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Abstract
Understanding how a stressor applied on a biological system shapes its evol-
ution is key to achieving targeted evolutionary control. Here we present a toy
model of two interacting lattice proteins to quantify the response to the selective
pressure defined by the binding energy. We generate sequence data of proteins
and study how the sequence and structural properties of dimers are affected by
the applied selective pressure, both during the evolutionary process and in the
stationary regime. In particular we show that internal contacts of native struc-
tures lose strength, while inter-structure contacts are strengthened due to the
folding-binding competition. We discuss how dimerization is achieved through
enhanced mutability on the interacting faces, and how the designability of each
native structure changes upon introduction of the stressor.
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1. Introduction

To be functional proteins must satisfy a variety of constraints, related to their stability, activity,
specificity etc. . . . Most proteins reach an adequately folded stable conformation to efficiently
perform their tasks involving binding with other biomolecules, such as DNA, peptidic ligand
or other proteins [1]. How these various evolutionary constraints combine to shape the evol-
utionary landscape of proteins is of great interest. This question is particularly crucial when
additional stressors, e.g. an antibiotic on a bacterial population, are dynamically applied during
evolution. To what extent organisms can accommodate new constraints, while still fulfilling
constitutive ones, is an important issue.

In this work we introduce a minimal setting to address this question from a theoretical
point of view. We consider lattice proteins (LPs) [2–5], an exactly solvable model of amino
acids chains constrained to fold on the sites of a cube. Despite their simplicity, LPs share
many features with real proteins and have been proved to be a useful tool for studying protein
folding and designability. In addition to require that proteins acquire their native folds with
high probability, we impose that they bind each other and form a stable dimer [6]. The study
of the conflict between these two requirements, and its consequence on the distribution of
adequate sequences is the goal of the present work [6–9].

In a first part of the work we study the stationary regime in which sequences evolve through
a mutational dynamics under a two-fold selection pressure requiring the native folds and the
dimer conformation to be achieved. We make use of the so-called direct coupling approx-
imation (DCA) [10–13]—a graphical model based approach—to model the distribution of
sequences subject to selection constraints. This inverse modeling approach consists in find-
ing effective energetic parameters (fields and couplings in a Potts Hamiltonian) describing
the empirical distribution of sequences. Applying DCA to the exactly solvable model of LPs
allows us to describe in great detail our dimeric system. We show that the inferred couplings
are excellent predictors of the intra- and inter-protein structure; moreover, they indirectly keep
track of the effect of selection due to the mentioned constraints.

In the second part we focus on the full evolutionary history, from the initial state with two
non-interacting LPs in their native structures to the final state where a bounded dimer is formed.
We look at the competitive dynamics between folding into the native structures vs. realizing
the functional protein–protein interaction to characterize the evolutionary trade-offs due to the
binding constraints.

2. The model

2.1. Native folds

We focus on an exactly solvable model, namely LPs, to study the formation of protein dimer,
that is a macromolecular complex formed by two protein monomers. Each model protein con-
sists of a chain of L= 27 amino acids that occupy the sites of a 3× 3× 3 cubic lattice [4, 5]. A
valid conformation, hereafter called structure or fold, is a non-interacting chain that visits each
site once, and there are 103406 of such possible structures (excluding global symmetries) [5].
Two examples of folds, called SA and SC, are shown in figure 1. For computational efficiency,
we restrict ourselves to a representative subset of N = 10000 structures [14].
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Figure 1. Representation of the protein dimer studied in this work, composed of a struc-
ture SA (right) attached to a structure SC (left) through a specific face and orientation,
which we refer to as functional binding mode (red dotted lines in figure). For each struc-
ture the backbone of protein is highlighted with solid black lines. Dashed lines highlight
binding contacts between the two structures.

Two amino acids are said to be in contact if they are nearest neighbors on the cubic lattice
(but not on the backbone). The contact matrix cS of structure S is the 27× 27 adjacency matrix
such that

cSij =

{
1 i, j in contact,
0 otherwise.

(1)

This matrix fully defines the structure S. Given a sequence A= (a1, . . . ,a27) of amino acids
folded into structure S, we can assign the energy

E (A|S) =
∑

i<j

cSijE(ai,aj) , (2)

where residues in contact interact via the Miyazawa–Jernigan potential E [15], an empir-
ical, symmetric 20× 20-dimensional matrix containing effective interaction energies for each
couple of amino acids. The probability that sequence A folds into structure S, hereafter called
native probability, is given by the Gibbs–Boltzmann distribution at unit temperature, i.e.

Pnat (S|A) =
e−E(A|S)

∑N
S ′=1 e

−E(A|S ′)
. (3)

Stable structures S for the sequenceA are the ones that maximize the gap between their energy
E(A|S) and the one of competing structures S′.

2.2. Protein–protein interaction

We now move the attention to dimer LPs (hereafter only referred to as dimer), i.e. aggregate
of two LPs bounded together through one of their faces, whose chain is made of a sequence of
L= 54 amino acids. To model protein–protein interaction we decide to look at only one among
the 6× 6× 4= 144 possible binding modes, so the two LPs interact functionally via two spe-
cific faces with a specific orientation. Indeed, here one interface is considered functionalwhile
the 143 remaining might exist but are not deemed as functional in this model. An example of
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dimer—which corresponds to the one we studied in this work—is shown in figure 1. The inter-
action between faces of structure S1 and S2 brings into the arena a new energy contribution in
the form

Eint (A1,A2|S1 + S2,k) =
∑

i∈S1,j∈S2

bkijE(ai,aj) , (4)

where A1,A2 are the amino acid sequences folded in S1,S2 respectively, and bkij is the contact
map of the kth binding mode, namely

bkij =

{
1 i ∈ S1, j ∈ S2 in interaction,
0 otherwise.

(5)

Hence, the interaction probability associated to the functional binding mode (hereafter always
labeled with k= 1) reads

Pint (S1 + S2|A1,A2) =
e−Eint(A1,A2|S1+S2,1)

∑144
m=1 e

−Eint(A1,A2|S1+S2,m)
. (6)

2.3. Dimerization

We can now write the full probability for a dimer (up to a normalization constant):

P(A1,A2)∝ Pnat (S1|A1)
β̂nat ×Pnat (S2|A2)

β̂nat

×Pint (S1 + S2|A1,A2)
β̂int (7)

The exponents β̂nat and β̂int acts as stressors that control the stringency of evolutionary
selection to fold into native conformations and to bind functionally. In practice, we want Pnat

and Pint to reach values very close to 1, e.g. 0.99 or 0.999, implying that β̂nat and β̂int must be
very large, of the order of 1000. To avoid manipulating these large numbers we introduce the
rescaled stressors

βnat =
β̂nat
1000

, βint =
β̂int
1000

, (8)

where βnat and βint are of the order of 1.
The effective Hamiltonian of the two-sequence system therefore reads

H (A1,A2) =−1000βnat logPnat (S1|A1)

− 1000βnat logPnat (S2|A2)

− 1000βint logPint (S1 + S2|A1,A2) . (9)

3. Sampling dimer space

3.1. Monte Carlo (MC) metropolis sampling

We generate a multiple sequence alignment (MSA) for the dimer formed by two LPs folded
in two specific structure, labeled with SA and SC as in [16], through MC simulations via the
Metropolis rule. For each dimer in the MSA, the simulation starts with two sequences folded
in structure SA(= S1) and SC(= S2) randomly taken from the two MSAs built in [16]. At each
time step we perform the following routine to update the sequences:
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1. Mutation: a move consisting of mutating at random two amino acids (one on each pro-
tein) is attempted—say, a1i → a ′

1i and a2i → a ′
2i; let A

′
1,A

′
2 denote the mutated dimer, while

A1,A2 refers to the old dimer.
2. Selection: if P(A ′

1,A
′
2)> P(A1,A2) the move is accepted, otherwise it is accepted with

probability P(A ′
1,A

′
2)/P(A1,A2).

For each couple of value (βnat,βint) we construct a MSA of N= 23000 dimer sequences, sep-
arated by Nit = 5000 MC steps to avoid correlations. The time taken by the dimer to relax to
equilibrium is independent from the two initial sequences and slightly varies on the values
(βnat,βint), but remains smaller than Nit steps. Moreover, in order to study the evolutionary
dynamics of dimer we also built MSA at intermediate steps, i.e. before reaching thermal-
ization. In practice, during MC simulations, we collected MSA of evolving dimer at steps
0;50;200;500;1000;3000;5000—with step = 0 corresponding to the starting situation, while
step = Nit corresponds to the final dimer once thermalization has occurred.

3.2. Evolutionary model sampling

An alternative way to construct a MSA dimer is to simulate the evolutionary dynamics of a
population of individuals (sequences), hereafter referred to as X. Having an additional MSA
generated with a completely different approach allows us to perform the analysis on both of
them independently and check whether we obtain the same results.

The evolutionary model starts with a population of size N, where each individual has a
genome made by the two LP chains. The initial sequences have high folding probabilities but
do not generally interact, i.e. they were generated through the previous MC dynamics with
βnat = 1,βint = 0. For the sake of simplicity we then randomly pick up one of the sequences
A2 for SC and freeze it. The evolutionary process will focus on sequences A1 for SA only.

At each generation of the evolutionary dynamics, two steps are carried out to make evolve
the parent population X into a new population, X∗:

1. Mutation: for each individual and for each site of the sequence we draw a binomial random
variablemi = 0,1withmean µ. Ifmi = 1 the amino acid on site i is replaced with a new one,
drawn from a background distribution of frequencies of amino acids in the MSA associated
to structure SA. We end up with a new population X ′.

2. Selection: to each individual X ′
i = (A1,A2) in the mutated population X ′ we associate a

fitness value P(X ′
i ) given by equation (7). Then we draw a multinomial random variable

κ= 1, . . . ,N according to the fitnesses of all individuals in the population, i.e. the probability
of drawing κ is

Pκ =
P(X ′

κ)∑
i P(X

′
i )
. (10)

We thus generate an off-spring identical to κth mutated individual in X ′. This random
extraction process is repeated N times (with replacement), and we end up with the pop-
ulation of off-springsX∗, where the numbers of copies of individuals inX ′ are, on average,
proportional to their fitnesses.

These two steps are repeated T times, and results are averaged over multiple sample
populations.
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4. Equilibrium properties for various stressor strengths

In this section we investigate how the value of the stressor βint affects the sequence distribu-
tions after evolution has reached an equilibrium state. The dynamical transient preceding this
equilibrium regime will be studied in the next section.

The study of equilibrium properties of the dimer can be carried out from sequence data gen-
erated either with MC sampling or population dynamics, with similar results from a qualitative
point of view. Hereafter, we use MC generated data to characterize the statistics of residues in
the dimer and its connection with structural properties (inter- and intra-protein contacts). We
then focus on sequences produced by the population dynamics model to understand the inter-
play between the population size, the number of mutations per individual, and the response to
the stressor.

Unless otherwise said, we perform simulations sharing the same parameter βnat = 1 for
the two models. We also set for population dynamic model µ= 1/L, so that, on average, we
have one mutation per individual as in the MC evolution. The population dynamics model is
characterized by an additional parameter to tune, namely the population size.

4.1. Foldability–dimerization trade-offs, and their effects on sequence statistics

We start by tuning βint to see how changing the selection pressure applied along the Pint direc-
tion affects the capability of the individual proteins to reach their native folds. The behaviors of
Pnat(SA|A1), Pnat(SC|A2), and Pint(SA+ SC|A1,A2) are shown in figure 2. As a general trend,
Pint is an increasing function of βint as expected from the explicit dependence of P on βint in
equation (7). We also observe that the two Pnat decrease with βint, an effect of the evolutionary
trade-offs between two competing fitness components. As βint grows to large values, the prob-
abilities that the two proteins adopt their native folds become small: in this regime the selective
pressure favoring protein–protein binding is too strong to cope with the folding constraints.
For intermediate values of βint we are able to obtain both good foldings and high interaction
between the two structures.

The presence of trade-offs observed at the phenotypic level in figure 2 can be studied at the
sequence level. To obtain a fine characterization of the sequence statistics resulting from the
evolutionary constraints, we infer a pairwise Potts model with q= 20-state variables (corres-
ponding to the 20 possible amino acids), and N= 54 variables (corresponding to the full dimer
length) [17]. The energy of this effective model is the sum of two contributions, featuring local
and interacting terms:

HPotts (A1,A2) =−
∑

i<j

Jij (u,v)δai,uδaj,v−
∑

i

hi (v)δai,v, (11)

where the indices i, j run along all the dimer sequence, i.e. i, j = 1, . . . ,L. Here, Jij(u,v) rep-
resents the coupling between amino acid u at position i and amino acid v at position j along
the sequence; given two positions i, j in contact in the 3D dimer structure, they reproduce
the interacting MJ potential E(u,v). The parameters hi (u) are local fields acting on position
i that depends on specific amino acid u. To infer the values of these parameters we follow a
Boltzmann machine (BM) learning procedure [18], consisting in maximizing the average log-
likelihood ⟨logP⟩data of the model over the sequence data. In practice, we assume the data to
be Gibbs-distributed as

PPotts =
e−HPotts

Z
, (12)
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Figure 2. Values of Pint, Pnat(SA), Pnat(SC) as functions of βint at equilibrium. Inset:
zoom in the region βint ∼ 1, where all probabilities have high values. Averages are car-
ried out over 104 realizations.

where HPotts is given by equation (11). We compute ⟨logP⟩data over the MSA dataset for an
initial guess of the parameters; we then proceed to its maximization by numerically ascending
the gradient ∇⟨logP⟩data, until the log-likelihood is maximized (see appendix A for further
details on BM learning). The meaning of the inferred inter- and intra-protein couplings is
studied below in sections 4.2 and 4.3.

A stringent test of the accuracy of the inferred Potts model is its ability to generate new
dimer sequences that have both the right target native structures and high, specific face–face
interaction. In practice, we generate sequences with MC from the inferred distribution

PPotts (A1,A2)∝ e−HPotts(A1,A2)/T , (13)

where T is a fictitious sampling temperature used to control the broadness of the sampled
region, hence the diversity of the generated MSA. By choosing T lower than unity, which is
the implicit value of the inference temperature, we are able to sample sequences with low
energies. For further details about the generation procedure we refer to appendix A.

We show in figure 3 the histograms of the ground-truth probabilities—equations (3) and
(6)—which show these sequences are good dimers. We see that these probabilities are quite
high, proving that most of the necessary information needed to model a good dimer can be
captured by pairwise interactions and local biases, in agreement with some recent works [19,
20]. In addition, the generated sequences are far from the old ones and have high diversity
between each other, as it can be seen in figure 3 (bottom right panel) where we plot the distri-
bution of the Hamming distance for each pair of sequence; hence we are sampling a different
subset of the dimer space.
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Figure 3. Distribution of Pnat(SA), Pnat(SC), Pint for the MC MSA and generated
MSA (blue and orange, respectively). Bottom right: distribution of Hamming distance
between the MC MSA and generated MSA and inside the generated MSA (red and
purple, respectively). We sample new sequences with T = 0.5.

4.2. Structural significance of the statistical couplings

Following the standard direct-coupling approach [11], we rank the inferred couplings in
descending order of their Frobenius scores (L2 norms),

Fij =
√∑

ai,aj

Jij (ai,aj)
2, (14)

and use this ranking as a predictor of the contacts in the dimer. Informally speaking, we expect
the strongest inferred couplings to be those corresponding to real contacts among amino acids
in the dimer (see appendix A). We compute the positive predictive value (PPV) at rank k as
the fraction of the top-k scores whose pairs of positions along the sequence are effectively in
contact in the 3D dimer.

We show in figure 4 the PPV used for contacts prediction in structure SA and SC (left and
right panels, respectively), for different values of the interaction strength βint. Between the
two structures, we can see that—whatever the value of βint is—the PPV performs better on
predicting contacts in structure SA rather than in SC. Indeed, for SA we always predict the first
19 contacts out of the total 28, while for SC wemiss more contacts. The missed contacts always
include the central site and the central site of the binding mode, see below. Both structures SA
and SC can host an extremely large number of sequences: the higher this number, the more
designable the structure is said to be. However, it appears that having high designability is
harmful for inferring couplings: between SA and SC, the former can host less sequences, which
means it is more specific and allows for better inference and contacts prediction. As for the
different interaction strengths, we cannot identify a particular trend for increasing values of
βint both for structure SA and structure SC.

We also compute the PPV for the binding mode for several values of βint in order to assess
the quality of contact prediction between the two structures (see figure 4, middle panel).
Regardless of the interaction strength, we only miss one contact out of the nine present on
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Figure 4. PPV for structure SA (left panel, circles) and structure SC (right panel, squares)
at different values of βint. Middle panel: PPV for contacts belonging to the functional
binding mode (stars). Data points at different βint overlap, as we are able to predict all
contacts but the central one. The MSA is made of 23000 dimer sequences evolved for
5000 MC steps.

the interacting layer. Interestingly, the missed contact is always the same for all βint, and cor-
responds to the central contact between sites 1–19 in figure 1. In fact, contacts involving central
sites are generally the ones predicted worse, as central sites have more neighbors and are often
present in several competing structures [16].

4.3. Characterization of dimer interactions

Additionally, we characterize the binding modes between the two structures using the quantity
λij—which is another score computed again from the inferred couplings Jij that we used to
assess the quality of the functional binding mode against the remaining 143 modes. Indeed, in
[16] the authors observe a linear dependency between the couplings and the MJ energy matrix,
with a slope given by λij for each pair (i, j). Such slope can be computed as

λij =−
∑

a,b Jij (a,b)E(a,b)∑
a,b E(a,b)

2 , (15)

where the sum runs over all the possible amino acids. The quantities λij can then be seen as a
measure of the coevolutionary constraints imposed by the design of the two structures.

The projection scores ⟨λ⟩, averaged over the nine binding contacts for each binding mode,
are shown in figure 5 (left panel). Among them, we have identified some relevant subsets
depending on the number of maintained/mismatched contacts involving the interacting faces
wrt the functional binding mode contacts (see figure 5, right panel for a visual representation
with the associated color code):

• single red peak corresponds to the functional binding and it is the highest one;
• four orange peaks corresponding to binding modes where three functional contacts are still
maintained. An example of such configuration is in figure 5, right panel (a);

• black subset corresponds to binding modes where one out of nine binding contacts is still
present. An example of such configuration is in figure 5, right panel (b);

• pink subset contains all binding modes where there is at least one mismatched contact. An
example of such configuration is in figure 5, right panel (c);

• three green binding modes that have eight out of nine mismatched contacts. An example of
such configuration is in figure 5, right panel (d).
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Figure 5. Left: scores λij averaged over all the nine binding contacts for each mode,
computed at equilibrium according to equation (15). Except for the scores associated
to binding modes described in the main text (see section 4.3 for orange, black, pink
and green bars and figure 1 for the red bar related to functional binding), the remain-
ing binding modes—the 62 blue ones—exhibit a rather flat landscape. They are asso-
ciated to binding modes that do not involve sites belonging to the interacting faces of
the functional binding mode (e.g. binding between the two back faces), hence they are
just slightly favored or disfavored depending on the specific case. Right: schematic of
representative binding modes belonging to each of the subsets described in the main
text: (a) orange mode, (b) black mode, (c) pink mode, (d) green mode.

In the four orange configurations, the scores λij associated to the three binding contacts of the
functional mode are very high and thus are responsible for a large value of ⟨λ⟩. The same holds
for black configurations, where this time only one λij is high. Surprisingly the orange peaks
are almost 1/3 of the red one and the black ones are on average almost 1/9 of the red one.

Conversely, the pink and green configurations have, respectively, one and eight negative
scores thus resulting in binding modes that we strongly avoid.

5. Transient responses to stressor

Up to now we have only discussed the stable state of the dimer sequence distribution. We now
consider the effects of a rapid change of the stressor value βint.

5.1. Dynamical recovery of structural fitness

5.1.1. Response to a step-like change. In order to achieve a clear view of what happens
during MC evolution, we compute the native probability Pnat and the interaction probability
Pint at each time step for the whole length of the MC simulation and for Nseq = 1000 dimer
sequences. We then average Pnat(t) and Pint(t) over these Nseq dimer sequences.

Figure 6 (top) shows the evolution of Pnat(t) and Pint(t) in time for two values of βint. For
large βint we observe a huge drop in the folding probabilities Pnat associated to both struc-
tures SA and SC, while Pint monotonically increases to reach a βint-dependent plateau value.
This dynamical evolution is a direct consequence of the evolutionary trade-offs between Pnat

and Pint, as the amino acids on the interacting faces enter both in equations (3) and (6). The
evolutionary trajectories in figure 6 show that, in order to increase the interaction probability
associated to the binding mode, the two sequences are forced to go through sub-optimal—even
very bad—states from a structural point of view (Pnat values down to 0.2). After this strong
drop and the amino acids controlling the dimer interaction have been optimized enough both
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Figure 6. Top: evolutionary trajectories of Pnat for SA (blue) and SC (orange) and of
Pint (green) for weak (left, solid line with βint = 0.5) and strong (right, dotted line
with βint = 10.0) protein-protein interactions. Curves are averaged over 3000 dimer
sequences. Bottom: evolutionary trajectory Pnat(SA) for increasing values of τ . The
smaller τ , i.e. the sharper is the βint(t) dependence, the more we experience the out of
equilibrium effect. Let us note that here we are plotting the short-time evolution, since
we are only interested to see how the sharpness of the stressor βint affects the evolution.
Here exceptionally βnat = 0.2 and βint(0) = 0.0, βFint = 2.0.

Pnat start increasing again but reach values lower than the ones at the beginning of the evol-
utionary trajectory, i.e. in the absence of interaction. The constraint arising from the binding
mode does not allow them to optimally maximize their single structure folding; in addition,
as expected, the larger βint, the bigger the drop in Pnat is for both structures, and the lower the
final value of Pnat [6, 21].

Interestingly, for any βint value, the drop in Pnat for structure SA is always larger than the
one for SC. Even if both structures are undergoing roughly the same number of mutations,
structure SC remains more stable compared to SA, a fact related to its larger designability [16].
We will study this point in more details in section 5.2.

5.1.2. Case of smooth increases of the stressor strength. The drop in Pnat seen in figure 6
is an out-of-equilibrium effect, resulting from the abrupt change of selection pressure from 0
to βint. To better study this effect, we consider a smooth, time-dependent stressor during the
MC evolution

βint (t) = βFint tanh
( t
τ

)
, (16)

where τ sets the time scale of the stressor (τ → 0 gives back the step-like function studied
so far). In figure 6 (bottom panel) we plot the transient dynamics of Pnat for several values
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Figure 7. Time course of the diversity D(t) for different selection pressures βint. Inset:
fitnesses Pnat(SA), Pint at equilibrium after population dynamic evolution for several
stressor values βint. We recall that Pint cannot increase further as we are keeping SC
fixed compared to MC evolution. The parameters used are βnat = 10−3, N= 1500 and
µ= 1/L, with βint kept fixed to its value during the evolution. Note that the values of βint
are much smaller than in MC dynamics, due to the large population size, see section 6.

of τ with βint(t= 0) = 0 and βint(t→∞) = βFint = 2.0. While for long enough simulations,
i.e. when t≫ τ , all curves reach the same plateau, the drop in Pnat decays with the time scale
τ in equation (16). For large enough τ , i.e. when the evolution can be considered adiabatic,
Pnat decreases monotonically over time.

5.1.3. Evolution of a non-clonal population. While we have so far studied the evolution of
a single sequence, we now consider the case of population of constant size N. Our aim is
to characterize how the selection pressure βint affects the substitution rate, the diversity of
population, and also how the effects of the stressor relates to the population size.

We first focus on the diversityD(t), as the fraction of diverse individuals (unique sequences)
present in the population at time t. The time behavior ofD(t) is shown for various values of βint

(at fixed size and mutation rates) in figure 7. Increasing βint makes the population less diverse,
as fewer sequences satisfy the selection constraints and give rise to off-springs. The loss of
diversity is maximal at the drop in Pnat. The inset of figure 7 shows the stationary values of
Pnat and Pint; we recall that the latter cannot reach as high a value as with MC evolution since
the second sequence in the dimer (associated to protein SC is not allowed to evolve).

We then study the substitution ratem(t), defined as the average Hamming distances between
the sequences at step t+ 1 and their parents at time t; without selection this rate would be on
average equal to the number of mutations proposed per individual, i.e. µL. The substitution
rate per individual is plotted as a function of the evolutionary time in figure 8. We observe, for
sizes N> 1, a peak in m at the beginning of dynamics, decaying to a plateau. Conversely, for
N= 1, the substitution rate fluctuates around the average value ⟨m⟩= µL. The initial peak in
m(t) is therefore mostly due to selection, rather than to mutations (we recall that, in MC, N= 1
and mutations are always proposed, an analogous quantity to m being the acceptance rate).

The time behaviors of the diversity and of the substitution rate can be qualitatively under-
stood in a simplified scenario, in which the maximum ofm is achieved in only one evolutionary
time point (cf figure 9 that supports our argument):
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Figure 8. Substitution rate m(t) for different population sizes N. The parameters used
are βint = 10 and µ= 1/L.

Figure 9. Distribution of log-fitnesses during the first three steps of evolution. The para-
meter values are βnat = 10−3, βint = 10−2, µ= 1/L and N= 1000.

• At t= 0, all sequences are distinct, hence D= 1, and the fitness distribution is very broad.
This broad profile is maintained after random mutations are introduced.

• Hence, at t= 1, selection will only keep the few strains that are fitter in the population,
resulting in a poorly diversityD. The fitness distribution is now strongly concentrated. Under
mutations, the distribution widens (and shifts to the left, since on average, there are more
deleterious than beneficial mutations).

• At t= 2 selection step picks just such mutated sequences that increased fitness, and as a
result the substitution rate m1→2 is high. The diversity D(2)> D(1) and the fitness profile
is less peaked than before.

• The mutation step does not impact the distribution of fitness, and we expect m(3)< m(2).
At later times, the substitution rate will decreases and the diversity increases until both reach
their plateau values. Fluctuations in m(t) follow inverted fluctuations in D at step t− 1.
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Figure 10. Time dependence of fitnesses Pnat(SA) (left panel), Pnat(SC) (middle panel)
and Pint (right panel) for the three possible protocols evolve A (blue), evolve C (orange)
and evolve AC (green). Same values of stressor, βint = 20. MC evolution.

5.2. Short- and long-term consequences of protein designability

LP structures S differ in howmuch they are designable, i.e. in howmany sequencesA have high
folding probabilities, say, pnat(S|A)> 0.99. Designability has been studied in the literature
[4, 22], and it is known that SC is more designable than SA [16]. In practice, to assess the
designability of a given structure, we can either evaluate the entropy σ of the Potts model
inferred on the MSA (equation (11)) [23] or compute the mean identity (MId) of the MSA. To
do so, we compute the consensus sequence (made of the most frequent amino acids, site after
site), and define MId as the average number of sites carrying consensus amino acids. We note
that the entropy of the (single-sequence) Potts model is bounded from above by 27log20≃
80.9, corresponding to a totally unconstrained LP where each amino acid is randomly chosen.

The designability of these structures, and how they are affected by the introduction of
the binding interaction constraint may help understand the evolutionary trajectories discussed
above. We hereafter consider three different classes of binding constraints:

• introducing mutations only on SA, keeping fixed SC (labeled evolve A),
• introducing mutations only on SC, keeping fixed SA (labeled evolve C),
• introducing mutations on both SA and SC (labeled evolve AC).

We report the time dependence of Pnat and Pint for these three protocols for the same values
of βnat,βint in figure 10;. Protocol evolve AC is the most advantageous one, as it produces
better configurations in terms of Pnat and Pint. Allowing both sequences to mutate gives rise
to a larger number of possibilities to satisfy the constraints; this statement is also confirmed
by estimation of the entropy σfixed(SC)≃ 38.16 computed on the MSA of evolve C protocol,
and the conditional entropy σcond(SC) = σ(SA,SC)−σ(SA)≃ 43.55 computed on the MSA of
evolve AC protocol.

We report in figure 11 (left panel) the entropy σ together with the MId for several values
of βint and for SA and SC, evolved with, respectively, protocols evolve A and evolve C. The
reported values are relative to end-point evolution, i.e. at equilibrium. As the stressor intensity
βint increases, the designability of both structures decrease, as it is harder for sequences to
cope with the constraint on Pint. For all tested βint > 0, the structure SA is realized by more
sequences than SC, contrary to what happens for non-interacting structure (βint = 0).

We again resort to the Potts model inferred from sequence data at different time points
during evolution to characterize this phenomenon. In figure 11 (top right panel) we observe
that the Pnat cross each other, signaling an inversion in the designability of the two structures,
see figure 11 (bottom right panel). In other words, evolving a dimer surface through binding to
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Figure 11. Left: entropy σ (bottom) and mean sequence identity MId (top) for struc-
tures SA and SC (blue and orange, respectively) at equilibrium. Right: time dependence
of Pnat(SA), Pnat(SC) (top) and of the entropy σ(SA), σ(SC) (bottom) under protocol
evolve A and evolve C, respectively. Here σ at intermediate time is computed from the
Potts model inferred on the MSA at that time. Same values of stressor, βint = 20. MC
evolution.

a fixed protein is more harmful in terms of fitness when the fixed protein has low designability.
It is worth mentioning that this result is valid in general and does not depend on the particular
choice of the two structures, as we validate in appendix C using different structures.

5.3. Microscopic mechanisms

5.3.1. Propagation of constraints on the interacting face. The consequences of having a bind-
ing selection pressure βint during the evolution can be seen form the point of view of single
protein structure and folding stability. At the beginning of the evolution (t= 0), each fold is
very stable, which corresponds to large energy gap between the native structures and the com-
peting structures (cf figure 12 and appendix D). As the evolution starts both proteins become
less stable for some time, as the energy levels of competing structures get closer to the native
folds. Eventually, as equilibrium is approached and the dimer is formed, a large energy gap is
restored (albeit smaller than at t= 0). Figure 12 shows energy levels for the first competing
structures of SA during a typical MC evolution. The minimal energy gap is reached at sim-
ilar evolutionary time points, regardless of the stressor strength βint. This time corresponds
to sequences where the amino acids on the interacting face have been mutated to favor the
binding mode, thus destabilizing the native fold and making alternative competing folds more
likely. Statistically, the time needed to update—at least once—all the nine amino acids on the
interacting face is τtypical ∼ 9/p, where p is the probability of proposing and accepting a muta-
tion on a site of the interacting face. We estimate it from the MC simulation as the acceptance
rate of mutations on interacting sites. It results p∼ 0.12 [24], giving τ typical in agreement with
the one observed in figure 6. The sequence logos [25], displayed in figure 13 for SA, visually
show enhanced mutability on the interacting face compared to other faces during the highly
unstable transient. For example, positive (blue) and negative (red) charged residues on binding
sites 1,18 are highly conserved in the native structure, as they form an electrostatic bridge with
amino acids of opposite charge. Non-binding sites 2,25 also display an electrostatic mode in
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Figure 12. Time evolution of the mean energy for protein sequences folded in SA and
in its first three competing structures (labeled as S1, S2 and S3, see appendix D), namely
the three structures with energies closest to SA. All other structures have energy levels
higher than S3. We note that the three competing structures share with the native folding
SA more than ten contacts, whereas an average random structure share just five contacts
(see appendix D). Interestingly, there is an inversion in the order of competing structures
going from t= 0 until the equilibrium state at t= 3000.

Figure 13. Sequence logos showing amino acids conservation on each site for protein
sequences folded in SA, averaged over the full MSA. On each site, the total height cor-
responds to the local conservation (see [25]) and the letter sizes correspond to their site-
frequencies: the bigger a letter is, the more frequent that amino acid is in the MSA. We
compare sites involved in binding (left) and non-binding sites (right) at t= 0 (top) and
t= 60 (bottom) to show larger mutability on sites in interaction with the other protein.
Sites 1–18 (or, equivalently, 2–25) form a crucial electrostatic mode in the native struc-
ture (top row), which is lost in correspondence to the minimum of Pnat (bottom row).
Color code: blue for basic, red for acidic, green for Cystein, black for hydrophobic and
gold for aromatic ones.
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Figure 14. Distribution of scores∆ for two contact pairs, one involved in binding (left,
pair 1–18 in figure 1) and the other not involved (right, pair 3–26 in figure 1), before and
after dimerization takes place (gold and sky blue histograms, respectively). The scores
are computed over the MSA of structure SA at βint = 5.0. Similar results hold for other
contact pairs.

the native structure. At t= 60, the electrostatic contact 1–18 is depleted due to the ongoing
binding with the other structure, while contact 2–25 remains less impacted. Enhanced mut-
ability allowing for dimerization leads to residual frustration at single monomer level, which
can be quantitatively evaluated along [26, 27]. Given a contact pair i− j, for each sequence
A in the MSA we compute Pnat(S|A) and Pnat(S|A ′), where A ′ differs from A by replacing
amino acids ai,aj with two other amino acids chosen uniformly at random. We then define the
following score

∆i,j (A) = Pnat (S|A)−⟨Pnat (S|A ′)⟩ , (17)

where the average is carried out over all possible pairs of amino acids on i, j excluding the
actual one. The distribution of scores across the MSA of structure SA is shown in figure 14 for
a contact pair involved (i.e. binding pair) or not (i.e. non-binding pair) in the binding of the
dimer. Upon dimerization, the scores of binding pairs are shifted to lower values: those pairs
of sites now carry amino acids mostly optimized for binding, and almost any other amino-acid
pair result in the same Pnat value. Therefore, such pairs are not crucial to maintain structural
stability and we deem them as highly frustrated. Residual frustration at single monomer level
is again the trademark of stability-affinity competition.

The presence of evolutionary trade-offs between Pnat and Pint also affects contacts’ strength,
assessed by the Frobenius norm computed as described in appendix A. In figure 15 we show
the evolution of Fij during the MC simulation, for both structures. For the LP folded in SA the
contacts belonging to the interacting face are the ones that suffer most from the binding con-
straint, as the corresponding Frobenius norms undergo large drop; conversely, the Frobenius
norms associated to the back face (opposed to the interacting face) reach larger values after
equilibration than the initial time point.

The Frobenius norm of structure SC is smaller at any time point, suggesting that there is
less coevolutionary pressure between sites due to the native design in structure SC compared
to SA (cf figure 15); this is consistent with structure SC being more designable than SA.

5.3.2. Learning the binding mode through local fields. In this section we want to better
characterize the selection pressure imposed by the binding mode through βint ̸= 0. We use
the evolve A protocol and model the binding interactions as external fields hi (exerted by the
protein SC) on the sites of the structure SA belonging to the interacting face. To check whether
this simple modeling approach, which neglects couplings Jij within the interacting face is
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Figure 15. Time evolution of ⟨Fij⟩ averaged over contacts on interacting face (red), on
back faces (purple) and over all 28 contacts (grey), for structure SA (circle) and SC
(square). See color code of figure 1 for red and purple faces we are referring to. The
norm is computed for a MSA at βint = 2.0.

Table 1. Correlation coefficients of BM fields versus the MJ energy ⟨E(ai,aj)⟩aj aver-
aged over columns, for the model inferred on the modified case scenario. At t= 0 both
fields of interacting and non-interacting sites are not (or negatively) correlated to the MJ
values; after evolving the dimer surface, a strong positive correlation can be observed
for sites on the interacting face.

Interacting sites Non-interacting sites

t= 0 0.05 −0.08
t= 100 0.92 −0.09

plausible we develop a slightly modified protocol of MC evolution, where at each Metropolis
step, Pint in equation (6) is replaced with

PMint (S1 + S2|A1,A2)∝ e−Eint(A1,A2|S1+S2,1). (18)

In practice, discarding the denominator in equation (6) amounts to approximate Pint as a
product over the sites of the binding interface. The competition between interfaces, usually
leading to negative design, is therefore neglected.

This modified framework gives a qualitatively similar behavior for the time dependencies
of Pnat(SA) and of Pint. We learn a Potts model from the sequence data in the same way as
section 4.1, expecting that the inferred fields of sites on the interacting faces are highly correl-
ated with the Myazawa–Jernigan (MJ) energy matrix. This is especially true when the stability
of the protein is compromised, i.e. in the low Pnat region, because the binding selection pres-
sure (fields) dominates over the internal contacts (couplings). We show in table 1 the average
correlation coefficients between inferred fields and the MJ matrix for sites on the interacting
face and not, at two different MC time steps.

To assess the validity of this field-based model, we consider a new learning procedure for
the Potts model that consist in two steps. We collect in our dataset sequences having SA as their
native conformation (Pnat(SA)> 0.99), and produce a smaller dataset with sequences for SA
all bounded to the same sequence folded in SC. Inference of the Potts model works as follows:
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Figure 16. Distribution of Pnat(SA) (left) and Pint (right) for the training dataset and the
generated MSA. To ensure high fitnesses on the new sequences, we sample the space
with low temperature, T = 0.2.

(i) we learn couplings and fields of the Potts model on the first dataset, having high Pnat(SA)
and Pint ≃ 0;

(ii) we now learn fields of the Potts model on the second dataset, using less data (25% of
sequences used for the previous step), and with couplings J frozen to their values obtained
in step (i).

In other words, we first have a background Potts model, able to model the distribution of SA
sequences, and then we infer only new fields to capture the features related to the interac-
tion with the other protein sequence. We show in figure 16 that learning local fields is enough
to generate good sequences in structure SA that bind well with the given protein sequence in
SC. Inferred local fields are sufficient to reproduce the Pnat distribution (see figure 16, left
panel), suggesting that couplings Jij inferred at initial stage with no interaction are still mean-
ingful. However, if one removes couplings at the single structure level attempting to use only
fields to reproduce the bounded dimer distribution, the approach completely fails: it means that
only inter-protein interactions can be modeled with local fields. Let us note that the generated
sequences have mean identity (as defined in section 5.2) MId∼80%, compared to 60% for the
training data, likely due to the presence of strong fields that force interacting sites to be very
conserved. The generated sequences have an average Hamming distance of 11.75 amino acids
to the ones used in the training.

6. Discussion

In this work we analyze the case of two LPs that evolve a dimer surface under a binding
selective pressure, through a Monte Carlo Metropolis or population dynamics approach. In
section 4 we study the equilibrium properties for different stressor strengths βint, using the
inference of a Potts model over the dimer MSA to reveal the effect of foldability-dimerization
trade-offs on inter- and intra-protein couplings. In particular, we reproduce the majority of
internal contacts of both structures, with contacts in SC always less predictable than in SA due
to the higher designability of the former structure. As for the binding contacts, we succeed in
reconstructing eight out of nine of them, missing always the central contact. In fact, the latter is
shared in the functional and non-functional rotated modes, and our inferred model is not able
to capture the negative design associated to such contact of competing modes [16]. We also
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characterize the dimer interaction, assessing the quality of the function binding mode over the
competing ones.

We then study in section 5 the ongoing evolutionary trade-offs during the dimer formation.
Putting a selective pressure βint forces the two LPs to explore unstable conformations in order
to maximize the binding, at the expense of folding; this results in a temporary loss of stability,
which depends on how rapidly the stressor βint is applied during sequence evolution and how
strong it is [28]. Indeed, the drop in the native fitnesses Pnat, has a strong out-of-equilibrium
nature; whereas applying a smooth selection pressure relaxes the constraint over the two inter-
acting faces and allows for a monotonically (decreasing) evolution of Pnat. This observation
signals the existence of a minimal time for adaptation to new constraints, in agreement with
experimental findings for bacterial evolution under stressful conditions [29–31].

Furtermore, we resort to the evolution of a non-clonal population (see section 5.1.3) to
understand the interplay between the population size, the mutation rate per individual and the
stressor strength. We see that population size here acts as an inverse temperature that sets
the stringency of the fitnesses in evolution of stable complexes, which accounts for the lower
values of βnat, βint used in the population dynamics compared toMC algorithms. This statement
is especially clear when dealing with mono-clonal evolution, where the population size and
the fixation probability of a mutation are related through [32]

Pfix =
1− exp(−2s)
1− exp(−2Ns)

, (19)

where s is the selection coefficient and N the population size. Hence, here N is playing the
role of an inverse temperature (see e.g. [33, 34]). Furthermore, we discuss how the selection
pressure applied on the dimer evolution has consequences on the designability of the structures
both at the short- and long-term level. We show that high stressor strengths reduce the diversity
of MSA and that binding to a more designable folding (cf evolve A protocol) allows to find
more optimal sequences.

Eventually, we discuss the microscopic mechanisms underlying the dimer formation show-
ing that the binding interaction can be efficiently encoded in a Potts model on the single struc-
ture with local fields that mimic the selective pressure arising from the other structure.

In the future we plan to apply the discussed framework to real data where one can experience
evolutionary trade-offs, e.g. bacteria strains evolving under two (or more) competing stressors.
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Appendix A. Inferring Potts model

We use a Boltzmann machine (BM) to learn the probability distribution of the data and thus
inferring the parameters of the Potts model. A BM is a probabilistic graphical model consti-
tuted of a single set of random variables v= (v1, . . . ,vN) that interact within each other through
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a coupling matrix J and that are subject to local fields, hereafter called gi. For our purpose,
we need a set of N= 54 variables corresponding to the length of the two adjacent amino acids
sequences, with each variable assuming q= 20 different states. For such BM the probability
distribution of the variables set v is exactly given by the Gibbs–Boltzmann probability at fixed
temperature Tinf = 1 with energy

E(v) =−
∑

i

gi (vi)−
∑

i<j

Jij (vi,vj) , (A1)

where the couplings Jij and fields gi set the mean and correlation of the variables vi. Training
a BM to infer its parameters consists in fitting numerically the distribution P of the data by
maximizing the likelihood L= ⟨logP⟩data. Taking the gradient of L and setting it to zero for
its maximization, bring us to solve the following problem (for a generic parameter θ of the
model)

∇θL=−⟨∇uE(v)⟩data + ⟨∇θE(v)⟩model (A2)

where ⟨·⟩data stands for the expectation value over the data, while ⟨·⟩m over the model. The
gradient update thus consists of decreasing the energy of the data configurations while increas-
ing the ones of the model. In our case, the gradient problem in equation (A2) can be turned
into the set of equations

∂L
∂gi

= ⟨vi⟩d−⟨vi⟩m

∂L
∂Jij

= ⟨vi vj⟩d−⟨vi vj⟩m,
(A3)

which is a momentum-matching problem. The fitting procedure stops when the two expect-
ation values match. Among the two right hand terms in equation (A3), it is easy to compute
the average over the data as it can be done from the dimer MSA just once when the learning
procedure starts; on the other hand computing the average over the model is a challenging
task. Here, we use standard gradient descent (GD) with a varying learning rate in time and we
make use of persistent contrastive divergence (PCD) algorithm with a fixed number of MC
steps between each update for sampling data to compute the average over the model. To avoid
over-fitting during training, we use a L21 regularization term with strength λ1

2.
All in all, we tune the hyper-parameters for learning as follows

• Number of epochs = 150
• Learning rate = 0.005 (it decays with a 0.5 rate after half iterations)
• MC steps between each update = 5
• λ1

2 = 0.025

Given the BM parameters, we can also compute the entropy σ of the model as the opposite of
the log-likelihood averaged over the full MSA, i.e.

σ =−⟨logP(v)⟩v, (A4)

which involves the numerical computation of the partition function Z . The latter is intractable
as it consists in summing over all configurations v; therefore, we estimate it with the annealed
importance sampling (AIS) algorithm [35].
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Figure 17. Couplings matrix Jij(a,b) for two specific sites in contact, i.e. i = 3, j = 25
of structure SA, versus the MJ energy matrix E(a,b).

Appendix B. Dimer sequence generation

We generate new dimer sequences using the BM log-likelihood as the energy in the Gibbs
sampling. For computational reasons after a long thermalization, we run 100 chains in parallel
each of length 1000, and sample a dimer sequence each 500 steps. Sampling with the inferred
Potts model is hard because we must have reconstructed the Jij matrix very precisely; however
the BM has learnt what are the sites in contact but it is struggling to understand which couple
of amino acids is present on a given pair of sites. Effectively, if we look at the matrix Jij for a
given pair of sites in contact, most of its entry are zeros (i.e. the BM has never seen such pair
of amino acids in the MSA), some are slightly different from zero and few of them have large
values (i.e. those associated to polar amino acids). We show this trend in figure 17. Thus with
so few peaks in the matrix, it is hard to generate and to ensure a great diversity of the sampling
space, because the BM is exploring just one deep minima in the landscape. A solution for
that would be to enlarge the effective depth of the MSA with more diverse dimer sequences,
i.e. sampling with MC at higher temperature.

Appendix C. Additional dimeric assemblies

To further corroborate our results we perform an equivalent analysis using a different LP
monomer, namely SB as labeled in [16], that binds SC. Binding of new different native struc-
tures yield the same scenario, suggesting that our results presented in the main text go beyond
the specific conformation of SA, SC. Here, to speed up computation we restrict ourselves to
15000 MSA. We show results for the dimer SB− SC in figure 18, where we plot the PPV for
intra-structure contacts as we do in figure 4 for the dimer SA− SC. Since SB is less designable
than SC, the picture here confirms that high designability negatively affects contact predictions
of the native structure. As in figure 4, the worst predicted couplings involve the central site of
the native structure and/or the central site of the binding face.
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Figure 18. Top: PPV for structure SB (top left panel, circles) and structure SC (top right
panel, squares) at different values of βint. The MSA is made of 15000 dimer sequences
evolved for 3000 MC steps. Bottom: time dependence of Pnat(SB), Pnat(SC) (bottom
left panel) and entropy σ(SB), σ(SC) (bottom right panel) under protocol evolve B and
evolve C, respectively. Same values of stressor, βint = 20. MC evolution.

Furthermore, we use structure SB in interaction with SC to validate our claim that evolution
of a dimer keeping one of the two interface fixed is more or less harmful in terms of fitness
depending on the designability of the fixed interface (see section 5.2). We thus designed, as we
did for the dimer SA− SC, the two protocols evolve B, evolve C and computed the entropy at
different time steps for both protocols. As in figure 10, we can see in figure 18 that the fitness
Pnat is lower along protocol evolve C, where we keep fixed protein SB that is less designable
than SC.

Appendix D. Competing structures

In figure 19 we report the folding of the first three competing structure with SA, labeled in the
main text as S1, S2, S3 in figure 6. Such structures have been identified among theN = 10000
representative foldings, as the ones having the smallest energy gap with the native structure.
The energy for a given folding S has been measured as in equation (2), and averaged over
46000 sequences that fold in SA. The random structure Sr has been randomly selected and has
a large energy gap with the native structure. The more contacts structure S shares with the
native folding, the more such structure will be considered as a competing one.
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Figure 19. Representation of the competing foldings of SA, as discussed in figure 6.
Solid black line represents the backbone of structure SA. Dotted grey shaded lines high-
light contacts only present in the native folding SA. Colored dotted lines show contacts
of SA common to its competing structures (orange, green and red refers to S1,S2,S3,
respectively); purple dotted lines show contacts of SA shared with a random structure
Sr.
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