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Abstract
Computational protein design facilitates the discovery of novel
proteins with prescribed structure and functionality. Exciting
designs were recently reported using novel data-driven meth-
odologies that can be roughly divided into two categories:
evolutionary-based and physics-inspired approaches. The
former infer characteristic sequence features shared by sets of
evolutionary-related proteins, such as conserved or coevolving
positions, and recombine them to generate candidates with
similar structure and function. The latter approaches estimate
key biochemical properties, such as structure free energy,
conformational entropy, or binding affinities using machine
learning surrogates, and optimize them to yield improved de-
signs. Here, we review recent progress along both tracks,
discuss their strengths and weaknesses, and highlight oppor-
tunities for synergistic approaches.
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Introduction
Recent years have witnessed tremendous developments

in computational protein design methodologies,
following two parallel tracks: evolutionary-based design
and physics-inspired design. The former has been pro-
pelled by (i) increasingly fast sequencing and homology
www.sciencedirect.com
detection methodologies, allowing the constitution of
large sequence databases, such as Uniprot [1], struc-
tured into families of evolutionary-related proteins, such
as PFAM [2], and (ii) novel unsupervised machine
learning approaches for generative modeling of se-

quences (see review by Wu et al. [3]). The latter have
been stirred by the emergence of a variety of deep
learning models for predicting properties of proteins
from sequence, structure, or both (see review by
Ovchinnikov and Huang [4]). Such prediction-based
design protocols are highly appealing compared to
traditional physics-based protein design protocols based
on e.g. Rosetta or FoldX. Indeed, they circumvent two
fundamental challenges of physics-based methods: (i)
the necessity to extensively sample the structure
conformation space to estimate thermodynamic quan-

tities and (ii) the high computational cost of exploring
the vast sequence space. Although evolutionary-based
and physics-inspired machine learning methodologies
are not systematically combined, they are highly syner-
gistic in multiple aspects. Accordingly, the comple-
mentarity between evolutionary and physical modalities
was successfully demonstrated for non-machine
learning-based methods (see reviews by Marques
et al., 2021 and Weinstein et al., 2020 [5,6]) (Figure 2).

Here, we will review recent achievements for both

evolutionary-based and physics-inspired methods with
an emphasis on experimentally validated works. We will
discuss the current limitations of both approaches and
complementarities between them. Finally, we will
review recent works combining both approaches and
highlight possible future directions.
Evolutionary-based design
Numerous design protocols involve the modification of a
preexisting natural protein toward improved or novel
functional properties. Significant optimization of the
target property(ies) requires exploring sequences
harboring many mutations from the wild-type protein.
However, it is estimated that up to 50% of single-point
mutations are deleterious [7] for function, leading to
exponentially decreasing success rates when mutating

multiple sites. One solution is to restrict the search to
mutations or combinations of mutations previously
encountered, or likely to be encountered, throughout
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Figure 1

Main steps of evolutionary-based design. Starting from an amino-acid sequence, homologous sequences are retrieved from sequence databases and
a multiple sequence alignment (MSA) is constructed. MSAs feature various evolutionary patterns, including conservation, pairwise coevolution, and high-
order coevolution, that reflect structural and functional constraints. Unsupervised machine learning distills fitness landscapes and representations from
the evolutionary patterns, which, in turn, can be used for design.

Figure 2

Main steps of physics-inspired design. Starting from a (partially or fully prescribed) target structure, one first builds a featurized representation suitable
for relevant deep learning algorithms. Next, two complementary approaches are possible. First, sequence-to-structure prediction algorithms can be
leveraged to build proxies for the free energy landscape. The latter is then used to design a sequence whose free energy minimum lies at the target
conformation. Second, structure-to-sequence algorithms can be used to generate suitable sequences from structure. They rely on a matching score
between target and sequence that can be optimized to find suitable sequences.

2 Theory and simulation/computational methods (2023)
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Synergistic approaches for protein design Malbranke et al. 3
the natural evolution of the protein. The evolutionary-
based design consists of three main steps: (i) the
collection and alignment of a set of sequences homolo-
gous to the wild-type protein that share similar structure
and function, (ii) the construction of a statistical/ma-
chine learning model that captures common patterns
shared between these sequences, such as conservation
and coevolution, and (iii) the generation of artificial

sequences that are distinct from natural ones but pre-
serve the common patterns.

While early models, such as position-specific scoring
matrices (PSSM), solely focused on capturing site-
specific amino acid frequencies, increasingly complex
statistical models based on self-supervised machine
learning have been developed. The direct coupling
analysis (DCA) method captures both single-site and
pairwise correlations [8e10] arising from coevolution,
allowing modeling of epistatic effects and drastic

reduction of the search space. For instance, Russ et al.
[11] designed with DCA hundreds of diverse chorismate
mutase enzymes with native-like functionality, with a
high success rate (w30%). Based on the entropy of the
sequence distributions, they estimated that 1085 of all
10125 possible sequences with the same length were
potential design candidates based on a single-site
model, whereas only 1025 were suitable when including
pairwise correlations.

Recent works investigated various neural network-based

machine learning generative models (Box 1) [12e18],
achieving successes in various enzyme and nanobody
design tasks. These networks have more flexible proba-
bility distributions than PSSM or DCA models, allowing
integration into the model of higher-order MSA
Box 1. Generative models, autoregressive models, and representatio

Generative models are parametric probability distributions over a high-d
P

s
PqðsÞ ¼ 1. The set of parameters theta are learned from the data by

amounts to assigning high probability to observed sequences and low els
generated by drawing samples from the probability distribution.

Autoregressive generate models are a special class of generative mode
distributions Pqðsj

�
�s<j Þ are parameterized by neural networks. Autoregres

above, or, more efficiently, by masked modeling. The latter consists of m
(10–20%) and predicting their value from the remaining unmasked pos
enables learning of the interdependencies between the variables. After tra
acid of a sequence given all the previous ones.

A representation is any deterministic mapping RðSÞ from one high-dim
typically lower dimension. Representations are especially useful for mod
(e.g. probability density, biological fitness, substrate specificity, and phylog
smooth function (Figure 1:4, lower panel). This contrasts with the original
large changes of the properties (e.g. a single mutation can abolish func
pervised learning, by parameterizing the target function f ðSÞ (probability
dimensional representation and fR is smooth and trainable.
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statistics, such as the co-occurrence of amino acid n-
uplets. Importantly, some of these methods also learn a
continuous, low-dimensional latent space representation
of the protein. Unlike in the original sequence
spacedwhere single-point mutations may reduce the
probability and abolish functiondsmall motions in latent
space generally preserve the probability and function.
Thus, it is easier to navigate and learn sequence/function

associations in such “hole-free” landscapes. In Ref. [19],
Biswas et al. leveraged the latent representation of a
language model (see below) and small-scale experi-
mental data to design improved GFP variants. Lian et al.
[20] used a variational autoencoder (a representation-
based generative model) to generate synthetic se-
quences of yeast SH3 domains and evaluated their ability
to replace a native SH3 domain in vivo. They found that
most of the sequences with native-like functionality
mapped to a local, convex region of the latent space.

Beyond the direct generation of novel protein sequences,
evolutionary models can also predict fitness-improving
mutations [12,21], guide library design for large-scale
screening experiments [22,23], or, conversely, infer
fitness landscape from directed evolution experiments
[24].

One drawback of such family-level models is that they do
not generalize across protein families and as such can only
be applied to protein families that include a large number
of sequences. This is particularly problematic for proteins

only conserved in eukaryotes. One possible avenue for
overcoming these limitations is protein language models,
as they can simultaneously model unrelated sets of pro-
tein sequences. Trained on large, unannotated databases
of protein sequences, such as UniClust [25] or BFD [26],
ns

imensional space of the form PqðsÞ, such that PqðsÞ > 0 for all S and
maximizing the average log probability <log PqðsÞ>. Informally, this
ewhere (Figure 1:4, upper panel). After learning, new sequences are

ls of the form PqðsÞ ¼ Pqðs1ÞPqðs2js1ÞPqðs3js1;s2Þ:::. The conditional
sive models can be trained by maximizing the maximum likelihood as
asking (i.e. replacing by a placeholder) a random subset of positions
itions, via the conditional distributions. Informally, masked modeling
ining, samples are generated by recursively sampling the next amino

ensional space (e.g. the sequence space) to a continuous space of
eling proteins sequences when key properties f ðSÞ of the sequences
eny) can be well approximated as fRðRðSÞÞ, where fR is a continuous,
sequence space, where small changes in the sequence can result in
tion). Representation can be learned either via unsupervised or su-
or biochemical property) as fRðRðSÞÞ; where RðSÞ is a trainable low-
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protein language models (e.g., UniRep [14], ProGen [27],
ESM-1b [28], ProVis [29], ProtTrans [30], and Protein-
BERT [31]) are trained to reconstruct a sequence from a
corrupted version with w10e20% of the residues
masked or randomly mutated, or to predict the next
amino acid of a protein sequence given the previous ones.
MSA context can also be provided (MSATransformer
[32]). A general understanding of protein chemistry

emerged from masked language modeling, such as simi-
larities between amino acids, secondary structure ele-
ments, or tertiary contacts. The models can then be
further fine-tuned to account for specifics of protein
families, even for families with low number of sequences
and/or diversity [14,33]. Madani et al. [33] used the
ProGen2 language model, fine-tuned and conditioned on
natural lysozyme families to design novel lysozymes with
native-like function (66/90 of the designs) and/or low
sequence identity to natural proteins (<40%). They
further reported that both pre-training and fine-tuning

were important for accurate activity prediction. In
Ref. [34], Hie et al. used the ESM-1b language model to
propose single-point mutants of various antiviral anti-
bodies with reduced reconstruction error. After experi-
mental characterization and recombination of the best
mutants, they found that the binding affinity could be
improved for 4/7 of the tested antibodies.
Physics-inspired methods
The protein design problem amounts to finding a
sequence with low free energy in prescribed conforma-
tional state(s) (as a monomer structure, in complex with

ligands). Classically, this is achieved by (i) defining a
tractable approximation of the free energy and (ii)
minimizing it over the sequence. A common validation
metric of design protocols is their sequence recovery
rate: starting from the structure of a protein, its
sequence-defined side chains are stripped, and a novel
sequence is reconstructed from the remaining backbone
atoms. The sequence recovery rate is the average
sequence identity between the designed and original
sequence: high values indicate that the structure-
induced constraints on sequence are well recapitulated

by the protocol.

Toward this end, a myriad of approximate physical force
fields has been developed for protein design applica-
tions, including Rosetta [35,36] or FoldX [37]. These
force fields are, however, heuristics that do not faithfully
account for the underlying quantum dynamics and the
ability of the sequence to effectively fold into said
structure from an unfolded state. Moreover, evaluating
the free energy further involves a thorough exploration of
the conformation state beyond the target states. Limi-

tations of force field-based protein design include high
computational cost (slow and inefficient Monte Carlo-
based optimization), unsatisfactory sequence recovery
Current Opinion in Structural Biology 2023, 80:102571
rates from backbone structure (30e50%), and limited
experimental success rate.

Recent progresses in machine learning-based structure
prediction algorithms from sequence have opened the
way to novel design paradigms. Deep learning models,
such as RaptorX [38], AlphaFold1 [39], or trRosetta
[40], predict various geometric features of protein

structures from multiple sequence alignments, such as
contacts, backbone dihedral angles, pairwise distance
matrices, or angles between residue frames. Then, the
model-computed negative log probability of the features
of a conformation defines an effective potential that can
be minimized to fold the protein. By analogy with the
GibbseBoltzmann ensemble, this effective potential
can be interpreted as the free energy of the folded state.
This approximation bypasses the requirement to
extensively sample the conformation space for free
energy estimation [37]. Fixed-backbone design pro-

tocols based on trRosetta [37], AlphaFold2 [41], and
language models [42] were recently proposed and
experimentally validated. For binder design, binding
free energy proxies can be similarly constructed: Gainza
et al. [43,44] use a DL-computed matching score be-
tween molecular surface patches to design de novo mini-
binding proteins.

What if the target conformation is partially or fully un-
specified? Sequences with well-defined conformation
can be similarly designed by minimizing the conforma-
tional entropy rather than the free energy. In these so-
called hallucination protocols (initially introduced by
DeepDream in the field of Computer Vision), the
conformational entropy is quantified by the uncertainty
of the structure prediction models. This is motivated

here by the observation that low-confidence structure
predictions often correspond to disordered regions of
proteins [45]. Hallucination protocols based on trRo-
setta [46], AlphaFold2, and RoseTTAfold were recently
proposed [47,48].

Following these approaches, several groups have suc-
cessfully designed proteins with fully specified [49,50]
or de novo backbone structures and constructed folds
around functional motifs [47,51]. A potential limitation
is sequence diversity and amino acid compositional bias.
Indeed, amino acids with versatile conformations (e.g.
multiple side-chain torsion angle) and thus inherently
uncertain structures are unfavored in such confidence-
maximization protocols. Thus, these design protocols
may not encompass the full diversity of sequences that

can effectively adopt a target fold. Another weakness of
these protocols is the potential existence of “adversarial”
optima: sequences with highly confident predictions for
one model but not another, which “trick” the network
rather than solve the design problem [52].
www.sciencedirect.com
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Alternatively, one can try to directly predict suitable
sequences for a given fold, the so-called inverse folding
problem. Unlike the folding problem, many sequences
can adopt the exact same fold; hence, a distribution of
sequences should be constructed. One approach is to
“thread” a sequence along the target backbone, calculate
a compatibility score between the sequence and the
backbone, and iteratively mutate it to improve its score.

Using a 3D-convolutional neural network, Anand et al.
[53] predict possible amino-acid substitutions and
corresponding rotamer states from current structure and
iteratively mutate the protein to generate diverse se-
quences folding into a TIM-barrel. A second approach is
to directly build a tractable distribution of sequences
that can be easily sampled from: autoregressive genera-
tive models based on coarse-grained, graph-based rep-
resentation of the protein backbone allow the generation
of a full sequence in a single pass [54e59]. These
models achieve higher sequence recovery rates and are

much less computationally intensive than force field-
based approaches. They have been proposed for fixed-
backbone monomer design [60] as well as multimers
[61] and antibody design [62,63]. Recently, Dauparas
et al. [59] successfully designed various proteins using an
autoregressive message-passing neural network.

Despite recent progress, these approaches still have
some scope limitations: by construction, they are not
suitable for modeling disordered proteins or segments.
Fine-tuning of allosteric motion or catalytic activity re-

mains a major challenge, as these models are trained on
static structures and are coarse-grained. Another source
of concern is that these models are increasingly
diverging from physics: for instance, AlphaFold implic-
itly assumes the presence of molecular cofactors, post-
translational modifications, or protein partners to prop-
erly fold a structure [64,65]. Thus, highly confident in
silico predictions may prove false in experimental con-
ditions, and the identification of model-derived
matching scores to target physical properties is not
always correct. For instance, some of the proteins
designed by the trRosetta-based hallucination protocol

[46] formed homo-oligomers or aggregates in-vitro,
despite being predicted as monomers in silico.
Synergistic methods
Evolutionary-based and physics-inspired approaches

are highly complementary for both coverage and scope,
and they have been used together extensively in clas-
sical protein design pipelines [5,6]. While physics-
inspired models predict general biochemical proper-
ties (stability of the monomer and protein-ligand or
proteineprotein complexes), evolution-based methods
learn various family-specific functional constraints in an
agnostic fashion, including stability or catalytic activity,
but also allosteric couplings [66] or specification of
homo-oligomer state [67]. Thus, it is appealing to
www.sciencedirect.com
combine both methods for optimal success rate. This
can be achieved in multiple ways.

First, the evolutionary model can be used to rapidly
generate diverse sequence libraries, and then, candi-
date sequences would be prioritized based on the
scores obtained from more computationally intensive
physics-inspired models. Examples include the PROSS

and FUNCLIB web servers, which use Rosetta and
PSSM information to automatically redesign enzymes
toward increased stability or modified catalytic activity
[68,69]. Tran et al. and Das et al. designed, respec-
tively, cell-penetrating and antimicrobial peptides
using generative models combined with molecular dy-
namics [70,71].

This simple approach is sufficient if a substantial frac-
tion of evolutionary-designed sequences has satisfactory
physical scores. Otherwise, multi-objective optimiza-

tion/Monte Carlo sampling may be necessary to
generate sequences that have both high evolutionary
likelihood and physical score. The Rescue protocol
redesign sequences by optimizing a weighted sum of the
Rosetta energy and the evolutionary score estimated by
a Potts model [72].

An open question is whether separate physical and
evolutionary models are necessary. Instead, could one
learn physical interactions from evolution, and recipro-
cally, to predict evolution from structure? A promising

direction is to train joint models of MSA and structure,
adapted from language and structure prediction models
[73,74]. Other options could include the fine-tuning of
structure-based generative models using evolutionary
information, or, conversely, the regularization of evolu-
tionary models using structural information.

Should we always restrict the search space for solving a
given design problem to the vicinity of a specific pro-
tein family? Indeed, recent design approaches based on
pan-family, transformer-based sequence generative
models [60], diffusion-based structure generative

models [75], and joint sequence/structure diffusion-
based generative models [66] enable search beyond a
specific family. The latter showed impressive successes
in vitro for monomer and binder design. If (i) the
design problem is well-defined in terms of target
properties (e.g. thermostability, binding affinity to a
target,... etc.), (ii) the target properties can be faith-
fully approximated in silico, and (iii) efficient explora-
tion algorithms exist, and then increasing the search
space is a promising strategy. Otherwise, restricting the
search space to the vicinity of a protein family is

desirable, especially if the problem is ill-defined
(e.g. finding a “human-like” protein with improved
thermostability and catalytic efficiency for gene ther-
apy [76], redesigning a yeast SH3 domain while pre-
serving its cellular protein interactions [20]).
Current Opinion in Structural Biology 2023, 80:102571
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Summary and futures directions
In summary, evolutionary-based and physics-inspired

approaches have undergone drastic improvement in
the last years, enabling unprecedented success rates and
democratization of protein design. However, important
challenges remain.

Regarding evolutionary-based models, more efforts are
required to develop models that can generalize among
protein families, while maintaining computational
tractability (for accessibility to the whole community),
interpretability, and well-defined sampling protocols.
Incorporation of known structural information as priors,

for example, using structure-aware transformer models,
such as EvoFormer [41] (where the structure is pro-
vided as template), is another interesting direction.
Moreover, training protocols of evolutionary models
should better account for phylogenetic relations be-
tween samples. In Ref. [77], Weinstein et al. argue
that fitness prediction performances may plateau or
decrease as model complexity increases without proper
treatment of phylogenyda phenomenon very recently
observed with language models [78]. A conceptual and
practical limitation is the entanglement of evolutionary

constraints: current models do not have the ability to
selectively discard specific constraints that are relevant
in vivo but not for engineered proteins (e.g. requirement
to bind inhibitor protein(s), adequacy to specific
cellular compartment, etc.). Conversely, proteins that
are evolutionary fitted at the family level may not be
suitable for a specific biochemical task (e.g. they may
bind a related ligand, but distinct from the prescribed
one).

Physics-inspired methods have made impressive prog-

ress for the design of monomers and oligomers with fully
or partially specified structure. In particular, spectacular
improvements in success rates were reported for the de
novo binder design problem [75,79], although subse-
quent in vitro-directed evolution remains the norm
[43,74]. Altogether, finding sequences that adopt a well-
defined conformation is becoming easier. On the other
hand, modeling of flexible regions, such as immuno-
globulin loops or peptides, catalytic sites (which require
fine-grained description of intermediate catalytic
states), or allosteric motions, remains challenging.

Another key challenge is to better characterize the
in vivo behavior of these designed proteins (e.g. off-target
distribution of protein binders, lifetime, and immuno-
genicity). Future developments of ML-based molecular
dynamics [80] and neural force fields docking algo-
rithms, such as the recent DiffDock [81], could open up
the way to a better understanding of these functions.
Extensions to other types of ligands, such as ions, nu-
cleotides, or small organic molecules, are also important
future directions.
Current Opinion in Structural Biology 2023, 80:102571
While synergistic approaches have been widely suc-
cessful for non-ML design protocols [5,6], most recent
ML-based studies considered either of the approaches.
Yet, evolutionary-based and physics-inspired modeling
are highly complementary, and combining them through
simple proposal/acceptance or joint optimization pro-
tocols should lead to higher success rates for challenging
design problems. In the longer run, models predicting

MSAs from structures or, conversely, structure-based
priors [82,83] for evolutionary models may allow over-
coming the current limitations of each approach.
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