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Barriers and dynamical paths in alternating Gibbs sampling of restricted Boltzmann machines
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Restricted Boltzmann machines (RBM) are bilayer neural networks used for the unsupervised learning
of model distributions from data. The bipartite architecture of RBM naturally defines an elegant sampling
procedure, called alternating Gibbs sampling (AGS), where the configurations of the latent-variable layer are
sampled conditional to the data-variable layer and vice versa. We study here the performance of AGS on several
analytically tractable models borrowed from statistical mechanics. We show that standard AGS is not more
efficient than classical Metropolis-Hastings (MH) sampling of the effective energy landscape defined on the data
layer. However, RBM can identify meaningful representations of training data in their latent space. Furthermore,
using these representations and combining Gibbs sampling with the MH algorithm in the latent space can
enhance the sampling performance of the RBM when the hidden units encode weakly dependent features of the
data. We illustrate our findings on three datasets: Bars and Stripes and MNIST, well known in machine learning,
and the so-called lattice proteins dataset, introduced in theoretical biology to study the sequence-to-structure
mapping in proteins.
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I. INTRODUCTION

Studying large heterogeneous and strongly interacting sys-
tems is a challenge common to various scientific fields. For
decades, various numerical methods have been developed
to sample high-dimensional configurations of such systems.
Among these Monte Carlo (MC) methods are one of the
most powerful and versatile procedures [1,2]. Statistical av-
erages over a target distribution are evaluated through an
average over a set of stochastic configurations, generated
according to a dynamical sampling process. Nevertheless, it
is a well-known issue that these methods can suffer from
poor mixing: sampled configurations can be trapped in one
of the regions of high probability, i.e., of low free energy,
while other favorable regions are not dynamically explored.
Therefore, it is of most importance to design sampling pro-
cedures capable of efficient exploration, allowing for fast
transitions from one minimum of the free energy to another.
For ferromagnetic systems, cluster algorithms, which identify
and flip large clusters of spins at once achieve this objective
[3–6].

Recently, machine learning algorithms have been devel-
oped to detect relevant MC updates in condensed matter mod-
els [7–12]. Artificial neural networks are used to efficiently
generate (with MC methods) low-energy configurations of ap-
proximate versions of target Hamiltonians. Hereafter we focus
on one well-known machine learning architecture for unsuper-
vised learning, called restricted Boltzmann machines (RBM)
[13–15]. As illustrated in Fig. 1(a), RBM are undirected
graphical models constituted by two sets of interconnected
random variables: a visible layer v that represents the data
and a hidden layer h able to extract and explain their
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statistical features. RBM learn a joint Boltzmann distribu-
tion P(v, h) by maximizing the log-likelihood of the data
configurations:

P(v) =
∫

dh P(v, h), (1)

where the joint distribution of visible and hidden configura-
tions reads

P(v, h) = 1

Z
exp [−E (v, h)], (2)

and the energy E (v, h) includes couplings between, but not
within, the layers. RBM have been widely studied from a
statistical mechanics point of view [15–20], see Ref. [21] for
a recent review.

The bipartite architecture of RBM suggests a natural proce-
dure for sampling the marginal distribution P(v). The method,
called alternating Gibbs sampling (AGS), uses the conditional
distributions P(h|v) and P(v|h) to sequentially sample the
hidden and the visible spaces [Fig. 1(b)]. As the interaction
graph is bipartite, the two conditional distributions factorize
over the units of the sampled layer, which allows for indepen-
dent draws of unit values (within a layer).

Despite its elegance and the simplicity of implementation,
it is unclear whether AGS thermalizes substantially better than
standard MC procedures in the effective energy landscape
over the visible configurations,

E eff(v) = − log P(v), (3)

see Fig. 1(c). On the one hand, the conditional sampling
of visible configurations through P(v|h) seems to allow for
global moves in the v space, as with cluster algorithms. On
the other hand, the conditional sampling of latent variables
through P(h|v) indicates that their values reflect global fea-
tures of visible configurations and could remain frozen when
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FIG. 1. Description of the restricted Boltzmann machines and of the different sampling algorithms. (a) Bipartite architecture of RBM,
with the visible (blue) and hidden (green) layers. (b) Alternating Gibbs sampling: Hidden and visible configurations are conditionally sampled
from one another. (c) Sampling dynamics in the landscape E eff(v). (d) Modified alternating Gibbs sampling with dynamics in the hidden
configuration space.

the system is stuck in free-energy minima. The purpose of
the present work is to investigate this question on a few an-
alytically tractable models. We show that canonical AGS is
generally not more efficient than naive Metropolis-Hastings
algorithm in the visible landscape E eff(v). However, the ar-
chitecture of RBM offers two advantages with respect to
the latter. First, the sampling paths joining one free-energy
minimum to another can be more easily interpreted in terms
of trajectory in the hidden space than in the visible space.
Second, we proposed an augmented version of AGS, in
which intermediate moves in the hidden space are carried out
[Fig. 1(d)]. We show that this new sampling procedure yields
much reduced thermalization times if the statistical features
attached to the hidden units are decorrelated enough.

Our paper is organized as follows. First, we define RBM,
its sampling algorithm, the alternating Gibbs sampling be-
tween the visible and hidden layers [22–24], and the different
datasets we use for numerical experiments in Sec. II. Then,
in Sec. III, we introduce the models under consideration and
study how AGS samples them. In Sec. IV, we show how
moving from one representation to another in the hidden space
can help to sample. Finally, conclusions and perspectives are
reported in Sec. V.

II. MODEL AND DATASETS

A. Restricted Boltzmann machines

Restricted Boltzmann machines are undirected probabilis-
tic graphical models with two layers. A visible layer v, which
represents the data, is connected to a hidden layer h through a
weight matrix W [Fig. 1(a)].

The visible layer includes N units vi, and the hidden layer
M units hμ, which can take discrete or continuous values. The
joint probability distribution of the visible configuration v =
{vi}i=1...N and of the hidden configuration h = {hμ}μ=1...M is
defined in Eq. (2). The energy E (v, h) is equal to

E (v, h)=−
N∑

i=1

M∑
μ=1

Wiμvihμ+
M∑

μ=1

Uμ(hμ)+
N∑

i=1

Vi(vi ). (4)

In the formula above, Uμ and Vi are potentials acting on,
respectively, hμ and vi.

The effective energy over the visible configuration is ob-
tained by marginalizing over the hidden units, see Eqs. (1)
and (3), up to an additive constant, with the result

E eff(v) =
N∑

i=1

Vi(vi ) −
M∑

μ=1

�μ[Iμ(v)], (5)

where Iμ(v) = ∑N
i=1 Wiμvi is the input received by hidden

unit hμ and �μ(I ) = log{∫ dh exp [−Uμ(h) + hI]} is the cu-
mulative generative function associated with the potential Uμ.
Parameters � ≡ {Wiμ,Uμ,Vi} modulate the energy landscape
E eff(v). RBM, with binary visible and hidden units, are known
to be universal approximators (i.e., can approximate any dis-
tribution over the visible variables) when the number M of
hidden units goes to infinity [25].

If the set of parameters � is known, then the RBM model
distribution is fully defined. However, expected values over
the distribution are generally not tractable and are estimated
through MC methods. Different algorithms, based on alter-
nating Gibbs sampling between the visible and hidden layers,
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are used to generate samples from P(v), such as contrastive
divergence [23], or persistent contrastive divergence [24]. The
pseudocode of AGS is given in Algorithm 1 [Fig. 1(b)]. It is
mainly composed of two steps:

(i) Starting from a visible configuration vt at time t , a hid-
den configuration ht+1 is drawn from P(h|vt ). This step can be
seen as a stochastic feature extraction from the configuration
vt .

(ii) A new visible configuration vt+1 is drawn from
P(v|ht+1). This step can be seen as a stochastic reconstruction
of v from the latent configuration ht+1.

Note that AGS or its variations are also used during
the learning phase. For a given training set of L samples,
{v�}�=1...L, the parameters � are found by maximizing the
log-likelihood of the data, 1

L

∑L
�=1 log P(v�) ≡ 〈log P(v)〉data.

The maximization is done by gradient ascent. The general
expression for the gradients is

∂LL

∂�
= −

〈
∂E eff(v)

∂�

〉
data

+
〈
∂E eff(v)

∂�

〉
model

, (6)

where 〈.〉data denotes the expected value over the data and
〈.〉model over the model. We see that estimating the gradient
requires computing averages over the RBM distribution at
every step of the training process.

B. Datasets

We use different datasets to illustrate our theoretical re-
sults. For all datasets, we train RBM using the learning
algorithm of Ref. [15,26]. We then study how AGS or other
sampling algorithms sample the RBM distribution.

1. Bars and Stripes

The Bars and Stripes (BAS) dataset [27] is made of L × L
binary synthetic images which contain either exclusively bars
or exclusively stripes. There are 2L+1 − 1 possible configura-
tions [Fig. 2(a)].

2. MNIST

The MNIST dataset [28] is a large dataset of 28 × 28 pixel
images of handwritten digits. We limit ourselves to zeros
and ones [Fig. 2(b)], two graphically far digits. We use the
binarized version of MNIST: Each pixel is white or black.

3. Lattice protein

Lattice proteins (LP) are artificial proteins used to in-
vestigate protein design [29,30] and benchmarking inverse
modeling procedures [31]. Proteins are sequences of amino
acids, whose three-dimensional structures encode their func-
tionalities. In this model, a structure is defined as a

FIG. 2. (a) BAS: Examples of bars (left) and stripes (right);
here L = 10. (b) MNIST: Examples of handwritten 0 and 1 digits.
(c) Lattice proteins: Two structures SA and SB defining two families
of sequences having large Pnat with either fold, see Eq. (7). Structures
from Ref. [31].

self-avoiding path of 27-amino acid-long chains (v repre-
sents a sequence) on the 3 × 3 × 3 lattice cube. There are
N = 103 406 distinct structures (up to global symmetry). The
probability that a protein sequence v folds in a given structure
S is given by

Pnat(S|v) = exp [−E (v, S)]∑
S′ exp [−E (v, S′)]

, (7)

where the energy of the sequence v in a structure S is defined
through

E (v, S) =
∑
i< j

cS
i, j EMJ(vi, v j ). (8)

In the previous formula, cS
i, j = 1 if the sites i and j are in

contact (neighbors on the cube) in structure S; there are 28
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contacts between the amino acids for each structure.1 Oth-
erwise, cS

i, j = 0. The pairwise energy EMJ(vi, v j ) represents
the physicochemical interactions between the amino acids,
given by the Miyazawa-Jernigan (MJ) potential [32]. Here
we focus on two structures, SA and SB, which define two
protein families [Fig. 2(c)]. For each structure, we sample
∼104 sequences that have a high probability to fold in this
structure [Pnat(v|S) > 0.99] to build our datasets [31].

III. ALTERNATING GIBBS SAMPLING OF MULTIMODAL
DISTRIBUTIONS

This section examines how long it takes for AGS to sample
complex energy landscapes with several states associated with
multimodal distributions. We consider first the Curie-Weiss
model at low temperature, where two ferromagnetic states
with opposite magnetizations coexist. We then turn to the case
of the Hopfield model, in which different, uncorrelated states
coexist. We finally study the general, more complex situation,
in which multiple correlated states are present, and the optimal
sampling paths follow a well-defined ordering of the states.

A. Case of bimodal distribution

We consider the Curie-Weiss (CW) model over N spins,
vi = ± 1. The energy function is defined as

ECW(v) = − w2

2N

N∑
i, j=1

viv j, (9)

where w2 plays the role of the inverse temperature. We start
with the implementation of this mean-field model with RBM,
before turning to a brief reminder of its properties and the
study of the performance of AGS.

The CW model can be represented with a RBM with N
visible units (with potentials Vi = 0) and M = 1 hidden unit
with a quadratic potential U (h) = h2

2 . The weights Wi,μ=1 are
uniform and equal to w√

N
.2 The energy of the RBM in Eq. (4)

reads

ECW(v, h) = − w√
N

N∑
i=1

vi h + h2

2
. (10)

After integration over h, it is straightforward to check that the
effective energy in Eq. (5) coincides with the CW energy in
Eq. (9).

1. Barriers and sampling time for Metropolis-Hastings procedures

For w2 > 1 and infinite-size limit N → ∞, the average
magnetization of the spins, m = 1

N

∑N
i=1 vi, spontaneously

acquires a nonzero value. The value of this order parame-
ter is determined by minimizing the free energy (per spin),

1Contacts along the chain are discarded, as their contribution to the
energy is structure independent and, hence, does not affect the value
of Pnat.

2We have checked that numerical experiments with RBM trained
by gradient ascent on data sampled from the Curie-Weiss model
converge to this solution.

f (m) = −w2

2 m2 − S (m), where

S (m) = −
∑

σ=± 1

1 + σm

2
log

(
1 + σm

2

)
, (11)

is the entropy at fixed magnetization. The free energy f (m)
is an even function of m, with a double-well shape. The two
opposite values of the spontaneous magnetization, roots of
f ′(m∗) = 0, define two collective states of the system. Notice
that m = 0 is a local maximum of the free energy.

To go from one mode of the distribution to the other, a
macroscopic number of spins has to be flipped. Local sam-
pling processes, such as Metropolis-Hastings described in
Algorithm 23 take exponential-in-N time to do so:

τ ∼ exp (N� f ), where � f ≡ f (± m∗) − f (0), (12)

is the free-energy barrier between the minima m = ± m∗ and
the local maximum m = 0 of the free-energy landscape. Con-
sequently, for large N , the system is stuck in one state or mode
for long times, and thermalization is practically impossible.

2. Optimal sampling paths with AGS

The AGS procedure can be entirely described in terms of
the magnetizations m of the visible configurations and of the
values h of the hidden unit. To get intensive quantities in the
large N limit, we rescale h → h/

√
N . The conditional config-

uration of the hidden unit ht+1 given a visible configuration
with magnetization mt then simply reads

P(ht+1|mt ) = 1√
2π/N

exp

[
−N

2
(ht+1 − w mt )2

]
. (13)

Some care must be taken to write the conditional distribution
of the magnetization mt given the hidden unit ht . First, the
conditional probability of vt is

P(vt |ht ) =
N∏

i=1

exp (w ht vt
i )

2 cosh(w ht )

= exp {N[w ht mt − log 2 cosh(w ht )]}, (14)

3The specific choice of the Metropolis rule is irrelevant here; other
choices, such as the Glauber rule [33], do not affect the leading
behavior of τ .
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which depends on mt as expected. Second, to turn the prob-
ability over visible configurations into a probability over
magnetizations, we have to take into account the entropies of
the latters. We end up with the normalized (to dominant order
in N) conditional probability

P(mt |ht ) = exp {N[w ht mt − log 2 cosh(w ht )]}
× exp [N S (mt )]. (15)

We may now express the probability to go from one minimum
of the free-energy landscape to the other in T steps of AGS. To
do so, we compute the probability P(mT |m0) that, given mag-
netization m0 = m∗ at time t = 0, the dynamics associated
with AGS reaches magnetization mT = −m∗ at time t = T .
This conditional probability may be computed by means of
the saddlepoint method in the thermodynamic limit N → ∞
(for finite T ):

P
(
mT |m0

) =
∫

dh1 . . . dhT
∫

dm1 . . . dmT −1
T −1∏
t=0

P(mt+1|ht+1) P(ht+1|mt ) = exp

[
−N min

{mt ,ht }

({mt , ht })

]
,

where


({mt , ht }) =
T −1∑
t=0

δ
(t → t + 1), (16)

and, according to Eqs. (13) and (15),

δ
(t → t + 1) = 1

2
(ht+1 − w mt )2 + log[2 cosh(w ht+1)]

−w mt+1 ht+1 − S (mt+1). (17)

The set of magnetizations mt and hidden-unit values ht

minimizing the action 
 in Eq. (16) define the most likely
path, with AGS, capable of moving the system from one state
to another in T alternating sampling steps. They are solutions
of the following extremization equations for 
, which must
be fulfilled at all steps 1 � t � T − 1:

w(mt+1 + mt ) = ht+1 + w tanh(w ht+1),

arctanh (mt ) = w(ht + ht+1)−w2mt . (18)

An example of transition path obtained through brute-force
numerical minimization of 
({mt , ht }) is shown in Fig. 3(a).
It is composed of two portions:

(i) an initial part of the trajectory ascending the free-
energy landscape from one stable state, say, +m∗ up to the
free-energy local maximum, m = 0. This part is associated
with an exponentially small probability, i.e., to a positive
contribution to the action, δ
 > 0 [Fig. 3(b)].

(ii) a final part of the trajectory descending the free-energy
landscape from the local maximum m = 0 down to the other
stable state, say, −m∗. This stretch does not seem to contribute
to the action, δ
 � 0 [Fig. 3(b)].

As the number T of steps increases the total action de-
creases, as expected, and quickly converges toward a minimal
value [Fig. 3(c)]. We show below that the scenario above can
be analytically understood when T is sent to infinity.

3. Analytical expressions of the optimal trajectories
in the T → ∞ limit

In the infinite T limit, the equations of motion (18) admit
two distinct solutions that correspond to the twofold behavior
empirically observed for finite T .

a. Instanton-like trajectories. The ascending trajectories
correspond to instantons, connecting a local minimum of the

free energy to the local maximum, and are described by

mt+1 = 1

w2
arctanh (mt ),

ht+1 = w mt+1. (19)

Inserting these equations into Eq. (17), the contribution
to the action associated to one AGS step reads, after some
algebra,

δ
 = f (mt+1) − f (mt ), (20)

where f (m) is the free energy of the CW model for magneti-
zation m. The only stable fixed point of this dynamics is the
local maximum of f (m) in m = 0. Starting from m0 = m∗, the
dynamics converges to m = 0 for T → ∞. Along this path,

({mt , ht }) −→

T →∞
f (0) − f (m∗) = � f [Fig. 3(c)]. Hence this

path has a log-probability (per variable) equal to minus the
free-energy barrier separating the minima of the landscape.

b. Thermalization-like trajectories. The descending por-
tion of the trajectory corresponds to relaxation toward the
other minimum of the free energy and is described by the
following solution of the extremization equations:

mt+1 = tanh
(
w2 mt

)
,

ht+1 = w mt . (21)

We find that the contribution of an alternating step of AGS to
the action vanishes

δ
 = 0. (22)

The stable fixed points of the dynamics are the two minima
of f (m). Starting from m0 = 0 at time t = 0, the dynamics
converges, when T → ∞, to the spontaneous magnetization
± m∗ associated to the minima of f (m). Along this relaxation
part of the trajectory, 
({mt , ht }) = 0.

As a summary, the probability that a sequence of T steps
of alternating Gibbs sampling brings the system from one
minimum of the free energy to the other is given, to the
dominant order in N , by exp (−N� f ). This result holds when
N and T are very large (but with T � N). We conclude that
it will take the same time τ as with the Metropolis-Hastings
(MH) procedure, see Eq. (12), for the system to switch state.
In other words, AGS is as inefficient as MH for sampling the
bimodal distribution associated with the CW model.
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FIG. 3. Numerical minimization of 
({mt , ht }) for w = 1.1 with
boundary conditions m0 = −mT = m∗. (a) Optimal time course of
the magnetizations for T = 25 (red) and T = 50 (green) AGS steps.
(b) Contributions δ
(t ) and full action 
(t ) as a function of the
number of AGS steps for the optimal paths of duration T = 25 and
T = 50. (c) Cost 
 of the optimal path as a function of T . For large
T , 
 reaches from above a plateau equals to the free-energy barrier
� f of the CW model, see Eq. (12). The convergence is exponentially
fast, with decay time Tdecay ∼ 1/ log(w2).

B. Case of unstructured multimodal distribution

We now consider the case of a multimodal distribution,
where more than two states have high probabilities.

1. Hopfield model

Let us call ξμ (μ = 1, . . . , M) the centers of the states,
which we suppose to be orthogonal in the infinite N limit.
We assume that ξ

μ
i = ± 1. The order parameter is the

M-dimensional vector of magnetizations along the centers,
called patterns,

mμ = 1

N

N∑
i=1

〈vi〉ξμ
i . (23)

We will hereafter consider the limit M
N → 0. To be more

precise, the energy over the visible configurations corresponds
to the Hopfield model [34] and is defined through

EHop(v) = − w2

2N

N∑
i, j=1

(
M∑

μ=1

ξ
μ
i ξ

μ
j

)
viv j, (24)

where w2 is the inverse temperature of the model, and the
visible variables take values vi = ±1. By inserting Eq. (23)
into Eq. (24), the free energy (per variable) can be written as
a function of the magnetizations m along the centers

f (m) = −w2

2

M∑
μ=1

m2
μ − SHop(m), (25)

where SHop(m) denotes the entropy of the visible configura-
tions at fixed magnetizations. It can be computed from the
following Legendre formula:

SHop(m) = min
λ

[
1

N

N∑
i=1

log 2 cosh

(
M∑

μ=1

ξ
μ
i λμ

)

−
M∑

μ=1

λμmμ

]
. (26)

The minimum is reached in the unique λ∗ such that

mμ = 1

N

∑
i

ξ
μ
i tanh

(∑
ν

ξ ν
i λ∗

ν

)
, (27)

for all μ’s. SHop(m) can be expressed as a function of λ∗ and
the binary entropy S (m) defined in Eq. (11)

SHop(m) = 1

N

∑
i

S
[

tanh

(∑
μ

ξ
μ
i λ∗

μ

)]
. (28)

The Hopfield model can be represented with a RBM with
N visible units (with potentials Vi = 0) and M hidden units
subject to the quadratic potential U (h) = h2

2 [16,35,36]. The
energy of the RBM in Eq. (4) reads

EHop(v, h) = −
∑
i,μ

Wiμvi hμ +
∑

μ

h2
μ

2
. (29)

It is straightforward to check, after integration over the M
hidden units, that the effective energy in Eq. (5) coincides with
the Hopfield energy in Eq. (24) provided the weights fulfill the
constraints ∑

μ

Wiμ Wjμ = w2

N

∑
μ

ξ
μ
i ξ

μ
j . (30)

These conditions do not uniquely define the weight ma-
trix W. The energy is invariant under any transformation
W → W × O, where O is an orthogonal matrix. We choose
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for now the following parametrization for the weight matrix
W:

Wiμ = w√
N

ξ
μ
i . (31)

Alternative choices will be discussed later.

2. Optimal sampling with AGS

The AGS procedure can be entirely described in terms of
M magnetizations m of the visible configurations and of the
values h of the M hidden units. As in the case of the CW
model, to get intensive quantities in the large N limit, we
rescale h → h/

√
N . The conditional configuration of the hid-

den unit ht+1 given a visible configuration with magnetization
mt is factorized, and reads

P
(
ht+1

μ |mt
) = 1√

2π/N
exp

[
−N

2

(
ht+1

μ − w mt
μ

)2
]
. (32)

The conditional probability of mt given the hidden unit ht can
be easily written to the leading order in N , with the result

P
(
mt

μ|ht
μ

) = exp

[
−

N∑
i=1

log 2 cosh

(
w

M∑
μ=1

ξ
μ
i ht

μ

)]

× exp

{
N

[
w

M∑
μ=1

ht
μ mt

μ + SHop(mt )

]}
. (33)

Similarly to the CW case, the probability of going from one
minimum of the free-energy landscape to another in T steps
of AGS can be expressed as

P(mT |m0) = exp

[
−N min

{mt ,ht }

({mt , ht })

]
, (34)

where the action 
({mt , ht }) is the sum of

δ
(t → t + 1) = 1

2

∑
μ

(
ht+1

μ − w mt
μ

)2

+ 1

N

∑
i

log 2 cosh

(
w

∑
μ

ξ
μ
i ht+1

μ

)

−w
∑

μ

mt+1
μ ht+1

μ − SHop(mt+1). (35)

The set of magnetizations mt and hidden-unit values ht

minimizing the action 
 define the most likely path interpo-
lating between two states in T AGS steps. They are solutions
of the following extremization equations for 
, which must
be fulfilled at all steps 1 � t � T − 1:

(λ∗)t
μ = w

(
ht

μ + ht+1
μ

)−w2mt
μ,

w
(
mt+1

μ + mt
μ

) = ht+1
μ + w

N

∑
i

ξ
μ
i tanh

(
w

∑
ν

ξ ν
i ht+1

ν

)
.

(36)

3. Analytical expressions of the optimal trajectories
in the T → ∞ limit

As for the CW model, we find

a. Instanton-like trajectories. These are defined by

ht+1
μ = w mt+1

μ = 1

w
(λ∗)t

μ, (37)

mt
μ = 1

N

N∑
i=1

ξ
μ
i tanh

(
w2

M∑
μ=1

ξ
μ
i mt+1

μ

)
.

The contribution to the action associated with this AGS step
reads

δ
 = f (mt+1) − f (mt ). (38)

b. Thermalization-like trajectories. These correspond to

ht+1
μ = w mt

μ = 1

w
(λ∗)t+1

μ , (39)

mt+1
μ = 1

N

N∑
i=1

ξ
μ
i tanh

(
w2

M∑
μ=1

ξ
μ
i mt

μ

)
.

The contribution to the action associated with such an AGS
step vanishes:

δ
 = 0. (40)

c. Orthogonal transformation of the weight matrix. The
computation can be repeated for a weight matrix W̃ = W ×
O, where O is an orthogonal matrix. In the limit T → ∞,
instanton-like and themalization-like trajectories are found,
and contributions to the action for both trajectories are the
same as for W. Therefore, the barriers are identical for all
rotations O. However, contrary to the previous case where the
hidden unit hμ codes for the magnetization mμ only (hμ =
w mμ), under an orthogonal transformation of the weight
matrix, the hidden unit hμ represents a superposition: hμ =
w

∑M
ν=1 Oνμmν .

4. Transition paths between Mattis states

In the thermodynamic limit, the ξμ are orthogonal. The
free-energy landscape f (m) [Eq. (25)] exhibit a large vari-
ety of critical points when w2 > 1 [37,38], defined through
Eq. (23), with

〈vi〉 = tanh

(
w2

M∑
μ=1

ξ
μ
i mμ

)
. (41)

Global minima of Eq. (25) are reached for magnetization with
only one nonzero component, called Mattis states [39]. Nu-
merical experiments for finite N exhibit transitions between
the Mattis states, for all orthogonal transformation W̃ = W ×
O [Figs. 4(a) and 4(c)]. However, the hidden representations
of the path between Mattis states may be easy or difficult to in-
terpret depending on the orthogonal transformation [Figs. 4(b)
and 4(d)].

Furthermore, as for CW, for large T and N (with T � N),
the probability to go from one Mattis state to another scale
as exp (−N� f ). The barrier � f depends on w and is always
positive for w2 > 1 [37]. Therefore AGS is as inefficient as
MH for sampling the Hopfield model.
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FIG. 4. Hopfield model with N = 128 spins, M = 6 patterns, and w = 1.35; each color refers to one index μ. Examples of transition
between two states for Wiμ = w√

N
ξ

μ
i [panels (a) and (b)] and for Wiμ = w√

N

∑
ν Oνμξ ν

i [panels (c) and (d)]. [(a) and (c)] Magnetizations mμ

along the patterns as functions of the number of AGS steps. [(b) and (d)] Hidden unit values hμ as functions of the number of AGS steps for
the same transitions as in panels [(a) and (c)].

C. Case of structured multimodal distributions

We now turn to a more complex case of multimodal distri-
butions, in which the free-energy minima do not correspond to
orthogonal pockets of configurations in the visible space but
are structured. In addition, contrary to the previous models,
the hidden units hμ, which can be discrete or continuous, are
now subject to an arbitrary, not necessarily quadratic potential
Uμ(hμ). Common potentials in the machine learning commu-
nity are Bernoulli or rectified linear unit (ReLU) potentials
[15,40], see Appendix A.

The N → ∞ visible units vi are ± 1 variables, and no
potential acts on them (Vi = 0). A visible unit vi is connected
to one or two hidden units with equal weights w√

N
, following

a pattern of connections shown in Fig. 5. We define the adja-
cency matrix a of our model as:

aiμ =
{

1 if Wiμ = w√
N

0 otherwise
. (42)

FIG. 5. Illustration of the structured model for M = 3 hidden
units. The structural overlap matrix α divides the visible layer into
six different areas labeled by μ, ν, with 1 � μ � ν � M. For each
area, we define the corresponding normalized magnetization mμν .

From the adjacency matrix a, we define the overlap matrix α

and the magnetization matrix m:

αμμ = 1

N

N∑
i=1

aiμ

∏
ν =μ

(1 − aiν ), (43)

αμν = 1

N

N∑
i=1

aiμaiν, (44)

mμμ = 1

αμμN

N∑
i=1

〈vi〉 aiμ

∏
ν =μ

(1 − aiν ), (45)

mμν = 1

αμνN

N∑
i=1

〈vi〉 aiμaiν . (46)

In other words, there are αμμN visible units connected only
to hμ, and αμνN visible units connected to both hμ and hν .
The overlap matrix α partitions the visible layer into M(M+1)

2
subsets with associated magnetizations m (Fig. 5).

It is straightforward to write down the free energy per
variable f (m) as a function of the M(M+1)

2 magnetizations,
with the result

f (m) = −
M∑

μ=1

�̂μ

(
w

M∑
ν=1

αμν mμν

)
−

∑
ν�μ

αμν S (mμν ),

(47)
where �̂μ is the rescaled cumulative generative function asso-
ciated with the hidden potential Uμ, see Eq. (5) and Appendix
A, and S (m) is the entropy associated to a single ± 1 vari-
able with magnetization m. The minima of f (m) obey the
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following self-consistent equations:

m∗
μμ = tanh[w fμ(I∗

μ)],

m∗
μν = m∗

μμ + m∗
νν

1 + m∗
μμm∗

νν

, (48)

where I∗
μ = w

∑M
ν=1 αμνm∗

μν is the input received by the hid-
den unit hμ and fμ = �̂′

μ is the transfer function associated
with hidden unit hμ.

1. Optimal sampling paths with AGS

We may now express the conditional probabilities of the
magnetization matrix m (of dimension M × M) and of the
hidden-unit value vector h (of dimension M) following what
was done for the simpler models in the previous sections. We

first write the conditional probability of the hidden configura-
tion given a set of visible activities,

P
(
ht+1

μ

∣∣mt
) = exp

{−N
[
Uμ(ht+1

μ ) − ht+1
μ It

μ

]}
∫

dh exp
{−N

[
Uμ(h) − hIt

μ

]}
� exp

{−N[Uμ

(
ht+1

μ

) − ht+1
μ It

μ]
}

× exp
[−N�̂μ

(
It
μ

)]
, (49)

where we have defined the input It
μ = w

∑M
ν=1 αμνmt

μν re-
ceived by the hidden unit hμ given the magnetization matrix
mt .

In turn, we write the conditional probability over magneti-
zations given the set of hidden-unit values (to dominant order
in N),

P(mt |ht ) � exp

(
N

{
M∑

μ=1

It
μht

μ − αμμ log 2 cosh
(
w ht

μ

) −
∑
μ�ν

αμν log 2 cosh
[
w

(
ht

μ + ht
ν

)] + αμν S
(
mt

μν

)})
. (50)

The probability to go from one minimum of the free-energy
landscape to another in T steps of AGS, P(mT |m0), takes the
same form as Eq. (16), where the action 
({mt , ht }) is the
sum of

δ
(t → t + 1) =
M∑

μ=1

Uμ

(
ht+1

μ

) +
M∑

μ=1

�̂μ

(
It
μ

)

+
M∑

μ=1

αμμ log 2 cosh
(
w ht+1

μ

)

+
∑
μ�ν

αμν log 2 cosh
[
w

(
ht+1

μ + ht+1
ν

)]

−
M∑

μ=1

(
It+1
μ + It

μ

)
ht+1

μ

−
∑
μ�ν

αμν S
(
mt+1

μν

)
. (51)

Notice that the previous expression extends the model studied
in Sec. III A, which can be recovered for M = 1, α11 = 1 with
a quadratic potential U (h) = h2

2 .
We show the best path found through minimization of 


in the case of M = 2 hidden units, quadratic U (h), w > 1,
and small positive overlap α12. The free-energy landscape
f (m) represents two coupled Curie-Weiss models [Fig. 6(a)],
and displays two global minima and two local minima. The
green trajectory shows the most likely path connecting the
two global minima in T = 100 steps. Along this path, mt

11
and mt

22, and therefore ht
1 and ht

2, have asymmetric behaviors.
In contradistinction, trajectories along which mt

11 and mt
22 are

equal have exponentially smaller probabilities, see the red
path. We elucidate this behavior below.

2. Optimal trajectories in the T → ∞ limit

The set of magnetizations mt and hidden-unit values ht

minimizing the action 
 define the most likely path, with
AGS, capable of moving the system from one state to another
in T alternating sampling steps. They are solutions of the fol-
lowing extremization equations for 
, which must be fulfilled
at all steps 1 � t � T − 1:

It
μ + It+1

μ = Uμ
′(ht+1

μ

) + w αμμ tanh
(
wht+1

μ

)
+w

∑
ν =μ

αμν tanh
[
w

(
ht+1

μ + ht+1
ν

)]
, (52)

mt
μμ = tanh

[
w

(
ht+1

μ + ht
μ

) − w �̂′
μ

(
It
μ

)]
, (53)

mt
μν = mt

μμ + mt
νν

1 + mt
μμmt

νν

. (54)

In the infinite T limit, these equations of motion admit two
distinct solutions.

a. Instanton-like solutions. These correspond to an in-
crease of free energy from a local minimum, to a saddlepoint
of f (m). These solutions can be written as

ht+1
μ = fμ

(
It+1
μ

)
,

mt
μμ = tanh

[
w fμ

(
It+1
μ

)]
. (55)

Inserting these equations into Eq. (51):

δ
 = f (mt+1) − f (mt ). (56)

b. Thermalization-like solution. These make the free
energy decrease until a local minimum is reached. The relax-
ation solution can be written as:

ht+1
μ = fμ

(
It
μ

)
,

mt+1
μμ = tanh

[
w fμ

(
It
μ

)]
. (57)

Inserting these equations into Eq. (51):

δ
 = 0. (58)
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FIG. 6. (a) Free-energy landscape for a coupled Curie-Weiss
model with two global minima and two local minima. M = 2,
U (h) = h2

2 , w = 1.15
√

2, and α12 = 0.02. Among the many paths
connecting the two global minima in T = 100 steps, the green path
is the optimal one. The red path is another path, along which both
magnetizations m11 and m22 are equal at all times. The blue path is a
representative trajectory found by simulating AGS for N = 400 and
105 steps. (b) Free energy f (mt ) along the different paths. (c) Cost

({mt , ht }) for the different paths.

While instantonic and thermalization trajectories are,
strictly speaking, defined for T → ∞ qualitatively analogous
bouts of trajectories are observed for finite T , see Fig. 6(b)
and 6(c) for the M = 2 example above. The green and the red
paths are each composed of a sequence of instantonic and ther-
malization stretches. In the case of the red path, starting from a
global minimum, the instantonic dynamics leads to the global
maximum of f (m). The relaxation dynamics then brings the

system down to the other global minimum. In the case of the
green path, starting from a global minimum, the instantonic
solution leads to a saddle point of f (m), which is unstable
for the instantonic and the thermalization dynamics. Then,
the relaxation dynamics leads to a local minimum of f (m).
Through another pair of instantonic-relaxation dynamics, the
second global minimum is finally reached. Thus, for the green
and the red paths, the action 
({mt , ht }) corresponds to the
sum of the free-energy barriers along the paths [Figs. 6(b) and
6(c)]. These theoretical findings are corroborated by running
AGS on a RBM with N = 400 spins, with the same overlap
matrix α. Along the transition path allowing the RBM to
interpolate from one global state to the other, hidden units are
preferentially flipped one by one, see the blue path in Fig. 6(a).

3. Dependence of barrier on structural overlap α

This section examines the influence of the structural over-
lap on the free-energy barrier (and on the transition time)
separating states. For the sake of simplicity, we focus on the
case of M = 2 hidden units subject to quadratic potentials and
restrict ourselves to small overlap values, α = α12 � 1. For
α = 0 the two global minima of f (m) are m∗ and −m∗, where

m∗ =
[

m11 = m∗
m22 = m∗

]
. (59)

An optimal path between these two global minima follows the
sequence of critical points:[

m∗
m∗

]
→

[
0

m∗

]
→

[−m∗
m∗

]
→

[−m∗
0

]
→

[−m∗
−m∗

]
, (60)

and, for large T , 
(T ) equals the sum of the free-energy
barriers along the path


 = − f

([
m∗
m∗

])
+ 2 f

([
0

m∗

])
− f

([−m∗
m∗

])

= − log 2 + w2

2
(m∗)2 + S (m∗). (61)

Assume now we make small changes to the weight and
overlap values, i.e., w → w + dw, α → dα. We denote the
displacement of the critical points of f (m) by dm, and the
variations of the free energy by df (m). We will consider only
contributions to the first order in dα and dw,

dm = mwdw + mαdα, (62)

df (m) = f w(m)dw + f α (m)dα. (63)

Expressions for mw, mα , f w(m), and f α (m) are given in
Appendix B.

As the variation of α changes the critical points of f (m),
we have to change w in order to keep fixed the two global
minima ± m∗ of f (m). Therefore, the variation of the cost

 between an optimal path for α = dα and one for α = 0
defined in Eq. (60) reads

d
 = −df

([
m∗
m∗

])
+ 2 df

([
0

m∗

])
− df

([−m∗
m∗

])
. (64)

As we observe in Fig. 7, a small overlap α reduces the cost
for a wide range of w and therefore helps reduce the transition
time between the global minima of f .
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FIG. 7. Solid lines: Numerical evaluation of d
. Dashed lines:
First-order perturbation theory evaluated with Eq. (64).

4. Time ordering of hidden-unit changes on sampling path

As the optimal paths for the alternating Gibbs sampling
are the ones that minimize the sum of the free-energy bar-
riers along the paths, the optimal paths depend strongly on
the overlap matrix between the hidden units. If we impose
a one-dimensional structure with periodic boundary condi-
tions for the overlap matrix, i.e., αμν = α for ν = μ − 1 and
ν = μ + 1, αμμ = 1

M − M−1
2 α > 0 (the hidden units are on a

circle and have an overlap only with their two neighbors), then
the optimal path corresponds to an asymmetric behavior of the
hidden units: they evolve one by one, according to their orders
on the circle (hμ evolves then hμ+1 then hμ+2...), see Fig. 8.

D. Numerical experiments

We train RBM with the datasets defined in Sec. II B, then
test the performances of alternating Gibbs sampling. The dif-
ferent RBM can generate high-quality configurations, but the
dynamics associated with Gibbs sampling struggles to mix
efficiently between the data modes.

1. BAS

We train RBM with 2L real hidden units subject to
quadratic potentials and ± 1 visible units. A L1 regularization
is added to the log-likelihood to enforce the sparsity of the
weights. With this regularization, each hidden unit focuses on
a given bar or a given stripe, see Sec. IV B for further details.
Hidden units identify the relevant degrees of freedom of the
visible units. For an image of bars, hidden units encoding the
bars are strongly magnetized, and the hidden units encoding
the stripes are weakly magnetized (they are silent). It is es-
sential to use real hidden units because each hidden unit must
have more than two equilibrium positions (strongly magne-
tized with positive or negative value, and weakly magnetized
with positive or negative value). This behavior is not possible
with discrete units like Bernoulli or spin. AGS is inefficient
for large L and long training, and the dynamics gets stuck
in a bar or stripe configuration (Fig. 9). For short training,
dynamics can escape from a given configuration but sampled
configurations are noisy.

FIG. 8. Sampling paths for structured states. M = 4 hidden units
are arranged on a ring, with w = 2.2 and α = 0.02. (a) Numerical
minimization of 
({mt , ht }) for T = 250. Hidden units are flipped
according to their ordering on the ring (h1 → h2 → h3 → h4). There
are 2M equivalent optimal paths. (b) Numerical experiment on a
RBM with N = 400 visible units. Hidden units are flipped according
to their ordering on the ring (h2 → h1 → h4 → h3).

2. MNIST 0/1

We train spin-spin RBM (hidden and visible units are ± 1
spins). The weights of the RBM encode the digits strokes.
Zeros have many strokes in common, and so have ones. There-
fore, the hidden representations of each digit are close to each
other (in terms of Hamming distance). AGS is efficient to
sample within a digit class and generate high-quality data
[Figs. 10(a) and 10(b)]. However, hidden representations of
the zeros and the ones are far away from each other. There-
fore, many hidden units should be simultaneously flipped to

FIG. 9. Example of configurations obtain with AGS starting
from a stripe (a) or a bar (b); 1000 steps between each frame.
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FIG. 10. Examples of digits obtained with AGS starting from a 0
(a) and from a 1 (b); 1000 steps between each frame. (c) Probabilities
that the visible unit configurations sampled by the RBM at different
times are 0 (blue) or 1 (red), estimated by a random forest classifier
trained on 0-1 data [42,43]. The dynamics is stuck in a given mode.

go from one class to another, which is very unlikely with
AGS: The dynamics remains confined to one digit class, see
Fig. 10(c). Notice that this observation crucially depends on
the restriction of MNIST to 0–1 digits done here. RBM trained
on all 10 digits sample much more efficiently all classes and
can reach 1 from 0 or vice versa [15,41], as other digits carve
interpolating paths in the energy landscape.

3. Lattice proteins

To encode amino acids (which may take 20 values), we in-
troduce RBM with categorical (Potts) visible units. Couplings
between the hidden layer and the visible layer are represented
by a M × N × 20 tensor. Thus, the energy of the RBM can be
written as:

E (v, h)=−
N∑

i=1

M∑
μ=1

Wiμ(vi)hμ+
M∑

μ=1

Uμ(hμ)+
N∑

i=1

Vi(vi ).

The weights of the RBM encode the constraints, such as con-
tacts between different amino acids defined by the structure.
Contrary to the two previous examples, the landscape has to be
sampled at low temperatures to generate high-quality proteins
with the RBM, i.e., proteins with a high probability to fold
in a given structure, the landscape has to be sampled at low
temperatures. Using the trick introduced in Ref. [44], we copy
each hidden unit β ∈ N times and multiply the visible fields
by the same factor β:

Pβ (v) ∝
∫ M∏

μ=1

β∏
c=1

P
(
v
∣∣hc

μ

) = P(v)β. (65)

With this modification, it is possible to sample the landscape
P(v) at inverse temperature β. RBM generate high-quality

FIG. 11. (a) Principal component analysis in the sequence
spaces, showing the cluster structure of each family (blue and red
colors). Fuchsia and orange paths are the projection of sampled
proteins with AGS, starting respectively from a protein in family
A and B. Sampled proteins are stuck in a given family; 250 Gibbs
steps between each cross. This number of steps is larger than the
decorrelation time estimated from the Hamming distance between
sequences vt . (b) Pnat(v|S) of sampled proteins with AGS, for SA and
SB, for an initial protein in the SB family [orange path in panel (a)].
RBM generates high-quality and diverse proteins, which are different
from the training data.

proteins but struggles to mix between two families with es-
sentially dissimilar contact maps, such as structures SA and SB

defined in Fig. 2, see Fig. 11. Many hidden units would have
to change at once, a very unlikely update with AGS to go from
one family to another.

IV. ALTERNATING GIBBS SAMPLING AND DYNAMICS
IN THE LATENT SPACE

A. Principle of the algorithm

We have shown in the previous Sec. III that AGS was as
efficient as the local MH procedure to sample the landscape
over the visible configurations, defined by the effective energy
E eff(v). However, RBM offer more than this landscape, and
it is natural to wonder if the representations of data could be
exploited to enhance sampling performance. To do so, we
propose a sampling algorithm combining AGS and moves
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in the hidden unit space, see Fig. 1(d) and Algorithm 3. The
main idea is to exploit the fact that hidden units can encode
specific features of the data. By doing Metropolis steps in the
hidden space, we try to flip the hidden units one by one, or
by blocks, for switching on-off the features they encode. This
flipping procedure must obviously preserve detailed balance.
We therefore need to know the effective energy over hidden
configurations, E eff(h), defined by marginalizing the joint
distribution P(v, h) over the visible variables

E eff(h) = − log

[∫
dv P(v, h)

]
. (66)

We can gain intuition about the exponential speed up of-
fered by the algorithm in the latent space by considering first
the CW model. In the absence of any bias (external field) be-
tween the + and − states of the visible variables, the effective
energy E eff(h) is an even function of the hidden unit value
h. A step of the sampling algorithm in the hidden space, see
Algorithm 3, has thus probability 1

2 to flip the hidden unit.
Sampling back the visible layer will change the state of a
macroscopic number of visible variables. Using MH algo-
rithm in the hidden space is similar to using cluster algorithms
for the visible spins [3,4]. For ferromagnetic models, these
algorithms are known to be much more efficient than local
MH over spins [45–47]. The latent variable is here attached
to the relevant collective mode (global reversal) of the spin
variables.

For the mean-field structured models defined in Sec. III C,
as long as the overlap between the hidden units is weak, the
hidden units could be flipped one by one for moderate system
size N . We define the potential acting on one hidden unit, say
hμ, conditional to the other units h¬μ through

eμ(hμ|h¬μ) = 1

N
E eff[h = (hμ, h¬μ)]. (67)

Each flip of a hidden unit corresponds to a move from one
local minimum to another in the landscape eμ(hμ|h¬μ), see
Fig. 12. Metropolis steps in the hidden space can speed up the
dynamics: the free-energy barrier for Metropolis-Hastings in
the hidden space, N�eMH, where

�eMH = − 1

N
log

[ ∫ ∞
0 dh e−Neμ(h|h¬μ )∫ 0
−∞ dh e−Neμ(h|h¬μ )

]
, (68)

FIG. 12. Barriers in a structured model with M = 5 hidden units,
with w = 1.2

√
5, αμν = 0.03 for all pairs μ = ν. All hidden units

are frozen except hμ. For small overlap between the hidden units, the
potential eμ(hμ|h¬μ) has two local minima for two different values
of hμ, h1∗

μ and h2∗
μ . By sampling back the visible layer P(m|h), we

see that there are two local minima for f (m). Flipping the hidden
unit hμ allows one to go from one local minimum to another. The
free-energy barrier in the hidden space with Metropolis-Hastings
algorithm �eMH is smaller than the free-energy barrier of the alter-
nating Gibbs sampling � f .

is smaller than the free-energy barrier N� f “seen” by alter-
nating Gibbs sampling.

B. Application to BAS

We train RBM trained on BAS with a L1 regularization to
enforce the sparsity of the weights. Each hidden unit focuses
on a given bar or a given stripe thanks to the regularization
[Fig. 13(a)]. The change hμ ← −hμ leaves the energy E eff(h)
unchanged: A bar or a stripe can be present or not [Fig. 13(c)].
We use a Gibbs sampling in the hidden space where one hid-
den unit is updated according to Algorithm 3. Our algorithm
efficiently switches on-off these hidden units [Fig. 14(a)].

Notice that, without regularization, each hidden unit would
focus on several bars and stripes [Fig. 13(b)]. In that case,
allowing for steps in the hidden-unit space does not help, and
our algorithm is inefficient [Fig. 14(b)].

C. Application to the Hopfield model

We have seen in Sec. III B that, for large-enough weight
amplitude w, the AGS dynamics is stuck in one Mattis state
of the Hopfield model, i.e., the magnetization m has only
one component different from zero in the infinite size limit.
The behavior of the hidden-unit configurations depends on the
prescription of the weights, which may or may not be aligned
with the states ξμ [Eq. (30)].
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FIG. 13. Example of weights learned by RBM on BAS, L = 10.
(a) With L1 regularization. Each hidden unit focuses on a bar or
stripe. (b) Without L1 regularization. Each hidden unit focuses on
several bars and stripes. (c) Potential eμ(hμ|h¬μ) for h associated
with a stripe image; the minimum of the energy is set to zero. Solid
blue line: Hidden unit hμ encoding a stripe; the two minima coding
from the on-off stripe have roughly the same energy. Solid orange
line: Hidden unit hμ encoding a bar, the minimum encoding the on
bar has an energy much higher than the one corresponding to the off
bar.

1. Aligned weights

Let us first assume that the weights are aligned with the
states, i.e., that Eq. (31) holds. The effective energy over the
hidden configurations reads

E eff(h) =
∑

μ

h2
μ

2
−

∑
i

log 2 cosh

(
w√
N

∑
μ

ξ
μ
i hμ

)
. (69)

Identifying hμ

w
√

N
= mμ, the effective energy is equal to the

free energy of the Hopfield model derived in Ref. [37] at
inverse temperature w2. The representations of the Mattis
states are very simple in the hidden space of the RBM. In the

FIG. 14. Visible configurations obtained with alternating Gibbs
sampling and Metropolis-Hastings algorithm in the hidden space,
L = 10. 25 Gibbs steps between each frame. (a) With L1 regular-
ization. (b) Without L1 regularization.

presence of ξμ on the visible layer, one hidden unit, say,
μ = 1, is strongly magnetized: h1 = O(

√
N ). The M − 1

other hidden units are weakly activated: hν = O(1) for ν � 2.
E eff(h) has 2M global minima corresponding to the 2M Mattis
states.

a. Single unit potential. According to Eq. (69) the potential
over the strongly magnetized hidden unit μ = 1 reads, after
rescaling h1 → h1/

√
N ,

e1(h1|h¬1) = h2
1

2
− log 2 cosh(wh1), (70)

up to an additive constant. This potential has two global,
opposed minima for w2 > 1. The situation is similar to the
CW model studied above: MH steps in the hidden-unit space
allow for efficient sampling on the states ξ1 and −ξ1.

The potential on the other hidden units ν = 1 is given by,
up to an irrelevant additive constant and in the large-N limit,
after rescaling hν → hν/

√
N ,

eν (hν |h¬ν ) = h2
ν

2
− (

1 − m2
1

) (
1

N

∑
i

ξ 1
i ξν

i

)
hν . (71)

Sampling this quadratic potential allows to better explore the
Mattis state around ξ1, but it does not help changing state.

b. Two-unit potential. To speed up exploration of different
states, we introduce the two-unit potentials

eμ,ν (hμ, hν |h¬μ,ν ) = 1

N
E eff[h = (hμ, hν, h¬μ,ν )], (72)

where all but two hidden units are kept fixed. These potentials
are plotted in Fig. 15. Two typical behaviors are encountered:

(i) μ, ν are both different from 1. The two-unit potential
eμ,ν is simply the sum of the single-unit potentials eμ and eν ,
see Eq. (71). Therefore eμ,ν has only one global minimum
[Fig. 15(a)]. Changing hμ or hν does not allow for moving
outside the state condensed ξ1.

(ii) μ = 1 and ν = 1. Contrary to the previous case, h1 is
now a free parameter. Therefore, by tuning h1 and hν , four
global minima of e1,ν can be reached, corresponding to the
cases where h1 or hν are strongly magnetized (with positive or
negative values), see Fig. 15(b). We can exploit this structure
by introducing a block Gibbs sampling in the hidden space,
where two hidden units are updated simultaneously, see Algo-
rithm 4. The dynamics can now explore all the Mattis states
very efficiently, see Fig. 15(d).
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FIG. 15. Hopfield model encoded by a RBM with N = 128, M = 6, and w = 1.5 and orthogonal ξμ. Panels (a), (b), and (c) represent the
landscape eμ,ν (hμ, hν |h¬μ,ν ), where the M − 2 other components of h are fixed. Black dots represent minima of the landscape. (a) Wiμ =
w√
N
ξ

μ
i . Initial configuration is hλ strongly magnetized and hμ ∼ hν = O(1). Minimum is reached for hμ ∼ hν = O(1). (b) Wiμ = w√

N
ξ

μ
i .

Initial configuration is hμ strongly magnetized and hν = O(1). Four minima exist corresponding to the four possible Mattis states. (c) Case
Wiμ = w√

N

∑N
ν=1 Oμνξ

ν
i . There exist only one minimum. [(d) and (e)] vt are generated with AGS with MH steps in the hidden space, starting

from ξ1. The fraction of time spent in a Mattis state is shown as a function of the number of sampling steps. (d) Wiμ = w√
N
ξ

μ
i : The visible

configuration vt eventually visits all Mattis states with equal probabilities. (e) Wiμ = w√
N

∑N
ν=1 Oμνξ

ν
i : The dynamics gets stuck in a given

Mattis state.

2. Rotated weights

As already mentioned in Sec. III B, the conditions in
Eq. (30) do not uniquely define the weight matrix W. The
Hopfield model energy is invariant under any transforma-
tion W → W × O, where O is an orthogonal matrix. After
this orthogonal transformation, the hidden representation of a
Mattis state is delocalized: Each component of h is strongly
magnetized (of the order of

√
N). Single or two-unit po-

tentials have one global minimum [Fig. 15(c)]. Therefore,
Metropolis-steps in the hidden space do not speed up sampling
[Fig. 15(e)] unless all M hidden units are simultaneously
updated.

Numerical experiments with RBM trained by gradient as-
cent on data sampled from the Hopfield model generally
converge to a solution, where the hidden representation of a
Mattis state is delocalized [Fig. 16(a)] [48]. By adding the
following penalty term in the log-likelihood, it is possible to
ensure that only one hidden unit is strongly magnetized and

FIG. 16. Matrix product between the weight matrix WT (size
M × N) and the matrix of patterns ξ (size N × M). N = 128 and
M = 6. (a) Without regularization, λpen = 0. Each pattern ξμ has a
delocalized representation in the hidden space. (b) With regulariza-
tion, λpen = 0.001. Each pattern ξμ strongly magnetized only one
hidden unit.
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encodes for a specific pattern ξμ, see Fig. 16(b):

LLpen = −λpen

L

L∑
�=1

∑
μ =ν

| fμ(v�) fν (v�)|, (73)

where {v�}�=1...L are the L samples in the training set.
This penalty favors solutions where only one hidden unit is
strongly magnetized. Its intensity is set by the parameter λpen.

V. CONCLUSION

This work presents a combination of analytical and nu-
merical results on the dynamics defined by alternating Gibbs
sampling of restricted Boltzmann machines and applied to
several mean-field models. We have shown how this sampling
procedure can find optimal transition paths between the local
minima of the free-energy landscape over the visible config-
urations. However, large free-energy barriers, extensive in the
system size, have to be crossed to go from one state to another.
As a result, AGS is not more efficient than standard local
Metropolis sampling of the effective energy of the visible con-
figurations. Notice that our analytical results were derived in a
double large-size setting, where the asymptotics on the size N
of the system was considered first, and the time T of transition
paths was made large afterward. In practice, the probabilities
that these transitions paths successfully interpolate between
states are exponentially small in N , which implies, in turn,
that transitions almost surely happen on timescales growing
exponentially in N (and equal to the inverse probabilities). As
shown in Fig. 6(a), the system spends most of this exponential
time attempting to escape local minima of the free-energy
landscapes, while transitions between the minima are actually
fast (but rare).

The inability of AGS to outperform local sampling pro-
cedures in mixing between states calls for some comments.
First, it does not seem to be affected by the presence of struc-
ture in the free-energy landscape. Both in the unstructured
case, in which the minima of the free energy are uncorrelated
(or related through global symmetries) and in the structured
case, in which the minima exhibit a nontrivial organization
(as observed for real data), large barriers are encountered.
For structured distributions, however, the minima’s nontrivial
organization leads to the existence of optimal sampling paths,
whose interpretation can be simpler in the hidden space of the
RBM. Second, AGS, with contrastive divergence or persistent
contrastive divergence, remains an efficient training algorithm
for RBM. These two procedures authorize initializations of
the dynamics in different local minima close to the training
data. Thus, even if AGS suffers from poor mixing between
far away minima, the different minima close to the data may
be well sampled. Third, AGS can be efficient when the differ-
ent modes of data are connected through energy valleys. For
example, AGS of RBM trained on all digits of MNIST can
generate transition between 0 and 1. However, these transi-
tions go through different intermediate states, which are other
digits. When training RBM on zeros and ones only, as done
in this paper, intermediate states do not exist: The two modes
are not connected by low-energy funnels, and transitions are
unlikely to occur. Last, RBM are supposed to encode mean-
ingful (hidden) representations, coding for collective features

in the data. It is tempting to see these features as modes of
excitation that could be flipped at once, similarly to what
cluster algorithms achieve for ferromagnetic models.

In this context, we have shown how Metropolis-Hastings
steps in the hidden space (in between the forward and back-
ward passes of AGS) can enhance sampling performance
when hidden units encode essentially independent data fea-
tures or are block correlated. Updating of one or a small
number (corresponding to the size D of the block) of hidden
units then allows for a macroscopic change of visible units
and offers rapid mixing between states. We have illustrated
this mechanism on the Bars and Stripes dataset (D = 1) and
on the Hopfield model (D = 2). In the latter case, the success
of this procedure crucially depends on the specific set of
weights output by the learning procedure or, equivalently, on
the nature of representations. MH updates in the hidden space
are effective in the prototype-like regime, in which one or
few strongly active hidden units rigidly determine the visible
configurations [49]. This statement is expected to hold also
in the so-called compositional regime, in which hidden-unit
activity configurations are sparse, but the combinations of
strongly activated latent variables are highly flexible and allow
for a combinatorial number of visible states [15]. In practice,
one can estimate the order of magnitude of D by measuring
(through sampling of the trained RBM from the different data
points) and clustering the covariance matrix of the hidden
units.

In the case of entangled representations, in which all (or
a large number of) the hidden units are strongly magnetized
(with different degrees of activation from one state to another),
our combined AGS-MH procedure is inefficient, as flipping a
small number of hidden units is unable to change the identity
of the state, and determining new, adequate configurations
of a large number of hidden units would be computationally
prohibitive. This phenomenon was illustrated on the Hopfield
model in the case of “rotated” weights, compare Figs. 15(d)
and 15(e). In much the same way, MH updates of a small
subset of the hidden units of RBM trained on MNIST 0/1
or lattice proteins do not significantly enhance mixing per-
formances. Hidden units capture features of the data, such as
digit strokes for MNIST, which are correlated. Changing state
demands to tune a large number of hidden units, see Fig. 17.
In other words, the very existence of collective modes of
hidden units prevents the success of our AGS-MH procedure,
which is local in the hidden space. Another illustration of
these collective modes in the hidden space is provided by
RBM trained on BAS. Even if our algorithm is efficient to
sample within a given class (bars or stripes), it cannot go
from one class to another. To go from an image of bars to
an image of stripes, the hidden units encoding the bars have to
be silent, and the hidden units encoding the stripes have to be
strongly magnetized. These define two collective modes of the
hidden units, which AGS-MH cannot change. We stress that
the inability of AGS to achieve rapid mixing is not limited to
mean-field-like models. Even in the case of RBM tailored to
encode finite-dimensional models with high-order ferromag-
netic interactions, AGS suffers from poor mixing, and efficient
sampling could only be obtained by combining with cluster
algorithms such as the Swendsen-Wang procedure [50]. In a
forthcoming publication, we show how stack of RBM, with
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ideas proposed in Refs. [51,52], can detect collective modes
of hidden units and thus improve the sampling of the energy
landscape.
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APPENDIX A: GENERAL HIDDEN-UNIT POTENTIALS

We consider below three different potentials acting on hid-
den units and how they should scale when N → ∞.

1. Quadratic potential

The quadratic potential is defined as Uμ(hμ) = h2
μ

2 . In that
case, we should rescale hμ → hμ/

√
N . We get:

P(hμ|m) = 1√
2π/N

exp
[
−N

2
(hμ − Iμ)2

]
, (A1)

�̂μ(I ) = I2

2
, fμ(I ) = I. (A2)

2. ReLU potential

We can use the so-called ReLU potential Uμ(hμ) =
1
2γ +h+2

μ + θ+h+
μ where h+

μ = max(hμ, 0), see for instance

Ref. [44]. We should rescale hμ → hμ/
√

N and θ+
μ →

θ+
μ /

√
N . We get:

P(hμ|m) = T N
(

N
Iμ − θ+

μ

γ + ,
1

γ + ,R+
)

, (A3)

�̂μ(I ) = max

(
0,

1

2

(
I − θ+

μ

γ +
μ

)2
)

,

fμ(I ) = max

(
0,

I − θ+
μ

γ +
μ

)
. (A4)

T N (μ, σ 2,R+) denotes the truncated Gaussian distribu-
tion of mode μ, width σ , and support R+. This potential is
called ReLU because its transfer function is a ReLU function.

3. Binary hidden units

If the hidden units are spinlike variables, i.e., hμ ∈ {−1, 1},
then the potential can be written as a field Uμ(hμ) = −cμ hμ.
In that case, we should rescale cμ → cμ/N , w → w

√
N . We

get

P(hμ|m) = 1

2
{1 + hμ tanh [N (Iμ + cμ)]}, (A5)

�̂μ(I ) = |I + cμ|, fμ(I ) = sign(I + cμ). (A6)

FIG. 17. RBM trained on MNIST 0/1, with M = 200 hidden
units. (a) Correlation matrix of the inputs received by the hidden units
on the training data. Hidden units are sorted according to the com-
ponents of the top eigenvector on this matrix. Two clusters emerge,
corresponding to 0’s and 1’s: each digit is attached to roughly half
the hidden units. (b) Example of weights Wiμ for a hidden unit μ

associated to 1, corresponding to a stroke specific to 1. (c) Example
of weights Wiμ for a hidden unit μ associated to 0, corresponding to
a stroke specific to 0.

If the hidden units are Bernoulli units, i.e., hμ ∈ {0, 1}, then
the potential acting on the hidden units is the same as for spins
variables, and we get:

P(hμ|m) = exp [Nhμ(Iμ + cμ)]

1 + exp [N (Iμ + cμ)]
, (A7)

�̂μ(I ) = max(0, I + cμ), fμ(I ) = H (I + cμ). (A8)

H (x) is the Heaviside step function.

APPENDIX B: EXPANSION OF BARRIER HEIGHT
TO FIRST ORDER IN PARAMETER CHANGES

By using first-order perturbation theory with the self-
consistent equation defined in Eq. (48), we end up with:

mα =
[

gα (m11, m22)
gα (m22, m11)

]
, mw =

[
gw(m11)
gw(m22)

]
, (B1)

with

gα (x, y) =
(

− x

2
+ x + y

1 + xy

)[
2w2(1 − x2)

2 − w2(1 − x2)

]
, (B2)

gw(x) = wx

[
2(1 − x2)

2 − w2(1 − x2)

]
. (B3)
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Inserting these results in the expression of f (m) [Eq. (47)] leads to:

f α (m) = −w2

2
m11

[
m11 + m22

1 + m11m22
+ gα (m11, m22) − m11

2

]
− w2

2
m22

[
m11 + m22

1 + m11m22
+ gα (m22, m11) − m22

2

]

+ S (m11) + S (m22)

2
− S (m12) + gα (m11, m22)

2
arctanh(m11) + gα (m22, m11)

2
arctanh(m22), (B4)

f w(m) = −w2

2

[
m11

gw(m11)

2
+ m22

gw(m22)

2

]
− w

4

(
m2

11 + m2
22

) + gw(m11)

2
arctanh(m11) + gw(m22)

2
arctanh(m22). (B5)

APPENDIX C: SAMPLING IN THE HIDDEN SPACE

Numerically, P(hμ|h¬μ) (Algorithm 3) and
P(hμ, hν |h¬μ,ν ) (Algorithm 4) are discretized and the new
candidate is drawn from the discretized distribution with the
tower sampling algorithm [53]. Let us denote the acceptance
probability from a configuration h to a configuration h′ by
Ah(h → h′). The Metropolis-Hastings algorithm and Gibbs
sampling satisfy detailed balance in E eff(h), hence

P(h)Ah(h → h′) = P(h′)Ah(h′ → h′). (C1)

For the dynamics defined in Fig. 1(d), we have the fol-
lowing acceptance probability from a configuration v to a
configuration v′:

Av (v → v′) =
∫

dhdh′P(h|v)Ah(h → h′)P(v′|h′). (C2)

Therefore,

P(v)Av (v → v′)

=
∫

dhdh′P(v)P(h|v)Ah(h → h′)P(v′|h′)

=
∫

dhdh′P(v)
P(v, h)

P(v)

P(h′)Ah(h′ → h)

P(h)

P(v′, h′)
P(h′)

=
∫

dhdh′P(v|h)Ah(h′ → h)P(v′, h′)

= P(v′)Av (v′ → v). (C3)

As a consequence, our algorithm satisfies the detailed balance
condition.
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