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Abstract. Understanding the role of regularization is a central question in
statistical inference. Empirically, well-chosen regularization schemes often dra-
matically improve the quality of the inferred models by avoiding overfitting of
the training data. We consider here the particular case of L2 regularization in the
maximum a posteriori (MAP) inference of generative pairwise graphical mod-
els. Based on analytical calculations on Gaussian multivariate distributions and
numerical experiments on Gaussian and Potts models we study the likelihoods of
the training, test, and ‘generated data’ (with the inferred models) sets as func-
tions of the regularization strengths. We show in particular that, at its maximum,
the test likelihood and the ‘generated’ likelihood, which quantifies the quality of
the generated samples, have remarkably close values. The optimal value for the
regularization strength is found to be approximately equal to the inverse sum
of the squared couplings incoming on sites on the underlying network of inter-
actions. Our results seem to be robust against changes in the structure of the
ground-truth underlying interactions that generated the data, when small fluc-
tuations of the posterior distribution around the MAP estimator are taken into
account, and when L1 regularization is considered (instead of L2). Connections
with empirical works on protein models learned from homologous sequences are
discussed.
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1. Introduction

Data-driven modeling is now routinely used to address hard challenges in an increas-
ing number of fields of science and engineering for which first-principle approaches
have limited success. Applications include the characterization and design of complex
materials (Schmidt et al 2019), shaped by the pattern of strong and heterogeneous
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interactions between their microscopic components. Performance of data-driven mod-
els strongly depends on the choice of their hyperparameters, such as the architecture,
and the strengths of the regularization penalties. These parameters are generally set
through empirical procedures, such as cross-validation with respect to a goodness-of-fit
estimator. Unfortunately, this common approach often offers no insight about why these
values of the parameters are optimal, and may not guarantee that the obtained mod-
els are well-behaved with respect to other estimators. This paper reports some efforts
to address these issues for the specific case of L2-norm regularization and probabilistic
graphical models.

Probabilistic graphical models rely on the inference of the set of conditional depen-
dencies between the variables under study, which, in turn, may be used to generate new
configurations of these variables (MacKay 2003). Regularization allows the graph of pair-
wise conditional dependence to satisfy some properties of interests, such as to be sparse
or to have dependence factors bounded from above. While the effects of finite sampling
and of regularization on the estimation of the covariance matrix have been extensively
studied in the statistics community (Ledoit and Wolf 2004, Huang et al 2006, Karoui
2008, Ravikumar et al 2011) fewer efforts have been devoted to the characterization of
the generative performance of the inferred models, which are however crucial in many
applications. One of these applications is the modeling of proteins based on homologous,
i.e. evolutionary related sequence data. Unveiling the relations between the functional
or structural properties of a protein and the sequence of its amino acids is a difficult
task. Graphical model-based modeling consists of inferring a graph of effective inter-
actions between the amino acids, which reproduce the low-order (one- and two-point)
statistics in the sequence data; for reviews, see Cocco et al (2018) for protein modeling
and Chau Nguyen et al (2017) for general inference of graphical models with discrete
variables. In practice, for proteins with few hundreds of amino acids, tens of millions
of interaction parameters have to be inferred. To avoid overfitting, regularization of
those interactions, often based on pseudocounts, or L1- and L2-norms are generally
introduced, with intensities varying with the optimality criteria chosen by the authors
Barton et al (2014), Haldane and Levy (2019). For instance, Ekeberg et al chose regu-
larization strength scaling linearly with the number of data (sequences) (Ekeberg et al
2013, 2014) to maximize the quality of structural predictions. Hopf et al chose linear
scaling with the dimension of the data (sequence length) and with the number of possi-
ble amino-acid types (generally, q = 20) for predicting the fitness effects resulting from
mutations along the sequence (Hopf et al 2017). The rationale for these scalings and
what they tell us about the underlying properties of the protein system remains unclear.
In addition, whether these scalings are appropriate for generating new data points, i.e.
for the design of new protein sequences having putative properties is not known, and
other regularization schemes have been proposed (Barrat-Charlaix et al 2021)

In the following, we propose to study the role of regularization in the inference
process, replacing Potts models by multivariate Gaussian models in order to make the
problem analytically tractable in some limiting cases. We show that two natural defi-
nitions for the optimal values of the regularization strength are in practice very close
to one another, and that their common value can be related to the amplitude of the
ground-truth interactions, in agreement with experimental observations. Our paper is
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organized as follows. In section 2, we introduce the Gaussian model and the regulariza-
tions of interest. Numerical results are reported in section 3. Section 4 is devoted to the
analytical studies of the poor and excellent sampling limits. Last of all, some conclusions
and perspectives are drawn in section 5.

2. Gaussian vectors model and regularization

2.1. Expression of likelihood in the large-size limit

In order to be able to model distributions over n-dimensional vectors, we consider first
the multidimensional Gaussian distribution, often referred to as Gaussian vectors or
spherical model. In the following, we will only consider the case of centered Gaussian
vectors, for which the mean value of each component vanishes and the probability density
is given by:

p(x) =
1√

(2π)n det(C tr)
e−

1
2x

T(C tr)−1x, (1)

where C tr is the n × n-dimensional covariance matrix. Alternatively we may define the
underlying data distribution through an interaction matrix J tr, which represents the
interaction strength between the variables (vector components). This interaction matrix
J tr is related to the true covariance matrix C tr of the data through

C tr = (µtrI− J tr)−1, (2)

where µtr was introduced to impose the spherical normalization constraint Tr(C tr) = n.
Denoting as (jtr

1 , . . . , jtr
n ) the eigenvalues of J tr, the normalization condition can be

written, in the large n limit, as

1 − 1

n

n∑

k=1

1

µtr − jtr
k

= 0. (3)

As the covariance matrix is non-negative we are looking for the unique value of µtr in
[maxk{jtr

k }, +∞] that satisfies this equation.
In the following, we will be interested in inferring the interaction matrix J tr from an

empirical approximation C emp of the correlation matrix obtained using p = αn samples1

(x 1, . . . , x p) as:

∀(i, j) ∈ [1, n]2, C emp
i,j =

1

p

p∑

k=1

xk
i x

k
j . (4)

We define the posterior density of probability of any interaction matrix J given the
empirical covariance matrix C emp,

p(J|C emp) = e−n E(J), (5)

1 We here insist on the fact that our notation is standard for physics, and opposite to the one in statistics, where n usually denotes
the number of samples and p the number of features.
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where the energy function E(J ) reads

E(J) = −α

2
Tr(JC emp) + α log Z(J ) +

γ

4
Tr(J 2). (6)

In the expression above the first two terms correspond to the standard likelihood of a
given Gaussian model given the empirical covariance, while the last term expresses
a penalty on the L2 norm of the inferred interaction matrix. The strength of this
regularization is controlled by the parameter γ.

The partition function Z(J ) of the so-called spherical spin model reads

log Z(J) =

∫

x∈Rn

δ(x 2 = n) e
1
2

∑
i(=jxiJijxj

n→∞∼ n min
µ

(
µ

2
− 1

2n
log(det(µI− J))

), (7)

to the dominant order in n. The parameter µ can be interpreted as a Lagrange multiplier,
introduced to impose the spherical constraint Tr(C ) = n, which corresponds exactly to
the normalization condition (3) but with the eigenvalues of the true interaction matrix
jtr replaced by the ones of J .

Our goal will be to minimize the energy (6) with respect to the interaction matrix
J ; the matrix J ∗ minimizing the energy will be called inferred matrix and will be our
primary object of study. We also define µ∗ the Lagrange multiplier imposing the spherical
constraint on this inferred model, and C ∗ the covariance matrix of the inferred model.
For reference, we define in table 1 all the different quantities that we will be considering
and their associated notations.

2.2. MAP estimator of the interaction matrix

When γ is equal to 0, the regularization disappears and the maximum likelihood esti-
mation of J ∗ is exactly equal to the one computed from the empirical covariance C emp;
when γ goes to infinity, the regularization becomes so strong that the inferred interac-
tion matrix is exactly equal to 0; in the general case of finite γ, we find J ∗ by computing
∂E
∂J (J ∗), which yields the maximum a posteriori (MAP) equation:

γJ∗ − αC emp + α(µ∗I− J ∗)−1 = 0. (8)

According to equation (8) the inferred interaction matrix J ∗ is diagonal in the same
vector basis as the empirical covariance matrix C emp. It is therefore possible to rewrite
this equation in terms of the eigenvalues (respectively, j∗, cemp) of those matrices2:

γ j ∗2 − (γµ∗ + αcemp) j ∗ + α(µ∗cemp − 1) = 0. (9)

2 Because of equation (8), we know that to each eigenvalue of the empirical covariance matrix corresponds exactly one eigenvalue
of the inferred interaction matrix.
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Table 1. All quantities used in the inference procedure. Please note that the empir-
ical covariance matrix C emp and its eigenvalues are stochastic quantities for a given
underlying interaction model J tr (since they depend on the exact samples drawn).
Additionally, we will assume the eigenvalues c to be ordered from largest to small-
est, and denote with a lower-index k both cemp

k (the kth largest eigenvalue of C emp)
and j∗k the corresponding eigenvalue of J ∗ (see equation (10)).

Symbol Quantity

I The identity matrix
n Dimension of the Gaussian vectors
p Number of samples
α Sampling ratio p/n
γ The strength of the L2 penalty
J Dummy variable standing for an interaction matrix
C Dummy variable standing for a covariance matrix
J tr True interaction matrix of the underlying model
C tr True covariance matrix of the underlying model
C tr,rot True covariance matrix, in the diagonalizing basis of C emp

ctr An eigenvalue of the true covariance matrix
µtr Lagrange multiplier imposing the spherical constraint on J tr

C emp Empirical covariance matrix obtained from p = αn samples
cemp Eigenvalue of the empirical covariance matrix
J ∗ Interaction matrix obtained from MAP inference
j∗ Eigenvalue of the MAP inferred interaction matrix
µ∗ Lagrange multiplier imposing the spherical constraint on J ∗

Since the discriminant ∆ = (αc emp − γµ∗)2 + 4αγ ! 0, the eigenvalue j∗(cemp) always
exists in R and is found to be equal to:

j∗(cemp) =
1

2γ

(
αcemp + γµ∗ −

√
(αc emp − γµ∗)2 + 4αγ

)
. (10)

It should be noted here that this is in fact a self-consistent equation: µ∗ is used to
compute the eigenvalues j∗, which in turn are used to compute µ∗. In order to solve it,
we consider µ∗ to be a free parameter and make the expression of the inferred eigenvalues
depend on two variables j∗(cemp, µ∗). Introducing the corresponding expression into the
normalization condition (3), we find that µ∗ is the only root3 of the residual function:

Resnorm (µ) = 1 − 1

n

∑

k

1

µ − 1
2γ

(
αcemp

k + γµ −
√

(αcemp
k − γµ)2 + 4αγ

) . (11)

In practice, the optimization of this residual is performed numerically in Python
using the Van Wijngaarden–Dekker–Brent method (Brent 2013), implemented within
the SciPy package (Virtanen et al 2020). After obtaining the value of µ∗, the inferred

3 It can easily be shown that ∂j∗(cemp)/∂µ∗ is always positive; since j∗(cemp, µ) < µ, we have that Res(µ) is well-defined for all
values of µ; ∂Res(µ)/∂µ is always positive and therefore Res(µ) is monotonically increasing from −∞ when µ →−∞ to 1 when
µ → +∞, ensuring the unicity of the root.

https://doi.org/10.1088/1742-5468/ac650c 6
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interaction matrix J ∗ is obtained by computing its spectrum through equation (10)
and changing the basis back from the inference basis (which diagonalizes the empirical
covariance C emp) to the original basis (in which the true interaction J ∗ was defined).

2.3. Likelihoods of the training, test, and generated sets

In order to be able to compare the quality of the inferred interaction matrix J ∗ as a
function of the different parameters of the system (namely, α, γ and the true interaction
matrix J tr) the first interesting quantity to define is the training likelihood:

Ltrain =
1

p

p∑

k=1

[
1

2

∑

i,j

J∗
ij xk

i x
k
j − log Z(J ∗)

]

, (12)

which directly quantifies how well the examples of the training set are fit by the MAP
estimator J ∗. By performing the summation over the sample index k, the likelihood can
be rewritten as a function of the empirical covariance matrix C emp:

Ltrain =
1

2

∑

i,j

J∗
ijC

emp
ij − log Z(J ∗). (13)

A similar reasoning can be performed, this time considering the case where an infinite
number of samples are drawn from the true underlying distribution (meaning that Cemp

is replaced by C tr), corresponding to the average test error on samples independent of
the training ones. This leads to the definition of the test likelihood:

Ltest =
1

2

∑

i,j

J∗
ijC

tr
ij − log Z(J ∗). (14)

Finally, one can also consider the likelihoods of a ‘generated set’ of examples drawn using
the inferred interaction matrix, with respect to this same inferred interaction matrix J ∗:

Lgen =
1

2

∑

i,j

J∗
ijC

∗
ij − log Z(J∗). (15)

It is possible to rewrite the ‘generated’ likelihood using the MAP equation:

Lgen =
1

2

∑

i,j

J∗
ijC

∗
ij − log Z(J ∗) =

1

2

∑

i,j

J∗
ij

1

µI− J ∗

∣∣∣∣∣
ij

− log Z(J ∗)

(8)
=

1

2

∑

i,j

J∗
ij

(
C emp

ij − γ

α
J ∗

ij

)
− log Z(J ∗) = Ltrain −

γ

2α

∑

i,j

J∗
ij

2.

(16)

This form of the generated likelihood can be interpreted as a form of bias-variance trade-
off: if an increase in the magnitude of the couplings is necessary to better fit the training
set, it will increase the variance of the generated data and consequently decrease the
generated set likelihood.

https://doi.org/10.1088/1742-5468/ac650c 7
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2.4. Generic dependence of the likelihoods upon regularization strength

Figure 1 is a sketch of the typical behaviors expected for the three log-likelihoods defined
above as the regularization strength γ is varied:

• For weak regularization i.e. γ close to zero MAP inference is unconstrained, and
the inferred covariance coincides with the empirical one. The value of the training
likelihood is large, as the details of the training set are fitted. Consequently, the
inferred model has poor generalization capability, and the test log-likelihood has a
low value. This is a situation of overfitting. Generated data look like training data,
so the generated likelihood is large.

• For strong regularization, i.e. large γ the regularization term in the energy becomes
more important than the likelihood term, so that the MAP estimator J ∗ tends to
zero; this is a case of under fitting , as the training, test, and generated likelihoods
will be low. When γ goes to infinity, the three likelihoods converge to a common
value,

L(γ →∞) = −n

2
. (17)

• In-between those two regimes, i.e. for intermediate values of γ the training likeli-
hood is monotonically decreasing with γ, reflecting the increasing bias toward small
couplings, and so is the generated likelihood. The test likelihood displays a non-
monotonic evolution, and reaches a maximum for some regularization penalty γopt.
The presence of γ biases the inference, but also reduces its variance, and hence allows
for better generalization of the model to unseen examples. While the test likelihood
always remains smaller than the training likelihood (the model cannot generalize
better than it fits the available data), the test and generated likelihoods do cross at
a certain value γcross, see figure 1. This can be understood by noting that the inferred
couplings J ∗ will scale as γ−1 for large γ, see equation (8), and so will the generated
correlations C ∗, leading to a γ−2 scaling for

∑
i,jJ

∗
ijC

∗
ij. Conversely, the empirical

correlations do not depend on γ, therefore
∑

i,jJ
∗
ijC

emp
ij scales as γ−1, which implies

that Ltest decreases much slower than Lgen (figure 1). Since those two functions share
a common limit when γ goes to infinity, there exists a large range of values of γ in
which the generated likelihood is lower than the test likelihood.

In the following we will study, through numerical experiments and analytical
calculations the behavior of these two regularization strengths of interest, and their
dependence on the model defining parameters (number p of samples compared to
the size n, structure of the coupling matrix, . . . ).

3. Numerical experiments

3.1. Gaussian vectors model

In order to study the dependence of γopt, γcross with the different parameters, we
implemented the MAP inference procedure in Python (the code is available on GitHub).

https://doi.org/10.1088/1742-5468/ac650c 8
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Figure 1. Sketch of the expected behaviors of the likelihoods vs regularization γ,
and definitions of the two values of interest: γcross, for which the test and generated
likelihoods are equal; γopt, for which the test likelihood is maximal. The difference
between optimal and crossing likelihoods is strongly magnified for illustration pur-
poses, as in practice they are found to be extremely close to one another in most
circumstances.

The general procedure is as follows: first, an interaction matrix J tr is randomly
generated, according to an underlying distribution (see next subsections for details on
the distributions we considered); then, a certain number p = αn samples are drawn from
the Gaussian vectors model with interactions J tr, and from those samples an empirical
covariance matrix C emp is derived; this matrix is then diagonalized, and the spectrum of
the MAP interaction estimator J ∗ is computed through equation (10); the training and
generated set likelihoods are computed directly using those eigenvalues, while the test
likelihood requires the inversion of the diagonalization basis change in order to obtain
the expression of J ∗ in the same basis as C tr.4

3.1.1. Case of random quenched couplings. The condensation phase transition.
We assume that the underlying interaction matrix is drawn from the Gaussian orthog-
onal ensemble, i.e. all its components are drawn at random and independently from a
centered Gaussian distribution:

∀ i, j, J tr
ij ∼ G

(
0,

σ√
n

)
. (18)

The presence of this 1/
√

n normalization ensures that the energy is extensive with n.
The model is ‘infinite range’ because all spins are interacting with all other spins with
similar strengths, controlled by the parameter σ. As shown in Kosterlitz et al (1976) the
model exhibits a condensation phase transition when σ crosses the critical value σc = 1.
For σ > σc one eigenvalue of the covariance matrix scales linearly with n, while all
others remain finite. This transition can be intuitively understood as follows. Since the
interaction matrix J tr has Gaussian entries, its eigenvalue distribution follows Wigner’s
semi-circle law, and ranges from −2σ and 2σ. As σ increases from small values, the
value of the Lagrange multiplier µ imposing the spherical constraint becomes closer and
closer to its lower-bound 2σ, and the gaps closes (in the infinite n limit) when σ = σc.

4 Those two basis a priori coincide if and only if α→∞.

https://doi.org/10.1088/1742-5468/ac650c 9
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Figure 2. Evolution of the four likelihoods (normalized by n) as functions of the
regularization strength γ for four different values of the sampling ratio α. In all
cases, both training and generated likelihoods are monotonically decreasing, while
the test likelihood is first increasing then decreasing; the training and test likeli-
hoods never cross, while the generated and test likelihoods cross for a value of the
regularization extremely close to the optimum of Ltest.

For σ > σcµ remains equal to 2σ, and the corresponding top eigenvector of J tr gives rise
to an extensively large eigenvalue in C tr. More precisely, when σ is larger than σc, the
maximum eigenvalue of C tr is equal to

ctr
max = n ×

(

1 − 1

2πσ2

∫ 2σ

−2σ

√
4σ2 − j 2

2σ − j
dj

)

= n

(
1 − 1

σ

)
. (19)

In this situation, the model generates configurations that are effectively constrained
close to a subspace of dimension 1.

Evolution of the log-likelihoods with γ. Figure 2 shows the behaviors of the
log-likelihoods with varying γ, for different regimes of low and high sampling fractions
α. Vertical lines locate the three values of γ of interest. The overall shape of the curves
agree with the expected behaviors sketched in figure 1.

For small γ (overfitting regime), the value of the training likelihood is very large,
irrespective of the value of α as the weak regularization allows the inference procedure
to fit the training set without bias. The test loss, however, strongly varies with α. For
low sampling (small α) C emp is essentially uncorrelated with C tr, and the test likelihood
will be very low. If α is large, C emp is almost equal to C tr, and the test likelihood will be
very close to its training counterpart, both being very high. In all cases the generated
and the training log-likelihoods coincides.

When γ is very large, the regularization term in the energy pushes the MAP estimator
J ∗ toward 0. In this underfitting regime, all log-likelihoods tend to the same limit value,
see equation (17).

https://doi.org/10.1088/1742-5468/ac650c 10
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Figure 3. Gaussian vectors model with L2 regularization. (A) Evolution of the
regularizations γopt and γcross as functions of the sampling ratio α for different
values of the interaction dispersion σ, see equation (18). The theoretical predic-
tion for γcross, represented here as a dashed line for each value of σ, is given
in equation (20) and derived in section 4. (B) Evolution of the likelihood gap
∆L = Ltest(α, γopt(α)) − Ltrain(α = ∞, γ = 0) as a function of α for the same values
of σ as (A). As expected, this gap vanishes as α goes to infinity, meaning that the
optimal inferred model (obtained with non-zero regularization) fits the data per-
fectly in the limit of infinite samples. While the gaps are identical between different
values of the interaction strength, we were not able to determine the expression for
this evolution.

For intermediate γ, we observe that the location of the maximum of the test like-
lihood, γopt, is very close to the value of the regularization strength γcross for which it
crosses the generated log-likelihood. This unexpected results holds in most circumstances
as reported in figure 3. This is true both on average and for individual realizations of
the underlying interaction matrix J tr and correlation matrix C emp, although small dis-
crepancies can be observed at low sampling ratio α. We expect those discrepancies to be
related to the finite size of the system, and the equality to be recovered in the n →∞
limit, as detailed analytical calculations for the Gaussian vectors model in section 4 will
confirm. These calculations will also allow us to approximate their common value for
large sampling ratio α as a function of the ‘true’ interaction matrix J tr only:

γopt + γcross + n∑
i,j(J

tr
ij )

2
. (20)

In order to estimate γopt and γcross as precisely as possible, we define in appendix A
functions whose roots correspond to those regularizations, and optimize them numeri-
cally with care.

3.1.2. Other types of underlying interactions. The empirical coincidence between γopt

and γcross reported above extends to other choices of the coupling matrices. As an illus-
tration we consider the case where the underlying interaction matrix J tr is structured,

https://doi.org/10.1088/1742-5468/ac650c 11
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instead of being randomly drawn. In particular, we present in figure 4 two exam-
ples, and show that the presence of structure does not significantly alter our previous
observations:

• In panel (A), the interaction matrix is band-diagonal, meaning that the coefficients
are given by

∀ (i, j) s.t. |(i − j) mod n| <
w

2
, J tr

ij ∼ G
(

0,
σ√
w

)
, (21)

where w is the width of the non-zero band, G is the Gaussian distribution, and [n]
represents the ‘modulo n’ operation. This means that sites are arranged on a ring,
with interactions only between w nearest neighbors, and the value of those non-zero
interactions are drawn randomly from a Gaussian distribution.

This model can be related to the random Schrödinger operator in dimension 1,
an object extensively studied in the context of Anderson localization, see Anderson
(1958). As observed numerically by Casati et al (1990) and later rigorously proved
(see Bourgade (2018) for an overview), a phase transition can be observed when
w ∼

√
n between a regime (small w) where the eigenvectors of J tr are localized i.e.

decay exponentially with distance, and another where they are extended (large w).
Our particular choice of scaling of the individual entries of those band matrices

is such that 1
n

∑
i,j(J

tr
ij )

2 remains constant, and so do the expected values of the
regularizations of interest.

• In panel (B), J tr is a deterministic matrix corresponding to a unidimensional chain:

∀ (i, j), J tr
ij =

{
0 if i = j or |(i − j) mod n| > 1

σ if |(i− j) mod n| = 1
, (22)

meaning that sites are again arranged on a ring, this time with fixed positive interac-
tions between direct neighbors only. This particularly simple model does not exhibit
any phase transition.

We find that changing the underlying model of interaction does not significantly
impact the phenomenology that we previously observed for infinite-range Gaussian
interactions: an optimal regularization still exists for all values of the sampling
ratio α.

3.1.3. L1 regularization. While the L2 penalty is often used in practice, and encourages
smoothness of the energy landscape, it is not the only possible choice. In many cases,
it can be interesting to infer sparse interactions models, which is usually done by using
an L1 regularization: in a protein, amino acids which are very distant in the sequence
can end up close in the folded structure, and therefore interact strongly so that one has
to a priori allow interactions between all sites along the sequence; however, in three-
dimensional space, each site is close only to a very small fractions, so that the inferred
interaction matrix should be sparse. The inference procedure in this case is less straight-
forward than for the L2 case, and analytical solutions cannot be obtained in the general
case. Instead, one relies on the so-called ‘graphical Lasso’ method (Friedman et al 2008),
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J.S
tat.M

ech.
(2022)053502

Optimal regularizations for data generation with probabilistic graphical models

Figure 4. Evolution of the regularizations of interest for two different cases of
structured interaction matrices J tr. (A) Case of a random band matrix, for different
values of the interaction strength σ (top: σ = 0.1; middle: σ = 0.3; bottom: σ = 0.7).
(B) Case of a deterministic, uniform one-dimensional chain. In both cases, the
crossing and optimal regularizations are of the same order of magnitude, and remain
close to the predicted values in the α→∞ regime, represented by the dotted lines.
For small ratios α the behaviors of the optimal regularizations depend on w, as
expected from section 4 by noting that w has an influence on the 〈θ〉 quantity
defined in equation (44).

which iteratively solves Lasso problems for each column of the interaction matrix
using coordinate descent (Wright 2015) until convergence, implemented in Scikit-learn
(Pedregosa et al 2011).

We show in figure 5 that the behavior of the likelihoods remains qualitatively similar
to what we observed in the case of L2 regularization, despite the difference between the
two noticeable regularizations being much higher than previously. A detailed analysis
of this inference procedure could both shed light on the difference between the two, and
give us a theoretical prediction for the optimal regularization in this regime, but this
remains to be done in future work.

3.2. Potts model

In this section, we investigate numerically the effect of L2 regularization on the gener-
ative properties of Potts models. Our motivation is two-fold. First we want to study to
what extent the results obtained for Gaussian distributions extrapolate to non Gaussian
ones. Second Potts models are especially relevant for the case of protein modeling, see
introduction and discussion sections.

3.2.1. Generation of synthetic data and energy model. We now consider a discrete-
valued graphical model, in which each (categorical) variables may take one out of q
values. The energy of a configuration x is given by

E(x;h,J) = −
∑

i<j

Jij(xi, xj) −
∑

i

hi(xi), (23)
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Figure 5. (A) Typical evolution of the likelihoods as a function of the strength
of the L1 regularization. The existence of a finite optimal regularization, as well
as the crossing between test and generated likelihoods, remains true as in the L2

case. (B) Evolution of the crossing and optimal regularizations as a function of
the sampling ratio α. While the two noticeable regularizations are no longer equal,
they remain of a similar order of magnitude. Results obtained for fully connected,
random interactions (18).

The local fields h and the couplings J are, respectively, q-dimensional vectors and
(q × q)-dimensional matrices. The corresponding partition function is

Z(h,J) =
∑

{xi=1,2,...,q}

e−E(x ;h,J). (24)

We start by drawing the components of h tr and J tr that from Gaussian distributions
of zero mean and standard deviations σ2

h and σ2
J . All components of the h vectors and

J matrices are chosen at random and independently from each other.
Next, each element of the Gaussian matrix J tr

ij is multiplied by a connectivity indi-
cator equal to 0 or 1, which identifies, respectively, the absence or the presence of an
edge between the variables i and j in the coupling network. In practice, we choose this
connectivity at random, following the prescription of the so-called Erdös–Rényi (ER)
random graph ensemble. For each pair i, j of variables we chose to insert an edge in
the interaction graph with probability d/n, and to have no connection with probability
1 − d/n; d/n × (n − 1) is therefore the average degree of each variable in the connectivity
graph.

In our simulations, we vary

• The size (number of variables), n; here n = 25, 50, 100, 150;

• The number of Potts states, q (here q = 10, 20);

• The probability d/n to include edges in the ER graph. Different values of d were
tested only for n = 25, for which the computation were faster: d = 1.25, 2.5, 7, 10.
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For each system, a number p of data point, ranging from 102 to 105 were gener-
ated by Markov chain Monte Carlo sampling. Intuition about the sampling level can
be obtained by comparing p with the number of parameters to infer from the data,
n × q + 1

2n(n − 1) × q2. The parameters defining the Gaussian distribution to generate
fields and coupling are here kept constant as n varies: σ2

h = 5, σ2
J = 1.

3.2.2. Behaviors of the train, test, and generated log-likelihoods. Once the data are
generated through Monte Carlo sampling of the Gibbs distribution associated to the
energy (23) we infer the model parameters hi(x), Jij(x, x′) using two methods. The
first one is the pseudo-likelihood method (PLM), a non-Bayesian inference method that
bypasses the (intractable) computation of the partition function Z (Ravikumar et al
2010, Ekeberg et al 2013); Z can then be estimated using the annealed importance
aampling (AIS) method. The second one is the so-called adaptive cluster expansion
(ACE) algorithm, which recursively computes better and better approximations for the
cross-entropy of the data (Cocco and Monasson 2011, Barton et al 2016), combined
with color compression (Rizzato et al 2020); ACE then provides an approximate value
for log Z, which we could compare to the estimate found through AIS. In practice, we
checked that both methods give quantitatively similar results, both for model parameters
and for log Z.

The inference is done with a L2-norm regularization on the couplings (intensity γ)
and on the fields (intensity γh). We expect regularization to be much less needed for the
fields, because single-site frequencies are much better sampled than pairwise frequencies.
We therefore fix the ratio between the regularization of fields and couplings, setting
γh = γ/(10n), and vary γ.

In figure 6, we show the average log-likelihoods (normalized by n) of the data in the
training set, in the test set (same size as the training set) and the generated data set.
For small regularization γ we observe a strong overfitting effect as expected, with similar
values for Ltrain and Lgen, much above Ltest. For intermediate regularization values, the
test and generated log-likelihoods are similar as the number p of samples available for
the inference increases, while the size n is kept fixed. This result is compatible with a
weak dependence of γcross upon α, as found for the Gaussian vectors model. For large γ,
Lgen may get smaller than Ltest, a signature of very strong underfitting.

3.2.3. Dependence of optimal regularizations on system and data set sizes. The use of
AIS and of ACE allows us to approximation the partition function of the model, and
therefore to compute the Kullback–Leibler (KL) divergence of the inferred probability
distribution from the ground-truth probability distribution,

DKL =
∑

x

e−E(x ;h∗,J ∗)

Z(h∗,J ∗)
log

[
e−E(x ;h∗,J ∗)

Z(h∗,J ∗)

/
e−E(x ;htr,J tr)

Z(htr,J tr)

]

, (25)

We then determine the value of γ for which DKL is minimal, as a function of the vari-
ous parameters defining the model and the data. We show below that this alternative
definition of the optimal regularization is quantitatively consistent with the definition
of γopt.
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Figure 6. Average log-likelihoods of test, train and generated data (same colors as
in previous figures) vs number p of samples for different regularization strengths
γ (one panel for each value). Results were averaged over 20 000 sequences for each
reported value of γ and p. Parameters: n = 50, q = 10. Results obtained with PLM.

Figure 7. KL divergence between the inferred models and the ground truth for
different graph (n) and sampling (p) sizes as a function of the regularization on the
couplings (γ). The y-axis was arbitrarily rescaled between the different curves to
allow for easier comparison. Parameters: d = 2.5, q = 10.

Dependence on the size n. We first study if and how the optimal regularization
parameter γ changes when we the system size n is increased, while the average connec-
tivity in the graph is fixed by choosing p = 2.5/n; we also fix the number of Potts states
to q = 10. In figure 7 we show the KL divergence for models inferred at different γ for
various n and p. The optimal regularization seems to be roughly equal to 0.5 in all the
considered cases, independently of p (with some inaccuracy for very poor sampling, i.e.
p = 100). We have also checked that this optimal value of γ does not seem to depend
on q, by repeating the same numerical experiments for q = 20 Potts states with similar
results, see figure 8.

These two results are in very good agreement with the theoretical prediction reported
in equation (20), that is, γopt + γcross + 1

d = 0.4 for the parameters chosen in figures 7
and 8. Indeed, in ER graphs, the average number of interacting neighbors is equal to d
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Figure 8. KL divergence between the inferred models and the ground truth for
different numbers q of Potts states and p of data points, as a function of the reg-
ularization on the couplings (γ) and for diff. The y-axis was arbitrarily rescaled
between the different curves to allow for easier comparison. Parameters: d = 2.5,
n = 50.

(on average), independently of n (and p). In addition, since each variable can take one
out of q symbol values, the number of variables j interacting with i in the sum at the
denominator in equation (20) is independent of q.

Dependence on the structural connectivity of the interaction graph. We
then study how the optimal regularization depends on the connectivity of the graph.
For this reason we keep the graph size fixed (n = 25), and build different ER models
with different densities varying d, see section 3.2.1. Once data are generated we infer
the model parameters h∗,J ∗ for different γ and sample sizes p. Results are reported in
figure 9, and show a clear dependence on the structural parameter d. We observe that
the scaling factor is approximately inversely proportional to the number of neighbors
on the interacting graph. This result is in excellent agreement with the outcome of the
expected theoretical scaling reported in equation (20).

4. Analytical calculations at low and high sampling ratios

While finding the exact value for the regularization strengths of interest as functions of
the model parameters is out of reach we show in this section how this calculation can
be done in the case of the Gaussian vectors model for very low and high values of the
sampling ratios.

4.1. Asymptotic behavior of γcross

The crossing regularization γcross is defined through

Ltest(γ
cross) = Lgen(γ

cross). (26)
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Figure 9. KL divergence between the inferred models and the ground truth for dif-
ferent average number of edge per site (numbers reported in the panels, obtained by
varying d), as a function of the regularization (γ) used during inference. The y-axis
was arbitrarily rescaled between the different curves to allow for easier comparison.
Parameters: n = 25, q = 10.

Replacing Lgen in the equation above with its expression in equation (16) and using the
definitions (13) and (14) of the train and test log-likelihoods we obtain

γcross = α
Ltrain(γcross) − Ltest(γcross)∑

i,j J∗
ij

2 = α

∑
i,j J∗

ij

(
C emp

ij − C tr
ij

)
∑

i,j J∗
ij

2 . (27)

4.1.1. α→∞ regime. We derive below an asymptotic prediction for γcross in the large
sampling regime α→∞. We begin by considering the α / 1 limit of the matrix-form
MAP equation (8):

J ∗ = µI− (C emp)−1. (28)

We consider the distribution of the empirical covariance matrix C emp conditioned to
the ‘true’ correlation matrix C tr = (µtr − J tr)−1, known as the Wishart distribution
(Wishart 1928), and defined for p > n as

pJ tr(C ) ∝ en α
2 F(C ), F(C ) =

α− 1

2
log det(C ) − α

2
Tr

(
(µtr − J tr)C

)
, (29)

where we omit C -independent normalization factor. For large α, we can perform a
saddle-point approximation of this density around its maximum C tr:

pJ tr(C = C tr + ∆C ) ∝ en α
2 ∆C † ∂2F

∂C∂C (C tr)∆C. (30)

A straightforward calculation leads to

∂2F
∂Ci,j∂Ca,b

(Ctr) =
∂2 log detC

∂Ci,j∂Ca,b
(C tr) = −

(
C tr

)−1

a,i

(
C tr

)−1

b,j
. (31)

We deduce from equation (30) that
(
C tr

)−1 ×∆C = U/
√

nα, where U is distributed
as an uncorrelated Gaussian matrix, whose entries have zero means and unit standard
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deviation. Therefore, using equation (28), we have

J ∗ + µI−
(
C tr + ∆C

)−1
= µI−

(
I− U√

αn

)
C tr−1

. (32)

This expression for the inferred coupling matrix can be inserted in equation (27) for
γcross. Carrying out the averages over U appearing in J ∗ and C emp we obtain

γcross =
n∑

i,j
(J∗

ij)
2

α→∞+ n∑
i,j

(J tr
ij )

2
. (33)

The stronger the interactions in our underlying model, the weaker the regularization
that needs to be applied during inference. One way of intuitively understanding this
statement is that stronger interactions will a priori generate samples (and therefore
MAP estimates) with less undesirable variance, and therefore require less smoothing
from the regularization.

4.1.2. α→ 0 regime. We now consider the case of very poor sampling. The lowest value
of the sampling ratio, α = 1

n , is reached with a single sample s (p = 1). The empirical
covariance matrix is then easily written as

C emp = ss† :=nuu†. (34)

One eigenvalue of C emp is non-zero, and is fixed to n to enforce the spherical constraint5.
In other words, the normalized vector u = s/

√
n is the unique non-zero eigenvector

of C emp.
Eigenvalues of J ∗. The inferred coupling matrix reads, according to equations (8)

and (34),

J ∗ = [ j ∗(n) − j ∗(0)]uu† + j ∗(0) I, (35)

where the eigenvalues j∗(cemp) are given by equation (10). Using α = 1
n and expanding

in powers of 1
n , we find

j ∗(0) = − 1

nγµ∗ +
2

n2γ2µ∗3 + O(n−3), (36)

j ∗(n) =
1

2γ

[

1 + γµ∗ −
√

(γµ∗ − 1)2 +
4γ

n

]

+ O(n−3). (37)

The latter expression can be divided into two cases, depending on whether γµ is larger
or smaller than 1:

j ∗(n) =






µ∗ − 1

n(1 − γµ∗)
+

γ

n2(1 − γµ∗)3
+ O(n−3) if γµ < 1

1

γ
− 1

n(γµ∗ − 1)
+

γ

n2(γµ∗ − 1)3
+ O(n−3) if γµ > 1,

(38)

5 In numerical experiments on finite size n, this constraint is enforced by hand, by rescaling the empirical covariance C emp to have a
trace exactly equal to n. Note that, in the n →∞ limit and for σ < 1, this rescaling is not necessary. For σ larger than 1, however,
the norm of s fluctuates strongly, as |s |2 follows a chi-square distribution.
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which, together with the normalization condition

n − 1

µ∗ − j∗(0)
+

1

µ∗ − j∗(n)
= n, (39)

yields that:

µ∗(γ) =

{
γ−1/2 if γ < 1

1 if γµ∗ > 1.
(40)

Expression for γcross. We then express the terms appearing in the expression of γcross,
see equation (27), in terms of the eigenvalues j∗(0), j∗(n):

∑

i,j

(J∗
ij)

2 = j∗(n)2 + (n − 1) j∗(0)2, (41)

∑

i,j

J∗
ij C emp

ij = n [ j∗(n) − j∗(0)] + n j∗(0), (42)

∑

i,j

J∗
ij C tr

ij = n [ j ∗(n) − j ∗(0)] θ + n j ∗(0), (43)

where we introduced the matrix element

θ =
1

n

∑

i,j

uiC
tr
ij uj. (44)

Let us consider this quantity in more details. On average over the sample s(=
√

nu), we
have:

〈uiuj〉 =
1

n
C tr

ij , (45)

and thus

〈θ〉 =
1

n2

∑

i,j

C tr
ij

2
=

1

n2

∑

k

c tr
k

2
. (46)

Generally, due to the constraint that
∑

k ctr
k = n, we find that 〈θ〉 is bounded from below

by 1/n (when all eigenvalues of C tr are equal to 1), and from above by 1 (when a single
eigenvalue of C tr is equal to n, and all the other eigenvalues are equal to 0). It should be
noted that, while the result 〈θ〉 > 1/n is true on average, the value of θ for an individual
sample can be arbitrarily close to 0. This possibility will be discussed below.

Analytical expressions for the average value of θ can be obtained in the case of
random quenched interactions considered in section 3.1.1 by explicitly integrating over
the semi-circle eigenvalue distribution, with the results
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Figure 10. Properties of the inference in the low sampling regime α = 1/n and for
the random quenched coupling model. (A) Value of the overlap θ as a function of
the scale σ of the interactions in the ferromagnetic regime σ > 1, see theoretical
prediction for 〈θ〉 for non rescaled samples in equation (47). For normalized samples
the overlap converges toward 1 more slowly. (B) Comparison between the values
of γopt and γcross found numerically and the predictions in equations (48) and (49),
applied to the empirical distribution of ‘rescaled samples’ overlaps. In both panels
error bars represent the variations across ten choices of the true underlying interac-
tion matrix of the θ, and γ is averaged over 100 random draws from the Gaussian
model distribution.

〈θ〉 =






1

n(1 − σ2)
if σ < σc = 1,

(
1 − 1

σ

)2

if σ > σc,
(47)

see figure 10(A). The last equation comes from the fact that, when σ is larger than 1,
the sum in equation (46) is dominated by the single macroscopic eigenvalue of C tr, see
equation (19). For the rescaled samples we used in practice, the average value of θ still
goes to 1 as σ increases, but with a gap closer to ∼σ−1/2.

Let us now summarize the different cases that can be met, see figure 10(B):

• If σ is below 1, the system is in a disordered phase, and strong regularization is
needed. We find that

∗ If θ > 1/n, the crossing regularization is

γcross =
nθ

nθ − 1
, (48)

which is larger than 1. This corresponds to a situation where the sample is slightly
informative, and strong regularization is necessary to avoid overfitting.

∗ If θ < 1/n, the two likelihoods never cross, and the optimal regularization appears
to be infinite. This corresponds to a situation in which the randomly drawn
sample is counter-informative, so that the null answer is better than taking it
into account.
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• If σ is above 1, the system is in the ferromagnetic phase, so that a single sample
conveys significant information about the entire distribution. In that case, we find
that for a given (rescaled) sample the crossing regularization is given by

γcross = (1 − θ)2, (49)

which vanishes when σ →∞.

It should be noted that the achieved likelihoods are significantly higher in the ferro-
magnetic case: since the distribution lives in a single dimension, a single sample is enough
to get meaningful information about the entire distribution, a phenomenon related to
benign overfitting (Bartlett et al 2020). In all cases where σ is either very small or very
large, the optimal regularization varies strongly from sample to sample.

4.2. Asymptotic behavior of γopt for α→ 0

While the α→∞ limit of the optimal regularization is hard to obtain (in particu-
lar, because the test likelihood’s derivative with respect to γ vanishes uniformly), the
computation of γopt can be carried out in the low ratio regime, α = 1/n.

We start from the definition of γopt:

∂Ltest

∂γ
(γopt) = 0 =

∂

∂γ

[
1

2

∑

i,j

J∗
ijC

tr
ij − log Z(J ∗)

]
. (50)

From equations (7) and (35), we have

log Z(J ∗) =
n

2
µ∗ − 1

2
[(n − 1) log(µ∗ − j ∗(0)) + log(µ∗ − j ∗(n))] , (51)

so that

∂ log Z(J ∗)

∂γ
=

n − 1

2

∂γj ∗(0)

µ∗ − j∗(0)
+

1

2

∂γj
∗(n)

µ∗ − j∗(n)
. (52)

In addition, differentiating equation (43) we get

∂

∂γ

∑

i,j

J∗
ijC

tr
ij = n

[
∂j∗(n)

∂γ
− ∂j∗(0)

∂γ

]
θ + n

∂j ∗(0)

∂γ.
(53)

We now need to evaluate the derivatives ∂γj
∗(0) and ∂γj

∗(n). From equations (36) and
(40), at the first order in n, we have

∂j ∗(0)

∂γ
=

1

nγ2µ∗ +
∂γµ∗

nγµ∗2 =






1

nγ2
if γ > 1,

1

2nγ3/2
if γ < 1.

(54)
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Similarly, equations (37) and (40) yield

We may now conclude our calculation of γopt:

• If γ > 1,

∂Ltest

∂γ
=

1

2γ2
(1 − nθ) +

1

2γ2(γ − 1)
, (56)

and therefore this derivative vanishes for

γopt =
nθ

nθ − 1
, (57)

which is the same result as found from the γcross computation in equation (48).

• If γ < 1,

∂Ltest

∂γ
=

n

4γ3/2
[(1 − θ) −√

γ] , (58)

whose root is given by

γopt = (1 − θ)2, (59)

in full agreement with the result shown in equation (49).

Therefore, the analytical expressions of γopt and γcross coincide in the undersampled
regime (single sample), which provides further support to our conjecture that the values
of those two regularizations are equal or very close, as suggested by numerical exper-
iments. Unfortunately, the computation of γopt in the oversampled regime (α→∞) is
more complicated, and we were not able to prove that its value converges to the limit
found for γcross in equation (33).

5. Conclusion

In this work we provided both analytical and numerical evidence for the optimal value
of a L2 penalty term in the likelihood used for MAP inference of graphical models.
In addition to showing that a non-zero optimal regularization always exists, we find
a remarkable empirical coincidence between two optimality criteria: the maximization
of the test log-likelihood, and the condition that test and generated likelihoods are
equal, a natural requirement for a generative model, see figure 1. This equality suggests
that, while weaker regularizations might give the impression of higher quality generated
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data (through higher generated likelihoods), stronger regularizations should actually be
employed to achieve the best possible model, and the perceived increase in generated
likelihood is actually a form of overfitting.

Analytical expressions for the crossing and optimal regularizations could be obtained
in the limiting regimes of poor or good sampling. In the latter case, we obtain an explicit
expression for the optimal regularization strengths in terms of the average inverse
squared couplings between the variables, see equation (20). This prediction remains
remarkably accurate over a wide range of parameter value, and even for case of cate-
gorical variables (Potts model), while it was established analytically in the case of the
Gaussian multivariate model. This result suggest that our study could also be applied
to other interesting classes of models, such as restricted Boltzmann machines, an exten-
sion of Ising/Potts models in which multi-body interactions can be introduced. More
generally, it has been known for a long time that neural networks benefit from regular-
ization, with extensive research being led on the exact regularization scheme to apply
for different tasks, see for example (Wan et al 2013, Zaremba et al 2015, Louizos et al
2018, Haarnoja et al 2018, Bartlett et al 2021).

Most approaches exhibit some form of ‘bias-variance trade off’, i.e. a phenomenon in
which increasing the strength of the regularization reduces the variance of the estimator
(e.g. by increasing the smoothness of the solutions) but biases the inference toward a
particular subset of solutions. As a result an optimal value of the regularization exists
that balances those two effects, similarly to what we observed in our model. It should
however be noted that this simplistic picture might not hold in all circumstances, as
suggested by a number of findings recently reviewed by Dar et al (2021): in some
settings, similarly to our low-sampling limit case with a ‘counter-informative’ sample,
the optimal regularization is infinite (Mignacco et al 2020, Loureiro et al 2021); in other
cases, the optimal regularization can be found to be zero (Hastie et al 2020) in the
infinitely overparametrized regime. This is to be related to the fact that, contrary to the
usual intuition that an increase in number of parameters leads to an increase in variance
of the inferred model, some models show an opposite trend (Gerace et al 2021).

In terms of modeling protein from sequence data our results suggest that the opti-
mal γ should neither be proportional to p

n nor to q, as proposed in previous works
(Ekeberg et al 2014, Hopf et al 2017), but is related to the inverse sum of the squared
couplings incoming onto residues, see equation (20). In particular, our prediction is
that the optimal value for γ scales inversely proportional to the number of interacting
neighbors on the dependency graph. However, some caution must be brought to this
conclusion. The sample size p is not clearly defined for real proteins. The presence of
phylogenetic correlations between sequences make the assumption of independent data
points only approximate at best. In practice the choices γ = 0.01 p

n (Ekeberg et al 2014)
and γ = 0.01q (Hopf et al 2017) are qualitatively similar when the number of sequences
exceed the protein length by a factor 20, which is not unreasonable for a substantial
number of protein families.

Our work could be extended in several directions. First, we here focused on MAP
inference only, but it would be interesting to analyze what happens within Bayesian
inference, i.e. to investigate the effects of fluctuations around the MAP estimator. As a
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first step in this direction we show in appendix B that introducing a finite, but small,
temperature in the inference procedure yields similar results to what was observed here.
Second, the question of what would happen in more complex cases in which the energy
landscape is non-convex (e.g. a mixture of Gaussian, or a multi-modal Potts model)
remains open, and further investigations would be necessary to understand how regu-
larization might influence the known trade-off between better fit of individual modes
of the data (low regularizations) and easier transitions between different modes, which
could happen by flattening the energy landscape in-between the modes.
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Appendix A. Numerical estimation of the regularization strengths

In order to compute the values of γopt and γcross as precisely as possible, we derived two
residuals , i.e. functions of γ which are equal to 0 respectively when the test likelihood is
optimal, or when the test and generated likelihoods are equal. Similarly to how µ∗ was
determined when solving the MAP equation, the roots of those residuals will be min-
imized using standard convex optimization routines to obtain high precision estimates
of the optimal and crossing regularizations.

This approach is easily illustrated in the case of the crossing regularization γcross.
According to equation (27) the following function Rescross(γ) has its root equal to γcross:

Rescross(γ) :=α
〈J ∗(γ) (C emp −C tr)〉

〈J ∗(γ)2〉
− γ. (60)

For the estimation of the optimal regularization, the computation is more involved and
relies on finding the derivative of Ltest with respect to γ. Indeed, γ is equal to γopt when

Resopt(γ) :=
∂Ltest

∂γ
, (61)

is equal to 0.
This derivative can be computed as:

∂Ltest

∂γ
=

1

2

∑

i,j

∂J∗
ij

∂γ
Ctr

ij −
∂ log Z(J ∗)

∂γ

=
1

2

∑

k

∂j∗k
∂γ

Ctr,rot
k,k − ∂ log Z(J ∗)

∂γ
,

(62)

where C tr,rot is the true correlation matrix after changing the basis to the inference basis
in which C emp is diagonal.
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Figure 11. Evolution of the train energy, distance to MAP estimator and test
energy as a function of the number of Metropolis steps for different values of the
temperature. The energies are given relative to the ones of the MAP. For low
temperatures and long enough times, the sampled solutions have very close ener-
gies to the MAP estimator. At intermediate times, the test energy of the sampled
solutions can get lower than the one of the MAP. Higher temperatures allow the
system to stay in states of higher energy, which are further from the MAP. Figure
obtained with n = 20, α = 5, σ = 0.5, γ = 5 (larger than the optimal regularization
γopt = 1/σ2 = 4).

We begin by computing

∂γj
∗
k = ∂γ

[
1

2γ
αck + γµ∗ − Dk

]

= Ak∂γµ
∗ + Bk −

j∗k
γ

,

(63)

where we introduced

Dk =
√

(αcemp
k − γµ∗)2 + 4αγ, (64)

Ak =
1

2

(
1 − γµ∗ − αcemp

k

Dk

)
, (65)

Bk =
1

γ

(
µ∗Ak −

α

Dk

)
. (66)

Then, we have that

∂γ log Z = n∂γµ
∗ − 1

2

∑

k

∂γµ∗ − ∂γj∗k
µ∗ − j∗k

. (67)

Finally, we can compute ∂γµ by first noting that:

1

2

∑

k

1

µ∗ − j∗k
= 1, (68)
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hence
∑

k

∂γµ∗ − ∂γj∗k
(µ∗ − j∗k)

2
= 0, (69)

and therefore

∂γµ =

[
∑

k

∂γj∗k
(µ∗ − j∗k)

2

]

/

[
∑

k

1

(µ∗ − j∗k)
2

]

, (70)

∂γµ
∗ =

[
∑

k

Ak∂γµ∗ + Bk − j∗k/γ

(µ∗ − j∗k)
2

]
/

[
∑

k

1

(µ∗ − j∗k)
2

]
, (71)

∂γµ
∗

[
∑

k

1 − Ak

(µ∗ − j∗k)
2

]
=

[
∑

k

Bk − j∗kγ

(µ∗ − j∗k)
2

]
, (72)

which finally yields:

∂γµ
∗ =

[
∑

k

Bk − j∗k/γ

(µ∗ − j∗k)
2

]

/

[
∑

k

1 − Ak

(µ∗ − j∗k)
2

]

. (73)

Putting together equations (62) to (73) yields an explicit expression for the derivative
of Ltest with respect to γ, which is exactly the residual Resopt(γ) whose root gives the
value of γopt.

Appendix B. Non-zero temperature inference

It is natural to wonder whether our result hold for when sampling the posterior
probability at inverse temperature β:

pβ(J ) ∝ e−β[ γ4 Tr(J 2)− α
2 Tr(JC emp)+α log Z(J)]. (74)

While an in-depth study of the different sampling strategies is out of the scope of
this work (see Rubinstein and Kroese (2016) for a general overview), we report below
numerical and analytical preliminary steps aiming at characterizing this posterior
distributions.

We performed some preliminary experiments using a simple Metropolis–Hastings
algorithm (Metropolis and Ulam 1949) which consists in starting from a random point
in the distribution, proposing a small modification and accepting it with probability
p = min(1, exp(−β∆E)) depending on the associated change in energy, ∆E. In our case,
we start from a symmetric Gaussian matrix in which all the entries above the diagonal
are independent and have the same mean and variance as the MAP estimator6, and the
modifications we propose are the addition of small amplitude, sparse, Gaussian matrices.

6 This initial choice only affects convergence time, as the Metropolis sampling procedure loses information on the initial conditions
after a transient regime.
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Since increasing the temperature (hence decreasing β) can be seen as a way of letting
the system explore areas of higher energy, the matrices sampled at higher temperatures
will be further away from the MAP solution, which we illustrate in figures 11(A) and
(B) respectively. While the energy used for sampling is computed using the empirical
covariance matrix C emp, it is also interesting to consider the evolution of a ‘test’ energy,
computed using the true covariance matrix C tr, which will help quantify the generaliza-
tion property of these solutions. While at long time scales the test energy converges to
a value very close to the one of the MAP estimator, there exists an intermediate regime
in which the sampled matrices achieve better test energy than the MAP estimator, as
seen in figure 11(C). Notice, however, that the values of the inverse temperature β con-
sidered in the simulations are large compared to the canonical inverse temperature, n,
defined in the posterior probability over J , see equation (5). The results reported above
therefore confirm that weak fluctuations of the posterior do not modify the properties
of the MAP estimator.
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Mignacco F, Krzakala F, Lu Y M and Zdeborová L 2020 The role of regularization in classification of high-dimensional

noisy Gaussian mixture (arXiv:2002.11544)
Pedregosa F et al 2011 Scikit-learn: machine learning in Python J. Mach. Learn. Res. 12 2825–30
Ravikumar P, Wainwright M J and Lafferty J D 2010 High-dimensional Ising model selection using )1-regularized

logistic regression Ann. Stat. 38 1287–319
Ravikumar P, Wainwright M J, Raskutti G and Yu B 2011 High-dimensional covariance estimation by minimizing

)1-penalized log-determinant divergence Electron. J. Stat. 5 935–80
Rizzato F, Coucke A, de Leonardis E, Barton J P, Tubiana J, Monasson R and Cocco S 2020 Inference of compressed

Potts graphical models Phys. Rev. E 101 012309
Rubinstein R Y and Kroese D P 2016 Simulation and the Monte Carlo Method vol 10 (New York: Wiley)
Schmidt J, Marques M R G, Botti S and Marques M A L 2019 Recent advances and applications of machine learning

in solid-state materials science npj Comput. Mater. 5 1–36
Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261–72
Wan L, Zeiler M, Zhang S, Le Cun Y and Fergus R 2013 Regularization of neural networks using DropConnect Int.

Conf. Machine Learning PMLR pp 1058–66
Wishart J 1928 The generalised product moment distribution in samples from a normal multivariate population

Biometrika 20A 32–52
Wright S J 2015 Coordinate descent algorithms Math. Program. 151 3–34
Zaremba W, Sutskever I and Vinyals O 2015 Recurrent neural network regularization. (arXiv:1409.2329)

https://doi.org/10.1088/1742-5468/ac650c 29


