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Abstract. We consider a population evolving due to mutation, selection and
recombination, where selection includes single-locus terms (additive fitness) and
two-loci terms (pairwise epistatic fitness). We further consider the problem of
inferring fitness in the evolutionary dynamics from one or several snapshots of
the distribution of genotypes in the population. In recent literature, this has
been done by applying the quasi-linkage equilibrium regime, first obtained by
Kimura in the limit of high recombination. Here, we show that the approach also
works in the interesting regime where the effects of mutations are comparable
to or larger than recombination. This leads to a modified main epistatic fitness
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inference formula where the rates of mutation and recombination occur together.
We also derive this formula using by a previously developed Gaussian closure that
formally remains valid when recombination is absent. The findings are validated
through numerical simulations.

Keywords: computational biology, evolutionary and comparative genomics,
population dynamics
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1. Introduction

Fitness as understood in this paper is the propensity of an organism to pass on its
genotype to the next generation, described by a fitness value of each genotype. A set of
such values is called a fitness landscape. Evolution is a process whereby nature tends
towards populating the peaks in the landscape [1]. Motion in fitness landscapes describes
the evolution of a population of one species in a roughly constant environment. Prime
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examples of this are pathogens and parasites colonizing a host evolving on a much
slower time scale. The most fit pathogen is then one that is best able to exploit the
opportunities and weaknesses of a typical host to grow, multiply and eventually spread
to other hosts. Excluded from the concept of fitness as considered here are aspects of
games of competition and cooperation in evolution [2, 3].

Sequencing of genomes of human pathogens today happens on a massive scale.
In an extreme example, samples of SARS-CoV-2, the etiological agent of the disease
COVID-19, have by now been sequenced more than 1,200,000 times (accessed on 23
April 2021), and is being sequenced many thousands of times daily [4–6]. This virus in
the betacoronavirus family has only been known to science for about 16 months.

It is clear that much information about the evolutionary process must be contained
in such data. In particular, if genetic variants in different positions contribute synergis-
tically to fitness this should be reflected in the distribution over genotypes. The goal of
this paper is to address the basis of such an approach, and to develop tools to use it
better in the future. In two recent contributions [7, 8], we have argued that a natural
setting is the quasi-linkage equilibrium (QLE) phase of Kimura [9], surveyed by Kirk-
patrick, Johnson and Barton [10], and more recently studied by Neher and Shraiman
[11, 12]. When recombination (the exchange of genomic material between individuals,
or sex) is a much faster process than mutations or selection due to fitness the sta-
tionary distribution over genotypes is the Gibbs–Boltzmann distribution of an Ising or
Potts model. The inverse Ising/Potts [13, 14] or direct coupling analysis (DCA) [15–17]
methods have been invented to infer the parameters of such distributions from samples.
The quantitative properties of QLE allow us to go one step further, and relate those
effective couplings to the parameters of the evolutionary dynamics, which we will call
the Kimura–Neher–Shraiman (KNS) theory. In [8], we showed that it is indeed possible
to retrieve synergistic contributions to fitness from simulated population data by KNS
theory.

In the following, we will present an extension where we relax the requirement that
recombination has to be the fastest process in the problem. Instead we allow for either
recombination or mutation being the fastest process and derive a new modified epistatic
inference formula. We do this both by adapting the argument from QLE [12] and by a
Gaussian closure recently developed by three of us [18, 19]. We will show that this new
theory allows for retrieving synergistic contributions to fitness in much wider parameter
ranges. Recombination (sex) is hence no longer required to be a much stronger process
than mutations, but could in the Gaussian closure actually be set to zero. The conditions
on recombination compared to variations in synergistic contributions to fitness are also
much less strict in the new theory.

The paper is organized as follows. In section 2, we summarize evolution driven by
selection, recombination and mutations, and contrast the different epistasis inference
formulae. In section 3, we derive the formula at high mutation but not necessarily
high recombination within QLE, while in section 4 we do it from the Gaussian closure
ansatz. In section 5, we summarize our model and simulation strategies, and in sections
5.1 and 5.2 we compare how well we are able to infer fitness when varying mutation
rate, the strength of fitness variations, and the rate of recombination. In section 6, we
summarize and discuss our results. Appendices contain additional material. Appendix A
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computes higher order terms for the inference formula in the Gaussian closure scheme.
Appendix B contains parameter settings for simulations of an evolving population using
the FFPopSim software [20], and in appendix C we give details on the DCA method we
have used in this work. Appendix D presents the comparisons of equations obtained from
QLE and Gaussian closure. Appendix E shows the effects of genetic drift on the epistasis
inference. Appendix F provides the epistasis inference with Gaussian distributed additive
effects.

2. Evolutionary dynamics and epistasis inference

The forces of evolution in classical population genetics are selection, mutations and
genetic drift [21, 22]. Selection confers an advantage on individuals with certain char-
acteristics, so that they tend to have more descendants. Mutations are random changes
of the genomes. Genetic drift is the element of chance as to which individual survives,
and which does not. Common to these three forces is that they all act on the single
genotype level: an organism survives to the next generation or it does not. If it does, it
will have a number of descendants ‘children’, ‘grand-children’, etc. The distribution of
individuals over genotypes can then formally be written as a gain-loss process

∂tP (g, t) =
∑
g′

(kg′,gP (g′, t)− kg,g′P (g, t)) , (1)

where the rates kg′,g encode selection and mutation. Genetic drift cannot be described
by equation (1) directly, which is valid in the infinite population size limit, but appears
in Monte Carlo simulation naturally through finite N effects. The details of relevant
equations are discussed in great detail in [12] as well as more recently in [7, 8].

Recombination (or sex) is the process by which two genotypes combine to give a
third one in the next generation. It cannot be expressed in the form of equation (1).
Instead, in general terms it looks like

∂tP (g, t) = · · ·+
∑
g′,g′′

Cg,g′,g′′P2(g
′, g′′, t), (2)

where P 2 stands for the joint probability of two genotypes g′ and g′′, and Cg,g′,g′′ is the
rate at which these two produce an offspring g. Equation (2) is not closed; there would
be an equation for ∂tP 2, which would depend on the three-genotype distribution P 3,
and so on. A standard way to close such a BBKGY-like hierarchy is to assume random
mating (random collisions), i.e. P 2(g

′, g′′, t) = P (g′, t)P (g′′, t). Combining (1) and (2),
we hence get the evolution of a population as a non-linear differential equation analogous
to a Boltzmann equation.

In (1) and (2), each genotype g is seen as a sequence of positions (or loci) of length
L, g ≡ {s0, s1, . . . , sL−1}. The variable at each position (the allele) si can be in one out
of ni states. In the following discussion, we simplify by taking ni = 2 such that si is a
binary variable. Following the conventions in the physical literature, and in particular
[12], we set si = ±1.
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We will from now on limit ourselves to fitness landscapes that contain linear and
quadratic terms in the allele variables. This means that the fitness of a genotype is given
by a function

F (g) =
∑
i

fisi +
∑
ij

fijsisj. (3)

The linear term fi is called an additive contribution to fitness , while the quadratic
fij is an epistatic contribution to fitness . The goal of the line of research pursued in
this paper is to find ways to retrieve the fij from the distribution of genotypes in a
population.

The QLE theory is based on approximating the genome distribution P as a
Gibbs–Boltzmann distribution of the Ising/Potts type:

log P (g, t) = Φ(t) +
∑
i

φi(t)si +
∑
i<j

Jij(t)sisj, (4)

In the above, Φ(t) is a normalization factor playing the same role as −βF (β) in statistical
mechanics. By expressing the evolution equations for P (g, t) in terms of the effective
parameters Φ(t), φi(t) and Jij(t), it was shown in [9, 11, 12] that the distribution (4)
is stable at a high rate of recombination. The values of the parameters Φ, φi and Jij in
stationary state are then related to the model parameters as discussed in detail in [7,
12]. In particular, Jij is simply proportional to fij which can be turned around to the
KNS fitness inference formula

f∗
ij = J∗

ij · rcij. (5)

The stars on both sides indicate that these are inferred quantities, and the
proportionality parameters r and cij are discussed below.

In this work, we will extend the above analysis to the regime where recombination
is not necessarily high, but mutation remains a faster process than selection. In section
3, we derive this within QLE, and in section 4 we do it by Gaussian closure. Here, we
discuss and contrast these different (though related) formulae.

In QLE with mutation comparable to or larger than recombination, the relevant
inference formula changes to

f∗
ij = J∗

ij · (4μ+ rcij) , (6)

where μ is the rate of mutations assumed to be the same at all loci and in both directions.
In both (5) and (6), the Gibbs–Boltzmann parameter J∗

ij is not directly observed, but
has to be inferred from the data. All such procedures, collectively known either as inverse
Ising/Potts or as DCA, have to make a trade-off between accuracy and computability.
Let us mention here the benchmark statistical method of maximum likelihood, which is
accurate but not efficiently computable in large systems, and naive mean-field (nMF)
inference (described in appendix C), which amounts to matrix inversion of the empirical
correlation matrix. Other procedures were reviewed in [13, 14] (see [15–17]). A particular
DCA procedure introduced in [12] is small interaction expansion (SIE)

J∗,SIE
ij = χij/

((
1− χ2

i

) (
1− χ2

j

))
(7)
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where ∗ stands for the type of inference used, and χi ≡ 〈si〉 and χij ≡ 〈sisj〉 − χiχj are
the (connected) first and second order correlation functions. Inference formula (7) is
not very accurate as a general DCA method [7, 12], but has the advantage of being
eminently computable. Substituting (7) in (6), one gets

f∗,SIE
ij =

χij(
(1− χ2

i )
(
1− χ2

j

)) · (4μ+ rcij) . (8)

As it will turn out, (8) is also the formula which appears directly in Gaussian closure.
We hence can derive (8) in two different ways.

In all of the above, the parameters μ, r and cij have the same meaning as in [12] and
stand for mutation rate (assumed uniform), recombination rate (assumed uniform) and
the probability of off-springs inheriting the genetic information from different parents.
For high-recombination organisms, cij depends on the cross-over rate ρ and the genomic
distance between loci i and j [8], except when loci i and j are very closely spaced on
the genome.

cij ≈
1

2

(
1− e−2ρ|i−j|) . (9)

When comparing (5) and (8) in numerical testing, we simulate an evolving population
at the same parameter values, and then either use the genotype information to compute
empirical correlations, or to infer Ising/Potts parameters by DCA. For simplicity, we
will in the following only present results obtained by DCA nMF inference. The results
are very similar for other common variants of DCA.

3. Quasi-linkage equilibrium outside high recombination

In this section, we introduce the model defined in [12] for the evolution of the distribution
of genomes P (g, t) and discuss the high mutation regime in order to recover the inference
formula for epistatic interactions (6). Throughout, we assume an infinite population;
genetic drift is therefore not considered.

Selection is the first fundamental ingredient and works as follows: each possible
sequence g grows inside the population with a certain growth-rate F (g), called fitness,
which can be described as a function of the specific sequence g. As stated above in
equation (3), we will approximate any fitness function F as the sum of linear terms fi,
called additive fitness, and pairwise interactions fij , called epistatic fitness. Note that
in general, one can also include higher order terms of the form fi1...insi1 . . . sin.

The second ingredient for the population evolution is mutations. We assume that in
each small time interval Δt � 1 a fraction μΔt of all the alleles inside the population
(L for each individual) mutates by a single spin-flip; μ is therefore named mutation
rate. We describe the process of a spin flip by introducing an operator Mi acting on a
sequence by changing the sign of the ith spin. To understand how the frequency of a
certain sequence g changes in the interval Δt, we should count how many individuals
have mutated into the sequence g and how many sequences have instead mutated from
away this state.
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The last element to consider is recombination between different sequences. At each
small time interval Δt, a fraction rΔt of the individuals (where r is the recombination
rate) encounters random pairing and crossing-over, giving rise to new genomes. The
evolution of the distribution P in the interval Δt due to recombination is given by

P (g, t+Δt) = (1− rΔt)P (g, t) + rΔt
∑

{s′i}{ξi}

C({ξ})P (g(m), t)P (g(f), t). (10)

The first term counts for those individuals that did not recombine during the time
interval Δt. When two individuals recombine, a new genotype is formed by inheriting
some loci from the mother with genotype g(m) and the complement from the father with
genotype g(f). The parts of the genomes of the mother and the father not inherited by the
child (and hence discarded) are denoted as g′. The crossover can be described by a vector
{ξi}, with ξi ∈ {0, 1}. If ξi = 1, the ith locus is inherited from the mother, otherwise

from the father. Turning around the relation, we have s
(m)
i = siξi + s′i(1− ξi) and s

(f)
i =

s′iξi + si(1− ξi) where si is the allele of the child at locus i, and s′i is the discarded allele.
The probability of each realization of {ξi} is given by C({ξ}). Subsequently, we need to
sum over all the possible genomes that are not passed on the offspring (g′), as well as
all the possible crossover patterns {ξ} [7, 12].

Merging together all of the ingredients, we obtain the following non-linear differential
equation for the time derivative of the genotype distribution P :

Ṗ (g, t) =
d

dt
|fitness P (g, t) +

d

dt
|mut P (g, t) +

d

dt
|rec P (g, t)

= [F (s)− 〈F 〉]P (g, t) + μ
L−1∑
i=0

[P (Mig, t)− P (g, t)]

+ r
∑

{s′i}{ξi}

C({ξ})
[
P (g(m), t)P (g(f), t)− P (g, t)P (g′, t)

]
.

(11)

Now, we want to study the stationary solutions of this master equation. In particular,
we seek to extend Neher and Shraiman’s argument [12] in the high mutation limit,
recovering the inference formula (6) of the epistatic interactions introduced above. We
start by assuming the distribution P to be of the same form as in equation (4):

P (g, t) =
1

Z(t)
exp

[∑
i

φi(t)si +
∑
i<j

Jij(t)sisj

]
, (12)

where Z(t) is the normalization factor. Following Neher and Shraiman in [12], we now
inject this ansatz in the master equation for the evolution of logP (g, t) in the presence
of mutations and recombination and obtain
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d log P (g, t)

dt
= − d

dt
log Z(t) +

∑
i

φ̇i(t)si +
∑
i<j

J̇ ij(t)sisj

= F (g)− 〈F 〉+ μ
∑
i

[
P (Mig, t)

P (g, t)
− 1

]
︸ ︷︷ ︸

M(g,t)

+ r
∑

{ξi}{s′i}

C({ξ})P (g′, t)

[
P (g(m), t)P (g(f), t)

P (g, t)P (g′, t)
− 1

]
︸ ︷︷ ︸

R(g,t)

. (13)

Now, we separate the mutation and recombination term (M(g, t) and R(g, t), respec-
tively) from the rhs of the last equation and compute them separately. Starting from
the recombination term, we may rewrite it as

R(g, t) =
∑

{ξi}{s′i}

C({ξ})P (g′, t)

[
e

∑
i<j

Jij[(ξiξj+ξiξj−1)(sisj+s′is
′
j)+(ξiξj+ξiξj)(sis

′
j+sis

′
j)] − 1

]
,

(14)

where ξi = (1− ξi). Now, in the high recombination limit considered in [12] the authors
suppose that the interactions Jij are small and can be expanded from the exponential.
We note that the same argument should also hold when mutations are dominant in the
evolution. Hence, we write

R(g, t) ∼
∑

{ξi}{s′i}

C({ξ})P (g′, t)

[∑
i<j

Jij

[
(ξiξj + ξiξj − 1)(sisj + s′is

′
j)

+ (ξiξj + ξiξj)(sis
′
j + sis

′
j)
] ]

=
∑
i<j

cijJij [(si〈sj〉+ sj〈si〉)− (sisj + 〈sisj〉)] , (15)

where cij ≡
∑

ξC({ξ})
[
ξiξj + ξiξj

]
represents the probability that loci i and j arrive

from different parents.
Now we turn to the mutation term M(g, t) that can be written as follows:

M(g, t) =
∑
i

[
e
−2φisi−2

∑
j
Jijsisj

− 1

]
. (16)

In the high mutation regime, we suppose that both the interactions and the fields
are small and can be expanded from the exponential:
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M(g, t) ∼ −2
∑
i

φisi − 4
∑
i<j

Jijsisj. (17)

Injecting these results for M(g, t) and R(g, t) into equation (13) and separating the

dependencies on si and sisj, we can obtain equations for φ̇i and J̇ ij similarly to what
has been done by Neher and Shraiman in [12]. In particular, we find:

φ̇i = fi + r
∑
j �=i

cijJij〈sj〉 − 2μφi (18)

J̇ ij = fij − (4μ+ rcij)Jij. (19)

Hence, the interactions Jij will quickly evolve through the stationary solution J st.
ij =

fij/(4μ+ rcij). Inverting the latter equation, we recover the inference formula (6).

4. The argument by Gaussian closure

Going forward, we want to parameterize the distribution P (g, t) by its cumulants. In
particular, we define the cumulants of first and second order as χi ≡ 〈si〉 and χij ≡
〈sisj〉 − χiχj . Note that in this way χii = 1− χ2

i . Using equation (11), we can write the
time evolution for these cumulants as follows:

χ̇i = 〈si[F (g)− 〈F 〉]〉 − 2 μχi (20)

χ̇ij = 〈(si − χi)(sj − χj)[F (g)− 〈F 〉]〉 − (4μ+ rcij)χij , (21)

with i �= j in the second line and cij defined as equation (9).
In general, equations (20) and (21) are not a closed set of equations since they

would also depend on higher order cumulants χijk, χijkl, etc. The Gaussian closure that
we introduced recently [19] aims to overcome this problem by neglecting those higher
order cumulants (connected correlation functions) under the assumption that at high
recombination and/or mutations rate their influence on the global dynamics is weak.
For a Gaussian distribution, all cumulants of order higher than two vanish.

With this approximation, (20) and (21) define a closed set of L(L+ 1)/2 dynamical
equations only depending on χi and χij.

χ̇i =
∑
j

χij

(
fj +

∑
k

fjkχk − 2fijχi

)
− 2μχi (22)

χ̇ij = −2χij

∑
k

[fik(χik + χiχk) + fjk(χjk + χjχk)] + 2fijχij(χij + 2χiχj)

+
∑
k,l

fklχikχjl − (4μ+ rcij)χij − 2χij(fiχi + fjχj) (23)
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In principle, equations (22) and (23) could be simultaneously solved in order to
determine the stationary state, which is of our interest, and this in turn would allow
us to determine the L(L+ 1)/2 quantities {fi}, {fij} as a function of the {χi}, {χij}.
Unfortunately, considering the size of the system, this is analytically not feasible.

Nevertheless, equation (23) suggests another route to infer fij according to the fol-
lowing argument: when studying the stationary state, we can assume self-consistently
that all the off-diagonal χij are small, so that we can expand χij, with i �= j, as a power
series of 1/(4μ+ rcij):

χij =
χ
(1)
ij

4μ+ rcij
+O((4μ+ rcij)

−2). (24)

Inserting this in equation (23), we obtain

χ
(1)
ij = fij(1− χ2

i )(1− χ2
j). (25)

We therefore conclude that, to the first order,

χij =
fij

4μ+ rcij
(1− χ2

i )(1− χ2
j). (26)

Turning around this into an inference formula for fitness, we arrive at (8).

5. Simulation strategies and results

The basic idea is to simulate the states of a population with N individuals (genome
sequences) evolving under mutation, selection and recombination and genetic drift. As
in previous work, we have used the FFPopSim package developed by Zanini and Neher
for this purpose [20]. Simulation and parameter settings are given in appendix B.

In a QLE phase, the outcomes of such simulations are trajectories of means χi(t)
and correlations χij(t), which in principle can be computed from the configuration of

the population g(s)(t) at generation t. After a suitable relaxation period, we take the set
g(s)(t) to be independent samples from a distribution (4) with unknown direct couplings
Jij. We will use the DCA algorithm nMF throughout [23] to infer parameters Jij from
data for original KNS (for descriptions, see appendix C).

The principle of the numerical testing is to infer epistatic fitness parameters from
the data by (5) and (8), and then compare to the underlying parameters fij used to
generate the data. Here, the testing epistatic fitness is Sherrington–Kirkpatrick model
[24] with different variations. The additive fitness fi follows Gaussian distribution with
zero means and the standard deviation σ({fi}) = 0.05 in our simulations. We note that
(5) is proposed to hold for weak selection and high recombination, and has already been
tested in [8]. Data availability is an issue. As in [8] we have used all-time versions of the
algorithms, where samples g(s)(t) at different t are pooled. This is primarily to mitigate
the effect that in a real-world population the number of individuals N is very large, but
in the simulations it is only moderately large. All DCA methods as well as empirical
correlations can be more accurately estimated with more samples.
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5.1. Mutation vs recombination rate

We start by taking a fixed fitness landscape (same fij) and systematically vary mutation
and recombination (μ and r). Each sub-figure in figure 1 shows scatter plots for the KNS
fitness inference formula (5) and formula (8) based on Gaussian closure vs the model
parameter fij used to generate the data. These model parameters were independent
Gaussian random variables specified by their standard deviation σ({fi}) and σ({fij})
as hyper-parameters. The parameters J∗

ij that enter (5) are inferred by nMF.
The variations in figure 1 are such that each column has the same recombination rate

in the order low-medium-high from left to right, and each row has the same mutation
rate in the order low-medium-high from top to bottom. In the top row, both inference
formulae work well, particularly for high recombination rate at the top right. In the
middle and bottom rows, the KNS formula does not work, while the formula based on
Gaussian closure still performs well, and in particular does not have systematic errors.

For comparison in more extensive parameter ranges, we have quantified inference
performance by normalized root of mean square error

ε =

√√√√∑
ij

(
f∗
ij − fij

)2∑
ijf

2
ij

. (27)

We note that this reduces all of the information in the scatter plots in figure 1 to
one single number. Although we have not observed such behaviour, it is conceivable
that inference could be very accurate for most pairs (i, j) such that ε is small, but still
has large errors for some few pairs. An overall value ε much less than one hence does
not guarantee that fitness inference is accurate for all pairs. On the other hand, a large
mean square error could correspond to either systematic or random errors in the scatter
plots. We have observed both behaviours.

Anticipating a discussion that we will have in appendix B, we chose to visualize the
dependence of ε on variation of μ by incorporating the coalescence time 〈T2〉, previously
used in theoretical discussions of problems of the kind studied here [25, 26]. Figure 2
shows that is, at least for low epistatic fitness, a tendency reconstruction error to grow
with μ. For the tests that have been carried out, it also appears that the threshold
between the phase where fitness inference is possible takes place when there is about
one mutation per coalescence time and a number of pairs of loci.

Returning now to the mapping out of regions where parameter inference is possi-
ble or not possible, we point to phase diagrams of ε shown in figure 3, for the KNS
formula with nMF and the formula from Gaussian closure, respectively. The number
of generations in simulations is set as T = 10 000 and kept as a constant for all com-
binations of parameters. As in the scatter plots, we observe large differences as to two
epistatic fitness inference formulae. In short, for linear structure of genomes, the KNS
formula (5) works only for low mutation rate and high recombination rate (figure 1(c)).
The new formula (8) from Gaussian closure instead works for a much larger region with
weak fitness. The standard deviation of epistatic fitness σ ({fij}) = 0.004 in figure 3. We
comment on the reasons for this effect in section 6. For a stronger mutation rate and
larger recombination rate (data not shown), the root mean square error (εs) of inference
based on the Gaussian closure formula increases, i.e. in that range this formula does not
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Figure 1. Scatter plots for testing and recovered fijs with mutation rate μ and
recombination rate r. r increases from left to right columns (0.2, 0.5 and 0.8, respec-
tively,) while μ enlarge from top to bottom (0.05, 0.25 and 0.5, respectively). The
red stars for the Gaussian closed KNS f∗ij = χij · (4 μ+ rcij)/

(
(1− χ2

i )(1− χ2
j)
)
;

blue dots for original KNS f∗ij = rcij · J∗,nMF
ij . Other parameters: σ({fi}) = 0.05,

σ({fij}) = 0.004, cross-over rate ρ = 0.5, number of loci L = 25, carrying capac-
ity N = 200, number of generations T = 10 000. Inference by Gaussian closed KNS
works in a much wider parameter range than original KNS. One realization of the
fitness terms fij and fi for each parameter value.

work either. Specifically, the KNS formula (5) has severe systematic error, while formula
(8) with Gaussian closure performs worse with heavier noise.

5.2. Fitness variations vs recombination rate

We continue by varying recombination r and the dispersion in the fitness landscape
(fij drawn from Gaussian distributions with different hyper-parameters σ({fij})). Each
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Figure 2. Epistasis reconstruction error ε versus μ〈T 2〉/L. Red stars for f∗ij = χij ·
(4μ+ rcij)/((1− χ2

i )(1− χ2
j)) while blue dots for f∗ij = J∗,nMF

ij · (4μ+ rcij). Epista-
sis fij are inferred best with μ = 0.05. The other parameter values: σ(fi) = 0.05,
σ(fij) = 0.008, carrying capacityN = 200, out-crossing rate r = 0.5, cross-over rate
ρ = 0.5, number of loci L = 15, generations T = 10 000. Ten realizations of the
fitness terms fij and fi for each parameter value.

Figure 3. Phase diagram for mutation rate μ versus recombination rate r. The
color is encoded by the reconstruction error ε given in equation (27). (Left) KNS
theory fij = J∗,nMF

ij · rcij. (Right) Gaussian closed KNS theory fij = χij · (4μ+

rcij)/
(
(1− χ2

i )(1− χ2
j)
)
. Parameters: σ({fi}) = 0.05, σ({fij}) = 0.004, cross-over

rate ρ = 0.5, number of loci L = 25, carrying capacity N = 200, generations
T = 10000. One realization of the fitness terms fij and fi for each parameter value.

sub-figure in figure 4 shows scatter plots for the two epistatic fitness inference formulae
for the model parameter σ ({fij}) vs the recombination rate r. The order in figure 4
is increasing recombination rate r in the columns from left to right, and increasing
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Figure 4. Scatter plots for testing and reconstructed fijs. The standard deviation
σ({fij}true) increases from top to bottom rows (0.004, 0.024 and 0.04 respectively)
and recombination rate r enlarges in columns from left to right (0.2, 0.5 and 0.8,
respectively). Red stars for f∗ij = χij · (4 μ+ rcij)/((1− χ2

i )(1− χ2
j )) and blue dots

for f∗ij = J∗,nMF
ij · rcij. Both inference formulae do not work for large σ and high r,

where strong correlations emerge between loci that drive the system out of the QLE
phase [27, 28], as shown in (g), (h) and (i). The other parameter values: standard
deviation σ({fi}) = 0.05, mutation rate μ = 0.2, cross-over rate ρ = 0.5, number of
loci L = 25, carrying capacity N = 200, generations T = 10 000. One realization of
the fitness terms fij and fi for each parameter value.

σ({fij}) in the rows from top to bottom. Here, the mutation rate μ = 0.2 and the other
parameters are the same as those tested in figure 1.

Overall, the KNS formula (5) does not work for any of the parameter values shown
in figure 4 with mutation rate μ = 0.2.

This either because of systematic errors as in the top row (low fitness dispersion) and
left column (low recombination), or due to the emergence of strong correlation between
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Figure 5. Phase diagram for the standard deviation σ({fij}) versus recombination
rate r. (Left) KNS theory f∗ij = JnMF

ij · rcij. (Right) Gaussian closed KNS theory
f∗ij = χij · (4μ+ rcij)/((1− χ2

i )(1− χ2
j)). Parameters: mutation rate μ = 0.2, cross-

over rate ρ = 0.5, number of loci L = 25, carrying capacity N = 200, generations
T = 10000. One realization of the fitness terms fij and fi for each parameter value.

loci that drive the evolution out of the QLE regime [27, 28], as in the bottom right
corner in figures 4(h) and (i). The Gaussian closure formula (8) in contrast works well
for low recombination or low fitness dispersion or both, but fails as well for sufficiently
high recombination and fitness strength.

As above, we have quantified inference performance in larger parameter ranges by
the root of mean square error ε. The phase diagrams in figure 5 show again that the
Gaussian closure formula works except when r and σ({fij}) are both large, while the
KNS formula does not work in any range with mutation rate μ = 0.2.

6. Discussion

In this paper, we have pursued the investigations started by Kimura in 1965 [9] on
how epistatic contributions to fitness is reflected in the distribution over genotypes in a
population. Our perspective is that of fitness inference: we assume that the distribution
is observable from many whole-genome sequences of an organism and ask what we can
learn about synergistic effects on fitness from concurrent allele variations at different
loci, i.e. about epistasis. Our benchmark has been the generalization of the Kimura
theory by Neher and Shraiman to a phase of genome-scale QLE [7, 11, 12]. In recent
work, we showed in numerical testing that a central formula describing the QLE phase
allows us to retrieve epistatic contributions to fitness in the limit of high recombination
[8].

Here, we have extended these considerations to the regime where mutation can be
a stronger (faster) process than recombination. We have done this on one hand by gen-
eralizing the derivation from the assumptions of a QLE state in [12], and on the other
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by following the analogy to physical kinetics and approximations of the Boltzmann
equation, recently developed by three of us [18, 19]. In the second approach, we consider
the evolution equations for single-locus and two-loci frequencies in a population evolv-
ing under selection, mutation, genetic drift and recombination, and then close those
equations by setting higher-order cumulants to zero (Gaussian closure).

We hence do not need to make explicit assumptions on the functional form of the
distribution over genotypes in a population, only that it is possible to treat it as a
Gaussian for the purpose of evaluating higher moments. Methods of a similar type were
earlier developed for a more macroscopic level approach that does not assume access to
individual genotypes, and therefore also cannot be tested on that level [29].

The phase diagrams in figures 3 and 5 in section 5 show that the new inference
formula dramatically outperforms previous one, with the exception of a region at strong
fitness and high recombination rate. Since in many biological systems mutations can be
at least as strong as recombination, we have extended the range of epistasis inference
methods considerably. This is the main result of the current work. We have also per-
formed preliminary investigations of a possible dependence on the phase boundary on
coalescence time, a quantity which roughly measures the time to a common ancestor
for the whole population. In earlier theoretical work based either on the infinitesimal
model of genetics or on more macroscopic considerations, it has been predicted that the
transition occurs at about one mutation per coalescence time per locus pair [25, 26].
To the extent that we have been able to test this hypothesis, we find that it holds also
for our procedure where inference is assessed for each epistatic pair and its associated
epistatic fitness parameter separately (see figure 2).

A theoretical advantage of the extension presented here follows from the fact that the
previous inference formula (5) is obtained by perturbation in the inverse of recombina-
tion rate, i.e. equation (23) and appendix B in [12]. In a finite population this derivation
requires that mutations be so much weaker compared to recombination that they can
be neglected for quantitative properties in QLE, while still being non-zero. The latter
restriction is necessary as otherwise the fittest genotype will eventually take over the
population, and the QLE phase will only be a long-lived transient [7, 8]. One conse-
quence of a low mutation rate is that any imbalance in total epistatic fitness will lead to
almost fixated alleles. In the QLE phase where equation (5) can be used quantitatively,
the first order moments χi are therefore typically different than zero. Inference formula
(8) is on the other hand obtained by expanding the equations of Gaussian closure under
conditions appropriate for high mutation rate, and χi does not necessarily need to be
zero either. A further assumption to arrive at (8) is that epistatic fitness variations are
not too strong, qualitatively Lσ({fij}) < 1. Moreover, the additive fitness should be
sufficiently weak as well to make sure the population is strictly mono-clonal, which is
one of the assumptions of the Gaussian closure [18, 19]. Data shown in bottom row of
figures 4(g), (h) and (i) have Lσ({fij}) ≈ 1.

In conclusion, we have presented an extension of the classic KNS theory, which
allows us to reliably infer epistatic contributions to fitness. In a separate work, three of
us recently applied the method to more than 50 000 full-length genomes of the SARS-
CoV-2 virus [30], and were able to predict new epistatic interactions between eight viral
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genes, many involving ORF3a, a protein implicated in severe manifestations of COVID-
19 disease. Methodological development of epistasis analysis using DCA, as we have
discussed here, may hence also have practical applications of some impact on society.
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Appendix A. Higher order corrections to the Gaussian closure inference formula

Starting from equation (23) and exploiting the same argument as in the main body of
the paper, it is straightforward to compute higher order terms in the expansion for χij.
Let us define for simplicity ε = 1/(4μ+ rcij). In the limit ε→ 0+, we write

χij = εχ
(1)
ij + ε2χ

(2)
ij + ε3χ

(3)
ij +O(ε4), (A.1)

and in the case where fi = 0 for all i we find

χ
(1)
ij = fij (A.2)

χ
(2)
ij = 2

∑
k

fikfjk (A.3)

χ
(3)
ij =

∑
k<l

fkl(fikfjl + fjkfil)− f3
ij +

∑
k

[
fik

(
2
∑
l

fklfjl − fijfik

)

+ fjk

(
2
∑
l

fklfil − fijfjk

)]
. (A.4)

We observe that each correction is of order L× σ({fij}) with respect to the lower
one, therefore we expect the expansion to be accurate only if L× σ({fij}) � 1.
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Table 1. Main default parameters of FFPopSim used in the simulations.

Number of loci (L) 25
Number of traits 1
Circular False
Carrying capacity (N ) 200
Generation 10 000
Recombination model CROSSOVERS
Crossover rate (ρ) 0.5
Fitness additive (coefficients) Gaussian random number with σ({fi}) = 0.05

In the more general case where fi �= 0 for all i, we find the first two orders in equation
(A.1) to be:

χ
(1)
ij = fij(1− χ2

i )(1− χ2
j) (A.5)

χ
(2)
ij =

∑
k

fik

(
χ
(1)
jk + χ

(1)
ik χiχj − χiχkχ

(1)
ij

)
−

∑
k,l

fklχiχlχ
(1)
jk −

∑
l

filχlχiχ
(1)
ij

+
∑
k<l

fkl

(
χ
(1)
ik χjχl + χ

(1)
il χjχk − 2fiχiχ

(1)
ij + fijχiχjχ

(1)
ij

)
+ {i ↔ j}

(A.6)

where, for the sake of clarity, in the last equation we have left implicit the terms like

χ
(1)
ij as specified in equation (A.5).

Appendix B. FFPopSim settings

The FFPopSim package, written by Zanini and Neher simulates a population evolving
due to mutation, selection and recombination [20].

We use the class haploid_highd, i.e. individual-based simulations that handle the
population as a set of clones (gi,ni(t)), where gi is a genotype and ni(t) is the number
of individuals with genotype gi at time t (only existing clones are tracked). At each
generation, the size of each clone is first updated ni(t)→ ni(t+ 1)∼ Pλ, where P is the

Poisson distribution with parameter λ = 1
〈eF 〉e

F (gi)+1− 1
N

∑
jnj(t), N is the carrying capacity

and F (g) is the fitness function. A fraction r∗ (outcrossing rate) of the resulting offspring
is destined to the recombination step, paired and reshuffled. Finally, each individual is
allowed to mutate with probability 1− e−Lμ, where μ is the recombination rate, the
exact number of mutations being Poisson distributed PLμ.

We have used FFPoSim in a similar manner as in [8] and we will only list the settings
here. Parameters that are the same in all simulations reported in this paper are listed
in table 1. Parameters that have been varied (not all variations reported in the paper)
are listed in table 2.
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Table 2. Variable parameters of FFPopSim used in the simulation.

Initial genotypes Binary random numbers

Out-crossing rate (r) [0, 1.0]
Mutation rate (μ) [0.05, 0.5]
Epistatic fitness Gaussian random number with σ({fij}) ∈ [0.004, 0.04]

It is important to notice that the out-crossing rate r∗ in FFPopSim a priori differs
from our recombination rate, r, appearing in equation (8). In the simulation package,
dynamics are discrete in time (with time step of one generation) and r∗ is a probability
taking value between 0 and 1. In our theory, r is a rate that can take any positive value.
In the examples given in [20], e.g. figure 2 in the article’s main text and figure 2 in its
supplementary information, the out-crossing probability does not exceed 10−2. For such
low values r∗ coincides with a rate (since the time step is equal to unity), which justifies
its denomination. We use this correspondence r∗ = 1− e−r ∼ r between the out-crossing
rate r∗ in FFPopSim and our recombination rate r, valid for small values, to produce
the scatter plots in figures 1 and 4.

Notice that this correspondence breaks down for large recombination rates. Indeed,
even for out-crossing rate r∗ = 1 in the simulation package, mutations and fitness effects
can still be quite large, depending on the values of the fij’s and of μ, and QLE is
not recovered. In the theory, however, all fitness and mutation effects become relatively
weak, of the order of 1/r.

In addition to forward simulations, a subsequent release of the original FFPopSim
package allows for the possibility of tracking the genealogy of loci, e.g. that of the
central locus. Such information can be used in the first place to draw a coalescent tree
[25]: technically, this is done by converting the genealogy in a BioPython tree and using
the module Bio.Phylo for plotting purposes.

A quantitative analysis of such trees can be carried out, for instance the time to
the most recent common ancestor (MRCA) TMRCA of a group of individuals at time t
is nothing but the temporal distance of the leaves (individuals) from the root (common
ancestor) in the corresponding coalescent tree CT , as shown in figure 6. In the same
vein, we are able to evaluate the average pair coalescent time 〈T 2〉: we sample n2 = 10
pairs of leaves. For each of them we extract the information about their subtree CT 2 and
evaluate the TMRCA(CT 2), which now corresponds to the difference between the present
and the time in the past when the two branches stemming from the chosen leaves merge.
Averaging over the sample of size n2 gives an estimate of the desired quantity.

Appendix C. Naive mean-field (nMF)

nMF is based on minimizing the reverse Kullback–Leibler distance between an empirical
probability distribution and a trial distribution in the family of independent (factorized)

distributions. This leads to the inference formula J∗,nMF
ij = (χ−1)ij . If the correlation χij
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Figure 6. Illustrative coalescent tree. The time to the MRCA TMRCA of a tree is the
difference between the current time and the time point where all of the branches
merge. The pair coalescent time T 2 for two chosen leaves (individuals) is the TMRCA

with respect to their subtree (highlighted in green).

Algorithm 1. Epistatic fitness inference by KNS formula (5) with J∗
ij reconstructed

by nMF procedure: fnMF
ij .

Input: mean correlations: 〈χij〉
Output: inferred epistatic fitness: fnMF

ij

1: import scipy
2: from scipy import linalg
3: JnMF

ij = −linalg.inv(〈χij〉)
4: fnMF

ij = JnMF
ij ∗rcij

is computed as an average over the population at a single time, we call it single-time-
nMF. If on the other hand χij is computed by additionally averaging over time, we call
it all-time-nMF.

The pseudo-code for nMF inference taking χij as input is presented in algorithm 1.

Appendix D. Numerical comparison between equations (6) and (8)

To compare the results of epistasis inference by equation (6) from KNS theory and
equation (8) through Gaussian closure, we present the numerical simulations in figure 7
with a fixed mutation rate μ = 0.2 while different σ({fij})s and recombination rate r.
The blue dots are for equation (6), while the red stars for equation (8). As shown in the
top row of figures 7(a)–(c), two methods perform almost the same for weak epistatic
fitness σ({fij}) = 0.004. When increasing σ({fij}) and for sufficiently low recombination
rates as in figures 7(d), (e) and (g), we observe that (6) works considerably better than
equation (8), as is evident from the smaller reconstruction error of the former with
respect to the latter. Finally, none of them work for large σ({fij}) and high r as shown
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Figure 7. Scatter plots for testing and reconstructed fijs. The standard deviation
σ({fij}true) increases from the top to bottom rows (0.004, 0.024 and 0.04 respec-
tively) and recombination rate r enlarges in columns from left to right (0.2, 0.5 and
0.8 respectively). Red stars for f∗ij = χij · (4μ+ rcij)/((1− χ2

i )(1− χ2
i )) and blue

dots for f∗ij = (4μ+ rcij) · J∗,nMF
ij . The other parameters are the same to those in

figure 4. In the regime of weak σ and r, the reconstructions are equivalent. Increas-
ing σ for sufficiently small r as in (d), (e) and (g) the mean field reconstruction
outperforms the Gaussian one. However, both reconstructions fail for sufficiently
high σ, r, as in (f)–(i), where strong correlations emerge between loci that drive the
system out of the QLE phase [27, 28]. One realization of the fitness terms fij and
fi for each parameter value.

in figures 7(f), (h) and (i). The parameters for these cases are located in the white area of
figure 5, where the system may not be in the QLE state and both of the reconstructions
(Neher–Shraiman and Gaussian closure) fail. This part with strong correlations has
been studied extensively in V D’s Master’s Thesis [27, 28].
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Figure 8. Semi-log plot for epistasis reconstruction error ε versus the average size of
population N . (a) Scatter plot for testing and reconstructed fijs with N = L = 25.
(b) Scatter plot with N = 6400. Red stars for f∗ij = χij · (4μ+ rcij)/((1− χ2

i )(1−
χ2
j)) and blue dots for f∗ij = J∗,nMF

ij · (4μ+ rcij). Epistasis fij are recovered roughly
better with increasing N . The other parameter values: σ(fi) = 0.05, σ(fij) = 0.004,
mutation rate μ = 0.25, out-crossing rate r = 0.5, cross-over rate ρ = 0.5, number
of loci L = 25, carrying capacity N = 200, generations T = 10000. One realization
of the fitness terms fij and fi for each parameter value.

Appendix E. Effects of genetic drift

The effects of genetic drift on epistasis effects are studied through the inference error
ε with different population sizes N . It is presented in a semi-log plot, as shown in
the main panel of figure 8. The red stars are for the epistasis inference error given by
equation (8) f∗

ij = χij · (4μ+ rcij)/((1− χ2
i )(1− χ2

j)) while blue dots for equation (6)

f∗
ij = J∗,nMF

ij · (4μ+ rcij). There is a clear trend that both methods work better with
increasing population sizes. However, equation (8) works slightly better when the popu-
lation size is less than 400 while equation (6) recovers the epistasis better when N > 400.
The inserts (a) and (b) of figure 8 show the scatter plots for the recovered and testing
epistasis fijs with N = 25 (an equal number to that of locus in an individual sequence)
and N = 6400, respectively. Clearly, both equations recover the epistasis better with
large population size when compared to those with small ones.

Appendix F. Epistasis inference with directional selections

This appendix summarizes the effects of non-zero additive fitness on epistasis inference
through numerical simulations. Here, the additive effects fis are Gaussian distributed
with non-zero means and the standard deviations are fixed as σ({fi}) = 0.05. The red
stars are for the epistasis inference with Gaussian closure in equation (8), while the blue
dots are for the revised KNS method in equation (6). The inserts of figure 9 show the
scatter plots for the recovered and testing epistasis effects with (a) 〈fi〉 = 0.001 and (b)
〈fi〉 = 0.01, respectively. The other parameters for each point in the main panel are as
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Figure 9. Epistasis reconstruction error ε versus the means of Gaussian dis-
tributed additive fitness 〈fi〉. (a) Scatter plot for testing and reconstructed fijs
with 〈fi〉 = 0.001. (b) Scatter plot with 〈fi〉 = 0.01. Red stars for f∗ij = χij · (4μ+

rcij)/((1− χ2
i )(1− χ2

j )) and blue dots for f∗ij = J∗,nMF
ij · (4μ+ rcij). The epista-

sis reconstructions are getting worse with stronger directional fields. The other
parameter values: standard deviation σ({fij}) = 0.004, mutation rate μ = 0.25,
out-crossing rate r = 0.5, cross-over rate ρ = 0.5, number of loci L = 25, carry-
ing capacity N = 200, number of generations T = 10000. One realization of the
fitness terms fij and fi for each parameter value.

follows: standard deviation of the pairwise epistasis fitness σ({fij}) = 0.004 and that
of the single-locus additive fitness σ({fi}) = 0.05, mutation rate μ = 0.25, out-crossing
rate r = 0.5, cross-over rate ρ = 0.5, number of loci L = 25, carrying capacity N = 200,
generations T = 10 000.

Both methods recover the tested epistasis better with weaker means of additive
fitness compared to that following stronger directional selections. It is notable that the
reconstructed epistasis have a roughly corrected trends with large additive fitness, as
shown in figure 9(b) for 〈fi〉 = 0.01. This may indicate the revision of the epistasis
inference formulae in our work for stronger directional selections.
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