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Identifying and characterizing mutational paths is an important issue in evolutionary biology, with
potential applications to bioengineering. We here propose an algorithm to sample mutational paths, which
we benchmark on exactly solvable models of proteins in silico, and apply to data-driven models of natural
proteins learned from sequence data with restricted Boltzmann machines. We then use mean-field theory to
characterize paths for different mutational dynamics of interest, and to extend Kimura’s estimate of
evolutionary distances to sequence-based epistatic models of selection.
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Introduction.—Obtaining proteins with controlled prop-
erties, such as stability, binding affinity, and specificity is a
central goal in bioengineering [1]. Over the past years,
much progress on design was made using data-driven
models, intended to capture the relation between protein
sequences and functionalities. In particular, unsupervised
machine-learning approaches such as Boltzmann machines
(BM) or variational auto-encoders trained on homologous
sequence data (defining a protein family) were able to
design new proteins with functionalities comparable to
natural proteins [2,3]. By comparison, the (even) harder
problem of designing paths of sequences, interpolating
between two homologous proteins has received little
attention, see, however, Ref. [4]. Yet solving this problem
would shed light on the navigability of the sequence
landscape [5] and on how functional specificity, such as
binding to distinct substrates could have emerged
from ancestral, promiscuous proteins in the course of
evolution [6]. In turn, it could help design new proteins
interpolating between functional classes.
While various methods exist for building transition paths

between the minima of a multidimensional continuous
landscape [7,8], dealing with discrete configurations
requires the development of specific procedures [9]. We
hereafter propose a Monte Carlo algorithm to sample
mutational paths in protein landscapes, e.g., obtained by
restricted Boltzmann machines trained on sequence data.
We first benchmark our sampling procedure on an exactly
solvable model of lattice proteins [10], and demonstrate its
capability to find high-quality paths between two proteins
belonging to different subfamilies. We then apply our
algorithm to the WW domain, a binding module involved
in the regulation of protein complexes [11,12]. The
functionality of the sequences along the paths is validated
with structure (ligandþ protein)-informed software [13].
Last of all we derive a mean-field characterization of paths,

tailored to the mutational dynamics of interest. This mean-
field theory allows us to efficiently estimate evolutionary
distances in the presence of strong epistatis in the selection
process, which is not possible with profile models at the
basis of most phylogenetic studies [14].
Definition and sampling of mutational paths.—We

assume the sequence landscape is modeled through a
probability distribution PmodelðvÞ over amino-acid sequen-
ces v of length N. Informally speaking, Pmodel quantifies
the probability that v is a member of the protein family of
interest, i.e., shares its common structural and functional
properties, and can be learned from homologous sequence
data [15,16]. For natural protein families, exact expressions
for Pmodel are not available, but approximate distributions
can be inferred from multisequence alignments (MSA)
using unsupervised learning techniques. Previous works
have shown that the inferred Pmodel can serve as a proxy for
the protein fitness [17–20].
Hereafter, we use restricted Boltzmann machines

(RBM) [21], a class of generative models based on two-
layer graphs [22]. RBMs define a joint probability dis-
tribution of the protein sequence v (carried by the visible
layer) and of its M-dimensional latent representation h
(present on the hidden layer) as

PRBM∝ exp

�XN
i¼1

giðviÞþ
XM
μ¼1

hμIμðvÞ−
XM
μ¼1

UμðhμÞ
�
; ð1Þ

where IμðvÞ ¼
P

i wi;μðviÞ is the input to hidden unit μ.
The gi’s and Uμ’s are local potentials acting on, respec-
tively, visible and hidden units, and the wiμ’s are the
interactions between the two layers. They are learned by
maximizing the marginal probabilities PmodelðvÞ ¼R
dhPRBMðv;hÞ over the sequences v in a multisequence

alignment of the family. While other unsupervised

PHYSICAL REVIEW LETTERS 130, 158402 (2023)

0031-9007=23=130(15)=158402(6) 158402-1 © 2023 American Physical Society

https://orcid.org/0000-0001-8100-3956
https://orcid.org/0000-0002-1852-7789
https://orcid.org/0000-0002-4459-0204
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.158402&domain=pdf&date_stamp=2023-04-12
https://doi.org/10.1103/PhysRevLett.130.158402
https://doi.org/10.1103/PhysRevLett.130.158402
https://doi.org/10.1103/PhysRevLett.130.158402
https://doi.org/10.1103/PhysRevLett.130.158402


procedures providing approximate Pmodel can be used, such
as direct coupling analysis [15,16], RBMs offer a conven-
ient way to monitor the changes in sequences along
mutational paths, as we will see below.
We consider mutational paths of T steps, V¼fv1;v2;…;

vT−1g, anchored at their extremities defined by the sequen-
ces vstart and vend. The probability of a path reads

P½Vjvstart; vend� ∝
YT−1
t¼1

PmodelðvtÞ × πðvstart; v1Þ

×
YT−2
t¼1

πðvt; vtþ1Þ × πðvT−1; vendÞ; ð2Þ

where the “transition” factor πðv; v0Þ increases with the
similarity between the sequences v; v0. In practice we
choose π ¼ 1 if the two sequences are identical, e−Λ if
they differ by one mutation (with Λ > 0), and 0 if they
are two or more mutations apart. This choice generates
“continuous” paths, along which successive sequences
differ by one mutation at most. Other choices for π, more
plausible from an evolutionary point of view will be
introduced below.
The probability PðVÞ can be sampled as follows.

Starting from a path V0, we randomly pick up an inter-
mediate sequence vt and attempt at mutating one amino
acid, under the constraint that the Hamming distance of
the trial sequence v0 with vt−1 and vtþ1 is at most 1. The
mutation is then rejected or accepted, i.e., vt ← v0 accord-
ing to detailed balance. To improve the quality of the
sampled mutational paths we introduce a fictitious inverse
temperature β and resort to simulated annealing. We then
sample paths from P½V�β, where β is initially very small
and is progressively ramped up to some target value. The
complete procedure and the proof of detailed balance are
given in Supplemental Material, Sec. 1 [23].
Benchmarking mutational path sampling on in silico

proteins.—We benchmark the performances of our MC
procedure on a model of lattice proteins (LP) [10,33]. In LP,
sequences of 27 amino acids may fold into ≃105 different
self-avoiding conformations going through the nodes of a
3 × 3 × 3 cubic lattice. The sequence landscape associated
to a structure S [Fig. 1(a)] is defined by the probability
pnatðvjSÞ that a sequence v has S as its native fold; pnat
can be exactly computed from the energies of interactions
between adjacent amino acids, see Supplemental Material,
Sec. 2 [23] for details.
We first generate many sequences v with high pnat values

for the fold S of Figs. 1(b) and 1(c) following the procedure
of [18]. We next compute the top two principal components
(PC) of these sequence data using one-hot encoding: PC1
corresponds to an extended electrostatic mode, and PC2
identifies possible Cys-Cys bridges [Figs. 1(d) and 1(e)].
Projecting the sequences onto these two PCs reveals two
subfamilies separated along PC1 [Fig. 1(a)], associated

with opposite chains of alternating charges along the
electrostatic mode [Figs. 1(b) and 1(c)]. We will use our
path sampling procedure to interpolate between the two
subfamilies, see start (white star) and end (black star)
sequences in Fig. 1(a).
To mimic the approach followed for natural proteins we

train a RBM on the LP sequence data generated above,
to infer an approximate expression for pnat from the data;
see Supplemental Material, Sec. 3 [23] for the inference of
the RBM model. We then use our sampling algorithm to
produce mutational paths, see Fig. 1(a). The algorithm
is able to find excellent mutational paths in terms of the
ground-truth folding probabilities pnat of intermediate
sequences, even higher than the ones of vstart; vend when
imposing high β [inset of Fig. 1(a)]. Repeated runs of the
sampling procedure give different paths that cluster into
two classes, shown in red and maroon in Fig. 1(a). While
few paths exploit a transient introduction of Cys-Cys
interaction (on sites 6, 11, and 22) to stabilize the structure
while flipping the electrostatic residues (maroon cluster);
most introduce additional stabilizing electrostatic contacts

FIG. 1. Mutational paths for lattice proteins, joining sequences
white star = DRGIQCLAQMFEKEMRKKRRKCYLECD and black
star = RECCAVCHQRFKDKIDEDYEDAWLKCN belonging to the
family with structure shown in (b) and (c). Red and blue colors,
respectively, correspond to negatively and positively charged
amino acids. Cysteine is denoted by a green C. (a) Projections of
104 LP sequences in the family (gray dots) along the top two PC
of their correlation matrix. Red and maroon lines show some
representative paths sampled from Eq. (2). The relative numbers
of maroon (2) and red (10) paths respect the statistics over all
sampled paths. Parameter values: β ¼ 3, Λ ¼ 2, T ¼ 82. Sides:
histograms of projections along PC1 (top) and PC2 (right). Inset:
folding probabilities pnat along each path. (b),(c) The fold of the
LP family is stabilized by alternating configurations of charges.
(d),(e) Sequence logos of PC1 and PC2.
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along the path (red cluster). See Supplemental Material,
Sec. 4 [23] for details.
Mutational path sampling from data-driven models of

natural proteins.—We next show that our path sampling
procedure can be applied to natural proteins. We train a
RBM from MSA data of the WW family, a protein domain
binding specifically proline-rich peptides [11,34] and
sample mutational paths between the Human YAP1 domain
and three natural sequences known to have different
binding specificities [35]. Figure 2(a) shows some sampled
paths in the plane spanned by the inputs IðvÞ [Eq. (1)]
to two RBM hidden units chosen to cluster natural
WW sequences depending on their binding specifici-
ties [22]. Intermediate sequences have high probabilities
according to the RBM model, see Fig. 2(b). We then use
AlphaFold [36] to assess the quality of the intermediate
sequences; AlphaFold is able to predict the phenotypic
effects of few mutations [37], and to compare the resulting
structures to natural folds through template modeling
scores (TM score) [24], ranging from 0—unrelated
proteins—up to 1—perfect match. We obtain the TM score
>0.5, indicating a high similarity between the folds of
sequences sampled along the path and of natural WW, see
Supplemental Material, Sec. 5.3 [23] for details.
We next estimate binding affinities for each class using

ProteinMPNN [13], an autoregressive structural-based
probabilistic model that takes as input a backbone structure
of a protein-ligand complex and predicts the affinity score
of a putative protein sequence. Here, we use available
complexes of natural WW domains of binding classes
I, II/III, IV with their cognate peptides, see Fig. 2(c) and
Supplemental Material, Sec. 5.4 [23]. As expected, along
the I → II=III path the affinities to class I (respectively,
II/III)–cognate peptides decrease (increase), see Fig. 2(d).
Interestingly, Fig. 2(d) shows the existence of a region
on the I → IV path in which the predicted affinities with
respect to both complexes are high. It has been exper-
imentally shown that some natural WW domains belonging
to class I have also class IV activity [38]. This promiscuity
may be favored by the fact that class I and IV cognate
peptides bind two distinct loops of the WW domain
[Fig. 2(c)]. In Supplemental Material, Sec. 5.2 [23] we
corroborate these results by sampling more paths between
class I and IV. To further assess the specificity of sequences
on the sampled path, we train approximate class-specific
RBM models from sequences in the quadrants of Fig. 2(a),
see Supplemental Material, Sec. 3 [23]. The crossovers
between the log-likelihoods of the class-specific RBMs in
Figs. 2(e) suggests the presence of specificity switches
along the I → II=III and I → IV paths. The scores provided
by class-specific RBMs and ProteinMPNN are correlated
along the paths, see Supplemental Material Fig. S6 [23].
Mean-field theory of mutational paths.—To better char-

acterize the typical properties of mutational paths we resort
to mean-field theory, by formally sending N → ∞, while

keeping the number T of steps finite. To allow for OðNÞ
mutations between contiguous sequences we write the
transition factor in Eq. (2) as πðv; v0Þ ¼ e−NΦðqÞ, where
the potential Φ is a decreasing function of the overlap
(fraction of conserved amino acids between successive

FIG. 2. Mutational paths of the WW domain using RBM trained
on the PFAM PF00397 family, see Supplemental Material,
Sec. 3 [23] for details about implementation. (a) Natural sequences
v (gray dots) projected onto the plane of inputs Iμ (hereM ¼ 50) of
two hidden units clustering sequences according to the types of
ligands they bind [34]. Colored sequences: Experimentally tested:
I (cyan), II (red), III (orange), IV (green). Upper (Lower) triangles:
natural (artificial), from [38]. Circles: natural, from [39]. Blue cross
represents the YAP1 domain. Lines shows the projection of three
representative paths connecting YAP1 to a sequence in classes I
(circle), II (square), and IV (triangle). Intermediate sequences
(empty symbols) are listed in Supplemental Material, Sec. 5.1 [23].
Parameters: β ¼ 3, Λ ¼ 0.1.(b) Log PRBM for sequences along the
paths. (c) Complexes (WW domain and cognate peptides) for
classes I (blue cross) and IV (green triangle) [40]. Atoms
corresponding to the two binding pockets are highlighted. (d) Pro-
teinMPNN scores for binding affinity, see Supplemental Material,
Sec. 5.4 [23]. x axis measures the affinity to class I reference
structure while y axes show affinity to classes II/III (Top) and IV
(Bottom) reference structure respectively. (e) Log-likelihood along
the paths from I to II (Left) and from I to IV (Right) according to
class-specific RBMs trained on sequences in the three quadrants
(Solid: I, Dot-dashed: II/III, Dotted: IV).
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sequences) q ¼ ð1=NÞPi δvi;v0i . Φ controls the evolution-
ary dynamics along the path, and will be made pre-
cise below.
Mean-field theory exploits the bipartite nature of the

RBM architecture and allows us to monitor two sets of
order parameters characterizing the paths V: the mean
values of the hidden-unit inputs, mμ

t ¼ ð1=NÞhIμðvtÞi, and
of the overlaps, qt ¼ ð1=NÞPihδvi;t;vi;tþ1

i; here, h·i denotes
the average over PðVÞβ.
The T × ðM þ 1Þ order parameters mμ

t and qt are
determined through minimization of the path free-energy
density fpath, see Supplemental Material, Sec. 6 [23], with

fpathðfmμ
t g; fqtgÞ ¼ −

X
t;μ

½Γμðmμ
t Þ −mμ

t Γ0
μðmμ

t Þ�

þ
X
t

½ΦðqtÞ − qtΦ0ðqtÞ�

−
1

βN

X
i

lnZiðfmμ
t g; fqtgÞ: ð3Þ

Here, ΓμðmÞ ¼ ð1=NÞ ln R dh eNmh−UμðhÞ and Zi is the
following site-dependent partition function,

Ziðfmμ
t g; fqtgÞ

¼
X
fvtg

exp

�
β
X
t

giðvtÞ þ β
X
t;μ

Γ0
μðmμ

t ÞwiμðvtÞ

− β
X
t

Φ0ðqtÞδvt;vtþ1

�
: ð4Þ

Zi can be efficiently estimated through products of
transfer matrices, of sizes 21 × 21. While the expression
of fpath is exact for sequence length N → ∞, we show
below it is accurate even in the cases of LP (N ¼ 27) and
WW (N ¼ 31).
Choice of the elastic potential.—The potential Φ can

enforce continuity (Cont) requirements, e.g., successive
sequences along the path differ by, say, K mutations at
most, or mimic the evolutionary (Evo) dynamics of natural
sequences through stochastic mutations.
In the Cont scenario the potential Φ should forbid large

jumps along the paths. We thus consider a hard-wall
repulsive potential [Fig. 3(a)],

ΦContðqÞ ¼
ϕðTÞ

q − qcðTÞ
if qcðTÞ < q ≤ 1;þ∞ otherwise:

ð5Þ

The location of the hard wall, qcðTÞ ¼ 1 − γ=T, allows the
path to explore at most K ≡ T × Nð1 − qcÞ ¼ γN muta-
tions in T steps. Choosing γ ≥ D=N (D being the Hamming
distance between vstart and vend) is therefore sufficient to
interpolate between the two edge sequences, with larger

values of γ authorizing more flexible paths. The propor-
tionality constant ϕðTÞ ¼ 1=T2 is set to guarantee the
existence of a well-defined limit for large T.
In the Evo scenario, the potential should emulate Kimura’s

model of neutral evolution [25], while the Pmodel factors in
Eq. (2) correspond to selection. Denoting the mutation rate
(over a time interval corresponding to one step of the path)
by μ, the potential is given by [41]

ΦEvoðqÞ ¼ ð1 − qÞ ln
�
1þ A

eμA=ðA−1Þ − 1

�
; ð6Þ

where A ¼ 21 is the number of amino acids plus the gap
state; a derivation of ΦEvo can be found in Supplemental
Material, Sec. 8 [23]. This potential is linearly decreasing
with q, see Fig. 3(a).
Cont and Evo mean-field paths between class-specific

WW domains are shown in Fig. 3(b); both follow similar
traces in the specificity plane, in agreement with the paths
in Fig. 2(a). However, mutations are homogeneously spread
along the Cont path, with ≃Nγ=T mutations at each step
[Fig. 3(c)]. Conversely, the Evo path is highly hetero-
geneous, with some steps accumulating many mutations
and others barely any [Fig. 3(c)]; see Supplemental
Material, Sec. 6.1 [23] for the list of consensus sequences
computed with mean-field theory. Interestingly, most steps
along the Evo path I → IV are concentrated in the region
characterized by promiscuous sequences binding both

FIG. 3. Mean-field theory of mutational paths for the RBM
model trained onWW domain. (a) Sketches of the potentialsΦEvo
(black) and ΦCont (gray) vs q. (b) Same two-dimensional
representation as in Fig. 2(a) for the mean-field paths with
Evo (black lines) and Cont (gray lines) potentials. (c) Cumulative
numbers of mutations vs t. Here, μ ¼ 10−5 and γ ¼ 0.9, so that
the cumulative numbers match for t ¼ T. (d) Log-probability of
joining class I and class IV natural WW domains in T steps with
the profile (triangles) and RBM (circles) models. Jumps signal
the onset of several new mutations, e.g., 4 in the mean-field free
path at T ¼ 10.
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ligand classes as mentioned above. The linearity of ΦEvo
makes the transition probabilities π in P in Eq. (2)
independent of the location of mutations, concentrating
intermediate sequences in the region of highest fitness.
Mean-field based estimation of evolutionary distance.—

As an application of our mean-field approach we show how
it can be used to estimate evolutionary distances between
sequences with complex data-driven models, including
epistatic interactions between residues. The probability
that sequence vend is reached after T steps of stochastic
mutations with rate μ starting from vstart is given by

Pðvstart → vendjTÞ ∼ exp ½−Nðfconstrainedpath − ffreepathÞ�; ð7Þ

where fconstrainedpath is the free energy in Eq. (4) (with potential
ΦEvo) minimized under boundary conditions matching both
vstart and vend, while ffreepath is obtained by releasing the
boundary condition at the end extremity of the path. Details
on the numerical optimization are given in Supplemental
Material, Sec. 6.2 [23].
This probability can be computed as a function of T to

determine the optimal time (evolutionary distance) T� at
which it is maximal. For purely neutral evolution, ffreepath ¼ 0

and the probability Pðvstart→vendjTÞ can be exactly com-
puted; T� then coincides with the predictions of Kimura’s
theory of neutral evolution [25], see Supplemental
Material, Sec. 8 [23]. T� can also be easily computed
for profile models [14], where selection acts independently
from site to site, see Fig. 3(d) for an illustration of WW.
Our mean-field theory allows us to go well beyond profile
models, and to compute the probability P in the presence
of epistatic effects in the RBM model inferred from WW
sequence data. Figure 3(d) shows that the evolutionary
distance T� may then substantially differ from its profile
counterpart, showing the effectiveness of our mean-field
approach to deal with complex sequence models.
Conclusion.—Proteins with known (annotated) func-

tional specificity form a tiny subset of available sequences.
Learning accurate, generative class-specific models from
these limited data is generally not possible [42]. Our path-
based approach, inspired by evolutionary dynamics, cir-
cumvents this issue and offers an effective way to design
proteins interpolating between different functional sub-
classes without annotated sequences (apart the anchors
of the paths).
In addition, we have introduced a mean-field analysis of

paths generated by RBM, characterizing the trajectories of
the inputs to the hidden units and of the overlaps between
successive sequences. Mean field is a powerful computa-
tional scheme in the presence of strong interactions
between residues, e.g., to estimate evolutionary distances.
This result opens the way to ancestral reconstruction and to
the prediction of phylogenetic trees [14] with data-driven,
epistatic models.

A potentially interesting biological finding in our study
of the WW domain is that paths interpolating between
classes I and IV go through a region apparently deprived
of natural sequences, albeit corresponding to high RBM
likelihood [43] and high AlphaFold/ProteinMPNN scores
for both ligands (Fig. 2). While experimental investigations
are needed to check our finding, these intermediate
sequences are putatively unspecialized, and possibly sim-
ilar to ancestral proteins [6].
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