable i (at
most) two categorical values, defining a subspace with 2N

configurations, which we call direct space in the following.
The question we address in the present work may be infor-
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mally phrased as follows: Under which conditions are good
transition paths naturally living in or close to the direct space
rather than in the global one?

This question is of conceptual interest, but has also prac-
tical consequences. Consider again the case of mutational
paths joining two protein sequences (see Fig. 1). Due to the
huge number of possible paths in the global space (A = 20),
mutagenesis experiments generally restrict to direct paths [6].
However, constraining paths to be direct may preclude the
discovery of much better global paths, involving mutations
and their reversions and reaching more favorable regions in
the sequence space (Fig. 1). Mutational models have demon-
strated that exploring the fitness landscape beyond the direct
space can enhance adaptation [7]. Additionally, the existence
of such beneficial “global” mutations could provide valuable
insights into the properties of the fitness landscape, e.g., the
presence of high-fitness regions responsible for the deviation
of the paths from the direct subspace.

Whether paths remain direct or explore the global space
will depend on their length, on their “elastic” properties (de-
fined by the mutation process), as well as on the nature of
the energy (minus fitness) landscape. In particular, fitness
landscapes can be complex and with many good regions
(surrounding local maxima) that attract the path outside the
direct space. In this article, we introduce a minimal landscape
model, corresponding to a Hopfield-Potts model with P pat-
terns, defining a rank-P pairwise coupling matrix between
the v′

is. The energy of a path is then defined as the sum of
the Hopfield-Potts energies of the intermediate configurations,
and of elastic contributions measuring the dissimilarities be-
tween successive configurations (Fig. 1). When N is sent
to infinity while keeping P finite, transitions paths in this
landscape can be analytically studied using the mean-field
framework introduced in [8]. Two sets of time-dependent
order parameters, where the time t denotes the coordinate
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FIG. 1. Mutational paths between two subfamilies in the se-
quence landscape associated to a protein family. Darker blue levels
correspond to increasing values of the protein fitness. Paths are either
direct (green, central line: each site carries the amino acid present at
the same position in the initial or in the final sequence) or global (red,
top and bottom lines: no restriction on amino acids), making possible
the exploration of high-fitness regions.

along the path, are needed in the mean-field theory: (1) the
average projections mμ

t of configurations along the patterns
μ = 1, . . . , P, and (2) the overlaps qt between successive
configurations vt and vt+1 along the path. We explain how the
mean-field theory allows for a detailed study of the statistical
properties of transition paths, such as their entropy, the escape
probabilities from a local minima, and their direct vs global
nature. In particular, we show that, depending on the stiffness
coefficient of the elastic term acting on qt , two regimes can
be encountered. Paths under high tension are likely to remain
confined within the direct space. For low tension, paths are
likely to explore the global path to minimize their energy.
The nature of the phase transition, such as the critical tension
and the time behavior of the order parameters, is analytically
unveiled. We also compute the entropy of transition paths
interpolating between the anchoring (initial and final) config-
urations.

Importantly, the mean-field formalism can be extended to
restricted Boltzmann machines (RBMs) trained on natural
protein sequence data [9,10]. While protein sequence land-
scapes are a priori unknown, the vast usage of data-driven
models has allowed capturing the relation between protein
sequences and their functionalities over the past years. Un-
supervised machine-learning approaches, such as Boltzmann
machines or variational autoencoders, can be trained on ho-
mologous sequence data to score the sequences, thus defining
an empirical energy. These models have been shown to be
generative, meaning they can be used to design novel proteins
with functionalities comparable to natural proteins [11,12].
In this context, RBMs can be seen as a natural extension of
Hopfield-Potts models, with the weights connecting the visi-
ble (sequence) and hidden (representation) layers playing the
role of patterns, and the energy not necessarily being quadratic
in the projections mμ. Hereafter, we apply a RBM to sequence
data from both in silico and real proteins, demonstrating that
direct-to-global phase transitions are found in transition paths
built from these data-driven models.

This paper is organized as follows. Section II provides
the main definitions and an overview of the basic properties
of transition paths in Hopfield-Potts landscapes. In Sec. III,
we revisit the transition-path framework introduced in [8],

focusing on the expression of the mean-field free energy as
a function of the order parameters mμ

t and qt for a generic
Hopfield-Potts energy. We also conduct a detailed study of the
direct-to-global phase transition in the minimal case of P = 2
nonorthogonal patterns. In Sec. IV, we apply our mean-field
approach to energy landscapes inferred from in silico lattice-
protein models [13] to benchmark our approach, and to natural
protein sequence data associated with the WW domain, a
short protein domain involved in signaling [10]. Conclusive
remarks can be found in Sec. V.

II. DEFINITIONS AND OVERVIEW OF THE RESULTS

A. Mutational paths over configuration space

We consider an energy landscape Emodel(v) over N-
dimensional Potts configurations v (see Fig. 1). Emodel

can be either derived from first principles or inferred
from some available data using machine-learning meth-
ods. Following [8], we associate to each path V =
{vstart, v1, v2, . . . , vT −1, vend} an energy E (V ). This energy is
the sum of the energies of the intermediate configurations
along the path, and of elastic contributions decreasing with
the similarities between pairs of successive configurations.
We denote by � the elastic potential. The energy of a path
(divided by N) is then

E (V ) = 1

N

T −1∑
t=1

Emodel(vt ) + �(q(vstart, v1))

(1)

+
T −2∑
t=1

�(q(vt , vt+1)) + �(q(vT −1, vend)),

where the overlap q(vt , vt+1) = 1
N

∑
i δvi,t ,vi,t+1 measures the

similarity between adjacent sequences.
The probability of the path is then defined as the Boltzmann

distribution

P[V] = 1

Zpath
e−βNE (V ), (2)

where β is an inverse temperature and Zpath ensures normal-
ization. This distribution promotes paths where intermediate
configurations have low energies Emodel and are not far away
from each other in order to guarantee smoothness in the in-
terpolation. A key role is played by the potential �, which
controls the elastic properties of the path. In [8], we consid-
ered two choices for �, corresponding to distinct scenarios
for the mutational dynamics. The first one, denoted by Cont,
makes sure that any two contiguous configurations along the
path, vt and vt+1, differ by a bounded (and small compared to
N) number of sites. The second choice for � is inspired by
Kimura’s theory of neutral evolution (when the fitness land-
scape is not present) [14] and hereafter called Evo. It enforces
a constant mutation rate for each variable (see below).

In the Cont scenario, we aim to build paths that contin-
uously interpolate between the two target configurations as
T growths. Hence, we choose � in order to avoid small
overlaps q between adjacent sequences, which would signal
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large jumps along the path. In practice, we set

�Cont(q) = 1

T 2|q − qc| = 1

T 2
∣∣q − 1 + γ

T

∣∣ , (3)

where the 1/T 2 scaling in the potential guarantees the exis-
tence of continuous solution in the large-T limit as shown
in Sec. III B; other choices of potentials with hard-wall con-
straints give similar results. The parameter γ controls the
elasticity of the path. Its minimal value is D/N , where D is
the Hamming distance between the extremities vstart and vend.
Larger values of γ will authorize more flexible paths.

In the Evo scenario, the potential � is chosen to emulate
neutral evolution with a certain mutation rate μ, and is given
by

�Evo(q) = (1 − q) ln

(
1 + A

eμA/(A−1) − 1

)
. (4)

In this setting, paths can be seen as alternating steps of random
mutations (starting from vstart) and of selection, parametrized
by, respectively, the mutation rate μ and the effective “log-
arithmic fitness” −Emodel. The transition path is conditioned
to end in vend. In standard evolutionary dynamics, paths are
not constrained by their final configuration, but only by their
initial one. Such paths are anchored at one extremity only.
However, if the configuration (genome) of an organism is
observed after some evolutionary time, it is legitimate to ask
about the distribution of putative paths followed by the organ-
ism that interpolate between this “final” and the known initial
configurations. As a result of this conditioning, the transitions
paths are now anchored at both extremities.

The internal parameters of the Evo and Cont scenarios,
respectively, μ and γ , control the “elasticity” of the paths.
When paths are flexible enough, our model allows for back-
mutations, e.g., the same sites can undergo a mutation and
its reverse along the path, reaching back to the original state.
The presence of back-mutations may be observed in evolving
systems with high mutational variability, such as viruses or
directed evolution experiments. However, in other cases, such
as organisms with large genomes, mutations are rarer, and the
dynamical processes are better described by strong-selection–
weak-mutation (SSWM) evolutionary models [15,16]. In such
contexts, back-mutations become extremely unlikely, impos-
ing constraints on μ and γ for the plausibility of our model.

B. Minimal Hopfield-Potts model for transition paths

We now introduce a minimal setting, where the properties
of transition paths can be analytically characterized.

1. The Hopfield-Model landscape

We first define the energy landscape for Potts configu-
rations. We consider a Hopfield model for categorical data,
hereafter referred to as Hopfield-Potts. There are A � 3 states
per site (called a, b, c, and so on). The energy of our minimal
Hopfield-Potts (MHP) model reads

EMHP(v) = − J

2N

∑
i, j

(w1i(vi )w1 j (v j ) + w2i(vi )w2 j (v j )),

(5)

where the two patterns w are constructed as follows:

w1i(vi) = δvi,a + ω δvi,c,
(6)

w2i(vi ) = δvi,b + ω δvi,c,

and ω is a positive parameter that controls how much the two
patterns overlap. The coupling strength J is supposed to be
large, but its precise value does not affect the qualitative de-
scription below. The energy of a configuration v is a quadratic
function of its two projections along the patterns, denoted as
mμ(v) = 1

N

∑
i wiμ(vi ) (μ = 1, 2):

EMHP(v) = −J

2
N [(m1(v))2 + (m2(v))2]. (7)

The MHP model is therefore intrinsically of mean-field na-
ture, and can be easily solved in the large-N limit.

A sketch of the free energy of the MHP model in the
(m1, m2) plane is shown in Fig. 2. Depending on the value
of ω two cases must be distinguished:

(i) For ω < 1
2 , the only minima of the free energy

are (m1, m2) = (m∗, 0) and (0, m∗), with m∗ � 1. As a
consequence, the only configurations with non-negligible
probabilities are the two patterns themselves.

(ii) For ω > 1
2 , a new local minimum will appear at

(m1, m2) = (ω,ω), which we refer to as a symmetric mini-
mum later. This local minimum becomes global when ω >

1√
2
. Therefore, the energy landscape includes a region far

away from the pattern-associated configuration that is ener-
getically favorable.

2. Transition paths anchored at both extremities

In this landscape, we will consider paths of configura-
tions anchored at both extremities, i.e., such that vstart =
{a, a, a, . . . , a} and vend = {b, b, b, . . . , b}. For the sake of
simplicity, we will restrict ourselves to the Cont potential [see
Eq. (3)]. As the Hamming distance between the two edges of
the path is equal to D = N , the flexibility parameter γ must
be larger than 1.

The properties of the mutational paths associated to this
energy landscape can be analytically characterized. The
mean-field theory associated to paths is more sophisticated
than for single configurations. Explicit expressions can nev-
ertheless be derived for the average projections m1

t , m2
t of

intermediate configurations vt and for the average overlap qt

between successive sequences vt , vt+1. Detailed calculations
and results are reported in Sec. III. Briefly speaking, we find
the following (see Fig. 2):

(i) For ω < 1
2 , the optimal path connecting the starting and

ending configurations is direct. Due to the absence of favor-
able regions in the landscape outside the neighborhoods of
the anchors, paths have no incentive to explore the landscape:
they directly interpolate between vstart and vend to minimize
their elastic energy.

(ii) For ω > 1
2 , the symmetric minimum attracts muta-

tional paths and makes them leave the direct space. If paths
are sufficiently long and flexible they are deviated by this
minimum, and explore the global configuration space.

While the precise locus of the paths is specific to the MHP
model, the coincidence of the onset of the transition with the
existence of favorable regions in the configuration space is a
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FIG. 2. Sketch of the direct-to-global phase transition in the MHP model. Green (light gray) paths correspond to paths constrained in the
direct space, while red (gray) are global (free to explore any configuration). Stars represent the initial and final configurations (see corners of the
free-energy landscape). Each plot represents the Hopfield-Potts energy landscape for a fixed value of ω, showing the crossover between direct
and global transition paths as the symmetric minimum of the free energy becomes more and more attractive, i.e., as the overlap between the
patterns ω increases and as the length of the path increases. Black dashed lines correspond to paths computed without fixing the end, showing
a transition between paths staying close to the initial minimum (i.e., the white star) and paths that jump into the intermediate minimum when
this becomes stable for higher values of ω. Here, the parameters β and γ appearing in Eqs. (2) and (3) are equal to, respectively, 6 and 3. The
length of all paths defined in Eq. (1) is set to T = 10, but only points that are different from the end points (i.e., white and black stars) are
shown.

general phenomenon. The nature of optimal transition paths
is therefore intimately related to the structure of the energy
landscape.

3. Transition paths anchored at one extremity

We consider the case in which vend is not fixed. In this
scenario, this final configuration is very likely, for large N ,
to lie in one of the global minima of the free energy. If the
starting configuration is attached to another minimum, then
paths can explore the space in its diversity, see Fig. 2 (right)
for an illustration.

Our mean-field theory can be adapted to the case of paths
anchored at one extremity, and allows us to estimate the time,
i.e., the minimal length necessary for a path to escape some
region R of the configuration space. In practice, a region is
defined as the local minimum of the mean-field free energy
containing vstart. We define the probability of paths of length T
to stay in R through the ratio of the statistical weight, defined
in Eq. (2), of all the paths constrained to end in R and the
weight associated to unconstrained paths, i.e., free to wander
in the configuration space. This probability reads

Pstay(R|T ) =

∑
V :vend∈R

e−NE (V )

∑
V

e−NE (V )

∼
N�1

e−N f const.
path (vstart,R|T )

e−N f unconst.
path (vstart|T )

, (8)

where f const.
path and f unconst.

path are the free energies associated to,
respectively, constrained and unconstrained paths. The cal-
culation of these free energies is reported in Secs. III A and
III E. For the MHP model, we observe that, above a certain
crossover value of ω (depending on T ), the path is very likely

to escape from the local minimum at (m1, m2) = (m∗, 0) and
to end up in (ω,ω) (see Fig. 2).

C. Transition paths with restricted Boltzmann machines
inferred from protein sequence data

Our mean-field approach for transition paths can be ap-
plied to more complex Hopfield-Potts energies than Eq. (7),
i.e., with more than two patterns, and/or with nonquadratic
dependence on the projections mμ. This is the case for the so-
called restricted Boltzmann machines, a class of unsupervised
architectures that can be trained from data.

1. Restricted Boltzmann machines and landscape inference

Generally speaking, unsupervised machine learning aims
to infer an energy landscape through the inference of a prob-
abilistic model Pmodel(v) from data configurations, vb, b =
1, . . . , B. We consider RBM, a bipartite neural network, in
which data configurations v are carried by an N-dimensional
layer of visible neurons, and representations h of these data
are extracted by an M-dimensional layer of real-valued hidden
(latent) units. The two layers interact through the weights
w. The joint probability distribution of visible and hidden
configurations is given by, up to a normalization constant,

PRBM(v, h) ∝ exp

⎛
⎝∑

i

gi(vi ) +
∑

μ

hμIμ(v) −
∑

μ

Uμ(hμ)

⎞
⎠,

(9)

where Iμ(v) = ∑
i wi,μ(vi ) is the input to hidden unit μ. The

g′
is and U ′

μs are local potentials acting on, respectively, vis-
ible and hidden units. Note that the weight wiμ(vi ) between
visible unit i and hidden unit μ depends on the category vi of
the visible unit. The hidden potentials Uμ are chosen among
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the class of double rectified linear units (DReLUs):

Uμ(h) = 1
2γμ,+h2

+ + 1
2γμ,−h2

− + θμ,+h+ + θμ,−h−, (10)

where h+ = max(h, 0) and h− = min(h, 0) [10]. All the pa-
rameters of the model (weights and local potentials) are
learned by maximizing

∏B
b=1 PRBM(vb) using persistent con-

trastive divergence [17]; regularization over model parameters
can also be enforced. Here, PRBM(v) = ∫

dh PRBM(v, h) is the
marginal distribution for configurations. As a result, the RBM
energy is

ERBM(v) = − ln PRBM(v)

= −
N∑

i=1

gi(vi ) −
M∑

μ=1

�μ(Iμ(v)), (11)

where �μ(I ) = ln
∫

dh e−Uμ(h)+hI and irrelevant additive con-
stants have been omitted.

The expression of ERBM above shows that RBMs are a
generalized class of Hopfield-Potts models. In addition to
local potentials acting on the visible units (gi), the energy
depends on the configuration v through the inputs Iμ(v) only.
These inputs play the same role as the projections mμ(v) in the
Hopfield-Potts framework; both quantities are simply related
through mμ(v) = 1

N Iμ(v). We stress that the dependence of
the energy upon the inputs is generally nonquadratic. Standard
Hopfield-Potts models are recovered for U (h) ∝ h2, implying
�(I ) ∝ I2. The number of patterns is, in the context of RBM,
equal to the number M of hidden units. In practice, M is a
hyperparameter which is fixed during learning through cross-
validation procedures. The Hopfield-Potts nature of RBMs
allows us to straightforwardly extend our mean-field approach
to these data-driven models (see Sec. IV A).

2. Applications to proteins

We apply in Sec. IV our analytical mean-field Hopfield-
Potts framework to the RBM energy landscapes inferred from
sequence data of real and synthetic protein families. All nec-
essary information about training and sequence data can be
found in Secs. IV B and IV C and in [8].

We observe the same kind of direct-to-global transition
as the one discussed for the MHP model above. Moreover,
we compute, for the WW domain, the entropy of paths as
a function of their length for both Cont and Evo potentials,
with or without fixed end extremity, as well as the probability
of staying in the initial region of the energy landscape. An
outcome of this work, of practical relevance to mutagenesis
experiments, is the prediction of the sites i and amino acids
vi, where mutations outside the direct space are expected to be
highly beneficial. These predictions could be used to propose
and test new mutations along transition paths, and offer a con-
trolled way to explore the sequence space beyond the amino
acids present in the initial and final proteins. In our toy model
of lattice proteins such reversed mutations are essential to
stabilize the protein when paths join two functionally distinct
regions, and show switching from one specificity to another.

III. MEAN-FIELD THEORY AND DIRECT-TO-GLOBAL
TRANSITION FOR THE MINIMAL

HOPFIELD-POTTS MODEL

In this section, we describe the mean-field theory treatment
of paths in the MHP landscape following [8], solve the cor-
responding self-consistent equations for the order parameters
{m1

t , m2
t , qt } along the path, and then characterize the nature

of the transition. For the sake of generality, expressions are
written for a generic number M of patterns wiμ(v), and then
applied to the case of the M = 2 patterns in Eq. (6).

A. Mean-field theory of transition paths

The partition function Zpath defined in Eq. (2) with the
energy function in Eq. (5) can be expressed as an integral over
the projections m = {mμ

t } of intermediate configurations on
the patterns and over the overlaps q = {qt } between succes-
sive configurations:

Zpath(β ) =
∫

dm dq exp

⎡
⎣Nβ

2

∑
μ,t

(
mμ

t

)2

− Nβ
∑

t

�(qt ) + N S (m, q)

]
,

(12)

where we have defined the entropy as

S (m, q) = 1

N
ln

∑
V

∏
μ,t

δ

(
1

N

∑
i

wiμ(vi,t ) − mμ
t

)

×
∏

t

δ

(
1

N

N∑
i=1

δvi,t ,vi,t+1 − qt

)
.

(13)

Using integral representations of the Dirac δ′s, we may ex-
press the entropy as an integral over the auxiliary variables
m̂ = {m̂μ

t } and q̂ = {q̂t }:

S (m, q) = 1

N
ln

∫
dm̂dq̂

(2π/N )2
exp [−Nm · m̂ − Nq · q̂]

×
∑
V

∏
i

exp

⎡
⎣∑

μ,t

m̂μ
t wiμ(vi,t ) +

∑
t

q̂t δvi,t ,vi,t+1

⎤
⎦.

(14)

In the large-N limit we obtain

S (m, q) = min
m̂,q̂

[
−m · m̂ − q · q̂ + 1

N

∑
i

ln Z1D
i (m̂, q̂)

]
,

(15)

where

Z1D
i =

∑
{vt }

exp

⎡
⎣∑

μ,t

m̂μ
t wiμ(vt ) +

∑
t

q̂t δvt ,vt+1

⎤
⎦ (16)

is the partition function of a one-dimensional (1D) Potts
model with nearest-neighbor interactions. We note that in
the case of paths with both ends fixed the starting and final
elements of this sum are fixed, while for paths with free ends
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FIG. 3. Transition paths in the three-dimensional (3D) space of
projections m̃ for the MHP model presented in Sec. II B. Direct
solutions [in green (light gray)] linearly interpolate in the input space
the two minima of the energy landscape. The global solutions are
pushed away from the direct ones by the presence of a third minima
emerging from the overlap ω between the two patterns of the model
defined in Eq. (6).

we also sum over the last element vT . At the saddle point, the
auxiliary variables fulfill the following set of coupled implicit
equations:

mμ
t = 1

N

∑
i

∂ ln Z1D
i

∂m̂μ
t

(m̂, q̂),

qt = 1

N

∑
i

∂ ln Z1D
i

∂ q̂t
(m̂, q̂). (17)

We conclude, according to Eq. (12), that the path free energy
is given by

fpath(β ) = lim
N→∞

− 1

Nβ
ln Zpath(β )

= min
m,q

fpath(β, m, q), (18)

where we have defined the free-energy functional

fpath(β, m, q) = −1

2

∑
μ,t

(mμ
t )2 +

∑
t

�(qt ) − 1

β
S (m, q).

(19)
The minimum of fpath is reached for the roots of

m̂ = β m, q̂ = −β �′(q
)
, (20)

which, together with Eqs. (17), form a closed set of self-
consistent equations for the order parameters.

B. Free energy for paths

To make the theory easier to interpret in the case of the
MHP model, we introduce the three projections (denoted by
m̃μ

t , with μ = 1, 2, 3) along the vectors δvi,a, δvi,b, and ω δvi,c

(see Fig. 3). While introducing an additional order parameter
compared to the number of patterns makes the computation
slightly more lengthy, it offers the major advantage to allow
for immediate distinction between direct (m̃3 = 0) and global
(m̃3 > 0) paths. With this choice, we rewrite the free energy

of the path as

fpath(β, m̃, q) =
∑

t

(
1

2

(
m̃1

t

)2 + 1

2

(
m̃2

t

)2 + (
m̃3

t

)2

+ m̃3
t

(
m̃1

t + m̃2
t

))
+

∑
t

(�(qt ) (21)

− qt�
′(qt )) − 1

β
ln Z1D,

where

Z1D =
∑
{vt }

exp

[
β

( ∑
t

δvt ,a
(
m̃1

t + m̃3
t

) + δvt ,b
(
m̃2

t + m̃3
t

)

+ ωδvt ,c
(
m̃1

t + m̃2
t + 2m̃3

t

) − �′(qt )δvt ,vt+1

)]
. (22)

As we will see, this model undergoes a first-order phase
transition in the regime where βT is large controlled by the
overlap between patterns, ω, the length of the path, T , and
the stiffness of the Cont potential, γ . We will show the ex-
istence of a stretched regime when either T and ω are small
or γ is large. In this regime, the minimum of the free energy
corresponds to the direct solution from vstart to vend that one
obtains by restricting the sum in Z1D over the first two colors
only. We will refer to this solution as #dir. If either T and ω are
large or γ is small, a floppy regime arises and #dir is no longer
a minimum of the free energy, and the latter is minimized by
global paths introducing novel mutations at intermediate steps
with nonzero value of m̃3

t .

C. Minimization of the path free energy in the direct subspace

To understand this phase transition, we first have to find a
solution of the direct problem #dir, that is, the set of parameters
{m̃1,dir

t , m̃2,dir
t , qdir

t }. The direct solution is found by solving the
following coupled equations similar to Eq. (17):

m̃1,dir
t = 1

Zdir
1D

∑
{vt =a,b}

δvt ,a e−βE1D({vt }), (23)

m̃2,dir
t = 1

Zdir
1D

∑
{vt =a,b}

δvt ,b e−βE1D({vt }), (24)

qdir
t = 1

Zdir
1D

∑
{vt =a,b}

δvt ,vt+1 e−βE1D({vt }), (25)

where

E1D = −
∑

t

(
m̃1,dir

t δvt ,a + m̃2,dir
t δvt ,b − �′(qdir

t

)
δvt ,vt+1

)
.

(26)
The partition function Zdir

1D is the same as in Eq. (22) with the
sum running over the states a, b only, and m̃3 = 0.

We now derive the analytical expression for the mean-field
solution when T � 1 (remembering that N was sent to infinity
first). Due to exchange symmetry a ↔ b we have m̃2,dir

t = 1 −
m̃1,dir

t . We then look for a direct solution of the form

m̃1,dir
t = m̃

(
τ = t

T

)
, (27)

024141-6



TRANSITION PATHS IN POTTS-LIKE ENERGY … PHYSICAL REVIEW E 108, 024141 (2023)

where

m̃(τ ) =
⎧⎨
⎩

1 for τ < x̂
1 − τ−x̂

1−2x̂ + η(τ ) for τ ∈ (x̂, 1 − x̂)
0 for τ > 1 − x̂,

(28)

where x̂ depends on T and the function η(τ ) vanishes at large
T . We will show below that η is of the order of 1/

√
T .

As the number of mutations at each step t is equivalent
to the difference in the projection m̃1,dir between steps t and
t + 1, we write

qdir
t = 1 − no. mutations

N
= 1 + m̃1,dir

t+1 − m̃1,dir
t

= 1 + 1

T
∂τ m̃(τ ) (29)

to dominant order in T . Hence, the overlap order parameters
are fully determined once the projection is, with the explicit
expression qdir

t = q(τ = t/T ) and

q(τ ) =
⎧⎨
⎩

1 for τ < x̂
1 + 1

T

( −1
1−2x̂ + η′(τ )

)
for τ ∈ (x̂, 1 − x̂)

1 for τ > 1 − x̂.
(30)

Our goal is to inject the above Ansätze into Eq. (25) and
determine the function η and the value of x̂ that solve the equa-
tion at zero order in T . First, we expect the effective coupling
−�′(q(τ )) between neighboring vt , vt+1 in the energy E1D to
scale linearly with the size of the system T . The reason is that,
given a configuration {vt } appearing in the sum of Zdir

1D, every
couple of adjacent sites vt and vt+1 occupying different states,
i.e., for every mutation along the path, would produce an en-
ergetic penalty −�′(qt )δvt ,vt+1 of the order of T . The partition
function will thus be dominated by the configurations vt = a
for τ < x̂ and vt = b for τ > 1 − x̂, that is, by configurations
with a single mutation along the path.

Computing the derivative of the Cont potential, we ob-
tain −�′(q(τ )) = |γ − 1/(1 − 2x̂) + η′(τ )|−2. Therefore, we
expect

γ − 1

1 − 2x̂
+ η′(τ ) ≡ ξ (τ )√

T
. (31)

The partition function can then be rewritten as

Zdir
1D = T

∫ 1

0
dτ exp

[
βT

( ∫ τ

0
dy m̃(y)

+
∫ 1

τ

dy (1 − m̃(y)) − 1

ξ (τ )2

)]
,

(32)

where we explicitly integrate over the reduced “time” τ at
which the a → b mutation occurs. When βT � 1, the expo-
nential integral in the partition function should not depend on
τ as the mutation may take place with uniform probability
in the interval (x̂, 1 − x̂); hence, the mutations will happen at
different times depending on the site i. Differentiating the term
in the factor of βT with respect to τ , we obtain the following
differential equation for τ ∈ (x̂, 1 − x̂):

m̃(τ ) − (1 − m̃(τ )) − d

dτ

(
1

ξ (τ )2

)
= 0, (33)

or, equivalently in the large-T limit,

1 − 2
τ − x̂

1 − 2x̂
+ 2

ξ ′(τ )

ξ (τ )3
= 0. (34)

Solving this differential equation leads to

ξ (τ ) =
[

1

ξ (x̂)2
− τ 2 − x̂2 − (τ − x̂)

(1 − 2x̂)

]− 1
2

. (35)

In order to ensure the continuity of �′(q(τ )) in τ = x̂, we
choose ξ (x̂) = γ

√
T . Integrating Eq. (31) over τ , we obtain

η(τ ) − η(x̂) = 1

T 1/2

∫ τ

x̂
ξ (y)dy +

(
1

1 − 2x̂
− γ

)
(τ − x̂).

(36)
Last of all, upon imposing the boundary condition η(x̂) =
η(1 − x̂) = 0, we also determine x̂ as a function of γ and of
T . In particular, we can expand x̂ for large T as

x̂ = 1

2
− 1

2γ
− π

2
√

γ 3T
+ o

(
T − 1

2
)
. (37)

Consequently, m̃(τ ) = m̃∞(τ ) + O(T − 1
2 ) with m̃∞(τ ) = 1 if

τ < x̂∞ = 1
2 (1 − 1

γ
), m̃∞(τ ) = 0 if τ > 1 − x̂∞, and

m̃∞(τ ) = 1 − γ (τ − x̂∞) (38)

if x̂∞ � τ � 1 − x̂∞. It is easy to check that Eqs. (23) and
(25) are fulfilled at zero order by this solution.

The solution above holds as long as x̂ does not hit the
boundary, i.e., provided x̂ > 0. When x̂ = 0, using Eq. (36)
and integrating the function ξ , we find that γ has to satisfy the
equation

γ = 1 + 2√
T

arctan

(
γ
√

T

2

)
. (39)

The root of this equation, which we denote by γ ∗(T ), is
plotted in Fig. 4. We may now conclude the following:

(i) If γ < γ ∗(T ) we have x̂ = 0: the projection m̃(τ ) is
smaller than 1 as soon as τ > 0 (see inset in Fig. 4). For such
small γ the paths are not flexible enough and the full “time” T
at their disposal is needed to join the anchoring edges. We call
this regime overstretched. Notice that the boundary conditions
η(x̂ = 0) = 0 in Eq. (36) can be satisfied by fixing the initial
value of the function ξ , i.e., ξ (0). In particular, we find

ξ (x̂ = 0) = 2 tan

(√
T (γ − 1)

2

)
. (40)

(ii) If γ > γ ∗(T ), we have x̂ > 0. The available number of
intermediate sequences along the path, T , is larger than what
is actually needed to join the two edges. A fraction (= 2x̂)
of these intermediate sequences are mere copies of the initial
and final configurations (see inset of Fig. 4). We hereafter call
this regime understretched. All the analytical results reported
in Eqs. (37) and (38) are in excellent agreement with the
numerical resolution of the self-consistent equations for the
order parameters (see Fig. 5).
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FIG. 4. The “understretched” and “overstretched” subregimes
for direct paths. The solid black line represents the root γ ∗(T ) of
Eq. (39). The three colored dots on the black dashed line γ = 1.387
correspond to T = 25 (blue), 50 (orange), and 150 (green). The blue
and green dots respectively correspond to the overstretched [x̂ = 0,
γ < γ ∗(T )] and understretched [x̂ > 0, γ > γ ∗(T )] direct regimes.
The orange dot locates the crossover point [γ = γ ∗(T )]. Inset: Nu-
merical solutions for m̃1,dir

t with those combinations of parameters are
shown in the inset plot for t/T � 0.24. In the simulations, β = 6.

D. The direct-to-global phase transition

The solution #dir we have derived above assumes that m̃3

vanishes at all time. This assumption is correct as long as the
minimum of the free energy fpath is located in m̃3 = 0. We
compute below the first derivative of the free energy along the
third projection m̃3

t :

∂ fpath

∂m̃3
t

∣∣∣∣
#dir

= 1 − 〈
δvt ,a + δvt ,b + 2ωδvt ,c

〉
1D

∣∣
#dir

. (41)

By studying the sign of this derivative, we will show the
existence of a critical value of ω appearing in the patterns of
the MHP model [see Eq. (6)]. This critical value, hereafter

denoted by ωc, separates a regime where the direct solution
is stable (ω < ωc) and a regime where it is not and the true
mean-field solution is global (ω > ωc).

Two classes of competing configurations must be consid-
ered: the direct (dir) ones, which start in vstart = a and turn
into vend = b at some time τ ∈ (x̂, 1 − x̂).; the global (glob)
ones, which start in a then change to c at some time τ ≡ x ∈
(0, 1/2), then turn into b when τ = 1 − x. We estimate below
the energies Edir and Eglob corresponding to the two scenar-
ios. In particular, when Edir < Eglob, the direct configurations
dominate the average on the right-hand side of Eq. (41), lead-
ing to

∂ fpath

∂m̃3
t

∣∣∣∣
#dir

= 0 ∀ t . (42)

Conversely, when Edir > Eglob, we will have

∂ fpath

∂m̃3
t

∣∣∣∣
#dir

= 1 − 2ω for t ∈ (x, 1 − x), 0 otherwise. (43)

Hence, the direct solution will be unstable if, in addition, ω >
1
2 . As we will check explicitly below, this condition is always
met when Edir > Eglob.

1. Understretched regime

The energy of the direct configurations (for T � 1) is
given by

Edir = −T

(
x̂ + 1

2

)
+ 1

γ 2
, (44)

while the global ones have energy

Eglob(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− T (2x + ω(1 − 2x)) + 2

γ 2
for x � x̂

− T

(
2x̂ + 2

∫ x

x̂
dy

(
1 − y − x̂

1 − 2x̂

)

+ ω(1 − 2x) − 2

|ξ (x)|2
)

for x ∈ (x̂, 1/2),

(45)

FIG. 5. Mean-field solution of the MHP model in the understretched regime for direct paths. (a) Numerical solutions for m̃1,dir
t for different

values of T (values shown in legend) compared with the limit solution m̃∞ in Eq. (38) for T → ∞ (black dashed line). (b) Scaling of
the difference between m̃1,dir

t computed numerically and m̃∞
t for large T . (c) Numerical solutions for qdir

t (solid lines) compared with the
respective theoretical estimation (dashed lines) evaluated using x̂ according to Eq. (37). (d) Numerical estimation of x̂ (black crosses: the value
corresponds to the moment m̃1,dir

t becomes <1) vs theoretical scaling from Eq. (37) (blue solid line). The parameters of the simulations are
β = 6, γ = 3.
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FIG. 6. Crossover between direct and global transition paths in
the MHP model. (a) Critical line ωc(γ , T ) vs T for two values of
γ [see Eq. (50)]. The black dots show the crossovers for ω = 3

4 .
(b) Distance dDS to the direct space (top) and (ln PMHP)/N averaged
over intermediate sequences (bottom; solid line, global; dashed line,
direct) vs path length T ; same parameters as in (a).

which is minimal for x = x̂ when ω ∈ (1/4, 1) and for x =
0 when ω > 1. Here the condition Eglob < Edir provides the
critical value of ω for the phase transition,

ωunder
c (γ , T ) = 1

2
+ 1

T γ 2(1 − 2x̂)
� 1

2
+ 1

T γ
, (46)

for large T .

2. Overstretched regime

In the overstretched case, the energy of the direct configu-
rations is given by

Edir = −T

2
+ T

ξ (0)2
, (47)

while the global configurations correspond to energy

Eglob = −T ω + 2T

ξ (0)2
. (48)

Here, ξ (0) is given by Eq. (40). The condition Eglob < Edir

leads to a new critical value for ω:

ωover
c (γ , T ) = 1

2
+ 1

4 tan2(
√

T (γ − 1)/2)
. (49)

3. Comparison with numerics

Putting together the two regimes studied above, we find
that the transition takes place at

ωc(γ , T ) =
{

ωover
c (γ , T ) for γ < γ ∗(T )

ωunder
c (γ , T ) for γ > γ ∗(T ).

(50)

The phase diagram in the (ω, T ) plane is shown in Fig. 6 for
different values of the flexibility parameter γ .

FIG. 7. Average log-likelihood along the paths for the MHP
model as a function of βT . Inset plot shows the average distance
to direct space. Symbols stand for different T (circles for T = 20,
diamonds for T = 30, and pluses for T = 40). Green (light gray)
symbols represent direct solutions (which are of course independent
of ω), red (gray or lower) symbols represent global solutions with
ω = 0.4, and maroon (dark gray or upper) symbols represent global
solutions for ω = 0.7. Here γ = 2 (Cont potential). For high values
of βT , we see that the global paths for ω < 0.5 converge towards
the direct ones, while, for ω > 0.5, the two classes of paths remain
separated, in agreement with the phase transition shown in Fig. 6.

While the transition formally takes place in the limit βT →
∞, a crossover is observed for finite T and β. We show
in Fig. 7 the coincidence of the average log-likelihoods of
intermediate sequences along direct and global paths at large
T for small ω, and the higher quality of global paths for
large ω. Notice that these results are valid when T is sent
to large values while keeping β fixed. If β is small, e.g., of
the order of 1

T , the domination of global paths on direct paths
is due to the larger entropy of the former. Figure 7 shows
that, for small βT , global paths are indeed of lesser quality
(probability) than their direct counterparts, even at high ω.

To better distinguish global from direct paths, we introduce
the distance

dDS(v) = 1

N

∑
i

(
1 − δ(vstart )i,vi

)(
1 − δ(vend )i,vi

)
. (51)

By definition, dDS vanishes if the configuration is within the
direct subspace, and is strictly positive otherwise. Its maximal
value is 1. We show in Fig. 7 (inset) the behavior of dDS for
two values of the flexibility parameter controlling the Cont
potential, below and above the transition point.

E. Escaping from local minimum: Paths anchored at origin

We have so far considered paths anchored at both extrem-
ities. Our mean-field formalism can be extended to the case
of paths in which the final configuration is not fixed. In this
context the goal is to characterize the most likely behavior of
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FIG. 8. Probability of stay in the initial local minimum close
to the configuration mstart = (1, 0) after T = 20 (left) and T = 40
(right) steps. The probabilities are plotted against different values of
the overlap ω. Cont (top) and Evo (bottom) scenarios are respec-
tively plotted in red and blue. The dark dashed line corresponds to
ω = 1/

√
2, when the minimum at m = (ω,ω) becomes global. Here,

β = 6.

a path in the energy landscape under a mutational dynamics
encoded in the interaction potential �.

A natural question in this scenario is to estimate when
and in which conditions a configuration escapes from a local
minimum to reach a more stable configuration. In the MHP
model, we consider paths starting in vstart = {a, a, a, . . . , a},
and unconstrained at the other extremity. The properties of
these paths can be computed through Eq. (18), upon relaxing
the condition at the extremity when computing Z1D

i using the
transfer matrix in Eq. (16).

To estimate the escape probability, we define the region R
associated to the minimum of the free-energy landscape close
to the initial configuration mstart = (1, 0). Then, we evaluate
the probability Pstay of remaining in that region after a certain
number of steps, T , using Eq. (8). The escape probability
is computed as Pescape = 1 − Pstay. In Fig. 8, we show the
estimated ln Pstay in the Cont and Evo scenarios for different
values of ω and T . When ω > 1/

√
2, the local minimum in

(ω,ω) depicted in Fig. 2 becomes global, and the path is
attracted towards this minimum. For finite T , higher values

of ω are required to overcome the elastic constraint due to �

to remain close to vstart.

IV. PATHS IN DATA-DRIVEN PROTEIN MODELS

In this section, we aim to expand our mean-field analysis
to model the landscapes inferred by the restricted Boltzmann
machine from data. Data configurations v are sequences of
the same protein family given in a multisequence alignment
(MSA) of length N and an alphabet of size A = 21 (20 amino
acids plus the gap symbol). The sequences with high proba-
bilities according to the inferred model are predicted to have
high fitnesses.

A. Mean-field theory

Due to the bipartite structure of their interaction graph, the
mean-field theory of the Hopfield-Potts model presented in
Sec. III A can be easily extended to the case of RBMs. Two
differences are that (1) the effective energy is not a quadratic
function of the projections mμ

t when the hidden potentials
U (h) are not quadratic in h and (2) the 1D partition function
now depends on the potentials gi(vi ) acting on the visible
units. The expression for the path free energy is now

fpath(m, q) = − 1

N

∑
μ,t

�μ

(
Nmμ

t

) +
∑

t

�(qt ) − 1

β
S (m, q),

(52)
where �μ is defined after Eq. (11) and the entropy S is given
by Eq. (15) with

Z1D
i =

∑
{vt }

exp

(
β

∑
t

gi(vt ) +
∑
t,μ

m̂μ
t wiμ(vt )

+
∑

t

q̂t δvt ,vt+1

)
. (53)

Z1D
i can be efficiently estimated through products of (A × A)-

dimensional transfer matrices, where A is the number of Potts
states. For global paths, A = 21, while A = 2 for direct paths.
This mean-field theory is exact when N → ∞ [18] and the
numbers of hidden units, M, and of steps, T , remain finite,
but it is already an accurate approximation for some finite-N
cases, as will be shown below.

Once the mean-field solution has been determined through
minimization of fpath we can compute any observable, such as
the average frequencies of amino acids on site i at intermediate
step t on the path:

〈δvi,t ,a〉 = ∂ fpath

∂ (βgi,t (a))
=

∑
{vt ′ }

δvi,t ,a

Zi
exp

(
β

∑
t ′

gi,t ′ (vt ′ )

+
∑
t ′,μ

m̂μ

t ′ wiμ(vt ′ ) +
∑

t ′
q̂t ′ δvt ′ ,vt ′+1

⎞
⎠, (54)

where m̂μ
t = β�′

μ(Nmμ
t ) and q̂t = −β�′(qt ) [see Eq. (20)].
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B. Application to sequence data from lattice-protein models

We start by considering the toy model of lattice proteins
(LPs) [13,19]. The model considers sequences of N = 27
amino acids that may fold in one out of ∼105 possible
three-dimensional conformations, defined by all possible self-
avoiding walks going through the nodes of the 3 × 3 × 3
cubic lattice.

Given a structural conformation S, the probability of a
sequence v to fold into that structure is given by the interac-
tion energies between amino acids in contact in the structure
(occupying neighboring nodes on the lattice). In particular, the
total energy of sequence v with respect to structure S is given
by

ELP(v|S) =
∑
i< j

cSi jEMJ(vi, v j ), (55)

where cS is the contact map (cSi j = 1 if sites are in contact
and 0 otherwise), while the pairwise energy EMJ(vi, v j ) rep-
resents the amino-acid physicochemical interactions given by
the the Miyazawa-Jernigan knowledge-based potential [20].
The probability to fold into a specific structure is written as

pnat(S|v) = e−ELP(v|S)∑
S′ e−ELP(v|S′ ) , (56)

where the sum runs over the entire set of folds on the cubic
lattice. The function pnat represents a suitable landscape that
maps each sequence to a score measuring the quality of its
folding.

To test our mean-field (MF) theory, we first train a RBM
over sequences sampled from the probability distribution ∝
pβs

nat(·|S) for a specific structure S (with βs = 103) using
Monte Carlo simulation [13]. Then, we numerically compute
the MF solutions for paths connecting two faraway target
sequences with high pnat for both the global and direct cases:

(1) vstart = DRGIQCLAQMFEKEMRKKRRKCYLECD,
(2) vend = RECCAVCHQRFKDKIDEDYEDAWLKCN.

These two configurations are characterized by a flip of the
charge (from negative to positive) of the amino acids in the site
25 (from E to K) and of the neighboring sites [see Fig. 9(d)]
to keep an attractive interaction between such sites in order
to guarantee the stability of the fold. The trajectories of the
inputs mμ

t and of the overlaps qt reveal which and when latent
factors of RBM enter into play in the transition.

Figure 9(a) shows the trajectories of inputs associated to
the weights in Fig. 9(c) (corresponding to hidden variable
μ = 4 and 14). These two hidden variables are strongly ac-
tivated at sites that are in contact in the tertiary structure of
the protein [Fig. 9(d)] and are consequentially relevant for
its stability. While the logo of w4 shows that the interaction
between site 25 and its neighbors can be realized through
electrostatic forces between charged amino acids, w4 tells
that contacts between sites 5, 6, 11, and 22 can be realized
through disulfide bonds between cysteines (C). The dynamics
of the projection m14 [Fig. 9(a)] explains how global optimal
paths exploit cysteine-cysteine interactions (not present in the
initial and final sequences) in order to maintain the structural
stability through transient mutations to C-C in sites 5, 6, and

FIG. 9. Mean-field description of mutational paths in lattice pro-
teins with the Cont potential. (a) Values of two relevant inputs vs
number t of mutations along paths of length T = 40. Red (gray)
and green (light gray) lines correspond to, respectively, global and
direct paths. Parameters: β = 3, γ = 3.5. Inset: The entropy for the
global and direct solutions. See Sec. IV C 2 for details. (b) Overlap qt

(left scale) and average number of mutations DH = N (1 − qt ) (right
scale) between sequences at steps t and t + 1 vs t . The black dotted
line shows qc. (c) Logos of the attached weights wi,μ(v). Positively
charged amino acids are in blue (dark gray), negatively charged ones
in red (gray). (d) Reference structure for the lattice-protein model.

11 of the protein. These C-C bonds are then lost in the final
configuration, as clearly seen by the decrease of the projection
m14. Along global paths, most of the intermediate mutational
steps do not abruptly change the order parameters, with the
exception of the bump in the overlap q at step ∼10, possi-
bly related to the presence of preparatory mutations for the
cysteine-related transition in Fig. 9(a).

Using Eq. (54) we can compute the amino acid frequencies
at each site along the path and use this information to estimate
the average log-likelihood and pnat at each step. To estimate
the pnat we use these frequencies to build an independent
site model that approximates the true marginal distribution of
sequences, then we use this model to sample many sequences
at a given step t and compute the average pnat from these
samples. The results shown in Fig. 10 confirm very good
values for the probabilities of intermediate sequences along
the path, both for pnat [Fig. 10(a)] and for the model PRBM

[Fig. 10(b)]. We also observe that sequences along the global
paths have substantially higher probabilities than along direct
paths for the values of T and γ considered.

C. Application to the WW domain

We apply the above approach to RBM models learned from
sequence data of the WW family extracted from a public
database (PFAM id: PF00397) [21,22]. WW is a small protein
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FIG. 10. Average value of pnat and log-likelihood along the paths
for lattice proteins estimated from the mean-field global (red) and
direct (green) solutions shown in Fig. 9.

module with ∼30–40 amino acids, able to specifically bind
to peptidic ligands. In particular, we will study paths interpo-
lating between two proteins known to have different binding
activity:

(1) vstart = LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP,
(2) vend = LPKPWIVKISRSRNRPYFFNTETHESLWEPP.

vstart was shown to have strong binding affinity to PPxY (x =
any amino acid) motifs [23] (called class I WW domains),
while vstart binds to pTP or pTS motifs (p = phosphorylated
site) [24] (called class IV WW domains).

1. Direct-to-global phase transition

Direct-to-global transitions are observed in mutational
paths joining natural WW sequences (see Fig. 11). This
figure shows in particular the presence of a crossover, when
the path length T is kept fixed, between direct and global
solution at a value of γ ∼ 0.92 and another jump at γ ∼ 1.3,
corresponding to the insertion of a novel mutation outside the
direct space.

To further study the difference between direct and global
solutions at different values of γ , we can compute what and
where the first relevant mutations that push the solutions out-
side the direct space should be considered. Differently stated,
given a direct path computed for certain value of length T
and potential stiffness γ , we would like to know what sites
will be the first to mutate outside the direct space immediately
after we release the constraint on the path to be direct (i.e., we
compute the mean-field solution only considering as accessi-
ble sites the ones present at the target sequences). To do so,
we use Eq. (54) to compute the frequencies of each amino
acid 〈δvit ,a〉 in the global space (where the transfer matrix

FIG. 11. Direct-to-global phase transition in the WW domain.
Mean-field estimates of dDS (left) and of (ln PRBM)/N (right; red
(top), global paths; green (bottom), direct) vs γ for mutational paths
of the WW domain of length T = 10. In all panels, β = 3.

FIG. 12. Probability of nondirect amino acids along direct paths
as a function of the step t (x axis) and of the sequence site i (y axis)
for the WW domain. Results are shown for four values of γ (see
panels). Parameter: β = 3.

that defines Z1D
i is of size 21 × 21) around the direct solu-

tion. Then, we compute the probability assigned to nondirect
amino acids at some point by the direct mean-field solution,
pout

DS(i, t ), as

pout
DS(i, t ) = 1 − 〈

δvit ,vstart,i

〉
#dir

− 〈
δvit ,vend,i

〉
#dir

. (57)

Results for different values of γ are shown in Fig. 12. As
expected for higher values of γ the interaction potential �Cont

becomes less stiff and allows the emergence of more muta-
tions escaping the direct space. In the case of γ = 1 the Cont
potential is stiff enough to allow only one mutation outside the
direct space. In particular, this mutation appears in the middle
of the path and stays until the very end (before returning to
the final state at step 10), showing that the path has to reach
a proper region of the sequence space before engaging nondi-
rect mutations. The difference between these global mutations
computed on the direct solution and the global solution is
shown in Fig. 13, where we used Eq. (54) to compute the
frequencies of each amino acid. This approach can be useful
to improve mutagenesis experiments by suggesting a minimal
number of mutations outside the direct space that can already
improve the quality of the intermediate sequences.

Differences between direct and global solutions in the case
of the WW domain can be observed in Fig. 14. Here, we
plot the values of two relevant inputs along both types of
paths. The two weights have been chosen between those that
maximize the difference between direct and global solutions.
In particular, we see that the projection along the weight
w32 for the direct solution remains almost constant compared
to the global case. On the other hand, projection along the
weight w41 shows a switch in both cases, with global solutions
showing a stronger activity.

2. Entropy of doubly anchored paths

Our mean-field theory allows us to compute other quanti-
ties of interest, such as the number of relevant transition paths.
Knowing the entropy of the distribution of paths would be
useful for example to estimate how rare the transition between
two regions of the sequence space is.

From a practical point of view, despite the care brought in
numerically solving Eqs. (17) a small disagreement between
the left- and right-hand sides may subsist. As the number
of order parameters scales proportionally to T and M, these
inaccuracies must be taken into account when estimating the
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FIG. 13. Logos of the amino-acid frequencies at three arbitrarily chosen sites along a path of length T = 10 joining two WW domains.
Top: Logos computed using the MF direct solution; the two amino acids allowed on each site in the direct subspace are the ones corresponding
to vstart and vend. The other amino acids are candidates for mutations outside the direct space. Bottom: Logos computed using the MF global
solution. Here, γ = 1.6 and β = 3.

entropy Spath. To compute the latter we therefore estimate fpath

at different inverse temperatures β and use the identity

Spath = − dfpath

d (1/β )
. (58)

This procedure gives a more precise estimate of the entropy
than directly plugging the values of the order parameters into
Eq. (15). In the case of the RBM we obtain

Spath = − β

N

∑
i,t

〈gi,t (a)〉 + 1

N

∑
i

ln Zi

− β

N

(
�′(Nm)

∂

∂m̂
− �′(q)

∂

∂q̂

) ∑
i

ln Zi. (59)

Estimates of Spath in the Cont and Evo scenarios are shown
in Fig. 15(a). The first important aspect to be noted regards
the scaling of Spath with the path length T : while in the Evo
scenario the entropy seems to grow linearly with T , we notice
a slower growth with T in the Cont scenario. This behavior

FIG. 14. Direct and global transition path in the WW domain.
(a) Values of two relevant inputs. Green (light gray) and red
(gray) paths correspond to direct and global solutions, respectively.
(b) Logo of the weights associated to the inputs. Simulation parame-
ters: γ = 1.6, T = 40, β = 3.

can be understood in the following toy model. We consider
a uniform (flat) landscape Pmodel, without constraint on the
final sequence. In the Evo scenario, it is easy to show that
each time step corresponds, on average, to a constant num-
ber of mutations whose value depends on μ and on A only.
Hence, the entropy is approximately added to the logarithm
of this number at each step, and the total entropy will scale
linearly with T . In the Cont scenario, the number of possible
configurations at each step is bounded from above by the

FIG. 15. Entropies and probabilities of transition for the Cont
(left) and Evo (right) potentials. (a) Entropy Spath of paths as a
function of T . Results are shown for paths joining the two WW
domain wild-type sequences (constrained) and paths anchored by
the starting sequence and free at the other extremity (unconstrained).
(b) Probability of a transition path as a function of T . Parameters for
Evo, μ = 10−4, β = 1; for Cont, γ = 3, β = 1.
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hard wall in �Cont, defined by the overlap qc = 1 − γ /T .
Considering that �Cont(q > qc) � 1, each sequence along a
path will have on average ρN mutations with respect to the
previous sequence, where ρ = γ /T is the mutation probabil-
ity per site. We then estimate the entropy of a binary variable
(mutation or no mutation on each site) with probability ρ as
−ρ ln ρ − (1 − ρ) ln(1 − ρ) � γ

T ln T for large T . Hence, the
total entropy (per site) of the paths of length T as expected to
scale as ∼ ln T .

3. Case of paths anchored at the origin

The partition function for paths in Eq. (18) is computed
on the ensemble of paths fixed at both ends to be equal to
sequence vstart and vend. One can easily redo the computation
when the last extremity is left free. We show in Fig. 15(a) the
entropies of these partially unconstrained paths for the Cont
and Evo potentials.

In the Evo scenario the unconstrained solution shows lower
entropy than the constrained one, while it has a higher entropy
in the Cont scenario as intuitively expected. This appar-
ently surprising finding can be explained as follows. For the
constrained, doubly anchored paths vend has relatively high
energy [see Fig. 10(b)], and many paths connect this last
sequence to vstart. Conversely, in the unconstrained case, paths
are attracted to a lower free-energy minimum, and there are
fewer paths connecting the initial configuration to this final
region. The presence of a hard wall in the Cont scenario
forbids both solutions to remain in the same configurations
for long times and to then jump directly to another distant
point in sequence space. Hence, Cont solutions will explore
many more different configurations, making their entropy
higher with respect to their Evo counterparts. Moreover, since
the constrained solution in the Cont case has to smoothly
interpolate between distant regions in such a way that the
energy along the path is optimized, this makes the number
of accessible paths lower than in the unconstrained solution.

Our mean-field formalism allows us to compute the prob-
ability to go from vstart to vend in T dynamical steps (see [8]).
This probability acquires an evolutionary interpretation in the
case of the Evo potential. It estimates the probability to join
the two sequences in T steps consisting of mutations at rate
μ (per step) combined with selection with probability Pmodel.
We show in Fig. 15(b) the transition probabilities for the Cont
and Evo scenarios. The Evo scenario shows an optimal length
T ∗ for which the probability is maximized, while, in the Cont
scenario, the transition probability decreases linearly with T .
This may be explained from the fact that the Evo potential
emulates a mutational dynamics in which T ∗ plays the role of
an evolutionary distance between the two edge sequences. On
the contrary the emergence of this optimal T ∗ is forbidden in
the Cont scenario by the stiffness of �Cont, which increases
with T .

Furthermore, the framework above allows us to com-
pute the probability of remaining in the minimum of the
free-energy landscape corresponding to the starting sequence
towards some region R of the sequence space in T steps.
We define Pstay(R|T ) as in Eq. (8). In Fig. 16, we plot the
probability of remaining in the region associated to vstart for
the WW domain energy landscape in the Evo scenario. For

FIG. 16. Probability of remaining in (main panel, logarithmic
scale along y axis) and of escaping from (inset) the neighborhood of
vstart for the WW domain, computed using Eq. (8) in the Evo scenario
(β = 1). Three different values of the mutation rate μ are considered.

different values of μ, we are able to estimate at which time
an evolving configuration is supposed to escape from the
minimum. We observe the existence of a trade-off between
the time and the probability of sojourn in the starting region
depending on the value of μ.

V. CONCLUSION

In the present work, we have focused on the study of tran-
sition paths in Potts-like energy landscapes in high dimension
N . These paths can be anchored at the initial and final extrem-
ity, or at the origin only. Paths explore the energy landscape
under conflicting constraints. First, contiguous configurations
along the path should differ little from each other, in a way
controlled by an elastic potential. Second, intermediate con-
figurations should have low energies, or, equivalently, high
probabilities in the landscape.

We have considered two kinds of elastic potentials. The
first one, referred to as Cont, ensures a smooth interpolation
between sequences along the path and avoid “jumps” between
configurations. The second potential, called Evo, is inspired
by evolutionary biology, i.e., it mimics random mutations at
a constant rate μ [25], while the energy landscape plays the
role of the selective pressure driving the evolution. To avoid
local maxima in the landscape, successive intermediates along
Evo paths may occasionally differ by more than the average
number of mutations, μN .

Using mean-field theory, we have computed the typical
properties of Evo and Cont paths in two contexts. The first
one, called direct, interpolates between two edge sequences,
assigning on each site along the path one of the two active
states present at the fixed edges. If the Hamming distance be-
tween the two extremities of the path is D, there are 2D distinct
direct intermediate sequences. The second one, called global,
may introduce novel mutations along the path compared to
the target sequences, allowing for a deeper exploration of the
energy landscape. While global paths can find better (i.e., with
lower energy) intermediate sequences, they are associated to
higher elastic potential energy due to the fact that global paths
are in general longer (in terms of total number of mutations)
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than direct paths. Whether the subspace of direct paths is
statistically dominant in the set of all possible global paths
depends on their length and on their flexibility, controlled by
the elastic potential.

In the Cont case, we have unveiled the existence of a
direct-to-global phase diagram controlled by the stiffness of
the interacting potential and the total number of steps of the
path, together with the inner structure of the energy land-
scape. We have analytically described this phase diagram
for the so-called Hopfield-Potts model, with only two inter-
action patterns with projections outside the direct subspace
of controllable amplitude. We have analytically located the
direct-to-global phase transition in a low-temperature, high-
length regime as a trade-off between long, flexible paths with
low-energy intermediate configurations and short, stiff paths
minimizing the number of mutations to go from one sequence
to another. In this low-temperature regime, the direct-to-
global transition is essentially not affected by the number A
of Potts states (colors). Conversely, in the high-temperature
regime, that is, if the fluctuations of the energy are smaller
than or comparable to the inverse of the path length, paths
tend to be global due to thermal fluctuations and the entropy
of the system will depend on the total number of accessible
states A per site.

This direct-to-global phase transition takes place due to
the conditioning on the final extremity of the paths. While
evolutionary paths are generally not constrained in this way,
there exist relevant situations in which conditioning is impor-
tant. For instance, consider a directed evolution experiment
starting from a wild-type sequence (of DNA, RNA, protein).
Samples of the pool of sequences are retained at each round
of selections or mutations. After several rounds, a sequence
is obtained, and one asks for the possible transition paths
that led to this outcome from the wild type. This well-posed
question can be addressed with the methods proposed in this
work, and compared to sequences sampled at intermediate
rounds. In addition, irrespective of conditioning at the end of
the path, we have shown that the direct-to-global transition is
intimately related to the presence of an attractive region in the
energy-fitness landscape (Fig. 3).

From a statistical mechanics point of view, the mean-field
approach followed here computes transition paths for a given

realization of the quenched disorder. This is made possible
by the fact that, formally, the number M of patterns in the
Hopfield-Potts model (or of hidden units in the RBM) is finite
as N → ∞. We plan in future to extend our approach with
M scaling linearly with N . A possible application, in the case
of RBM, would be the so-called compositional phase of [26],
where each data configuration activates a finite number of hid-
den units. In particular, in this scenario we aim to describe the
free energy of the system as only a finite number of patterns
are active, while the other acts as a white noise.

Last of all, we have tested our method for computing the
transition path onto data-driven models of natural proteins,
extending the previous work [8] by showing how we could
compute different quantities of interest, such as the entropy,
i.e., the number of relevant transition paths, the transition
probability between two sequences, and the escape proba-
bility from confined regions of the sequence space. Future
work is definitely needed to improve our approach, e.g., by
considering finite-N fluctuations around the mean-field theory
solution. From a biological point of view, understanding the
shape and the connectivity of the protein fitness landscape
and its entropy is of fundamental importance in the field of
natural evolutionary processes and also for directed evolution
experiments. The motivation here is not only theoretical but
also practical, e.g., to gain intuition on how many random
sequences can evolve a given functionality under selective
pressure. As stressed in [8], inferring the optimal path and its
optimal length (T ) with the Evo potential is an extension of
the reconstruction of phylogenetic trees and of the optimal
evolutionary distance between two ancestral sequences for
epistatic fitness landscapes, inferred from data. Finally, better
characterizing transition paths could help predict escaping
mutations, e.g., allowing a virus to escape from the control
of the immune system, and is therefore of primary importance
in the development of effective drugs or vaccines.
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