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We study the learning dynamics and the representations emerging in
recurrent neural networks (RNNs) trained to integrate one or multiple
temporal signals. Combining analytical and numerical investigations, we
characterize the conditions under which an RNN with # neurons learns
to integrate D(«n) scalar signals of arbitrary duration. We show, for lin-
ear, ReLU, and sigmoidal neurons, that the internal state lives close to a
D-dimensional manifold, whose shape is related to the activation func-
tion. Each neuron therefore carries, to various degrees, information about
the value of all integrals. We discuss the deep analogy between our results
and the concept of mixed selectivity forged by computational neurosci-
entists to interpret cortical recordings.

1 Introduction

Recurrent neural networks (RNNs) have emerged as a versatile and pow-
erful architecture for supervised learning of complex tasks from examples,
involving, in particular, dynamical processing of temporal signals (Chung,
Gulcehre, Cho, & Bengio, 2014). Applications of RNNs or their variants de-
signed to capture very long-term dependencies in input sequences through
gating mechanisms, such as gated recurrent units (GRU) or long-short
term memory (LSTM), are numerous and range from state-of-the-art speech
recognition networks (Amodei et al., 2015) to protein sequence analysis (Al-
magro Armenteros, Sonderby, Sonderby, Nielsen, & Winther, 2017).

How these tasks are actually learned and performed has been exten-
sively studied in the reservoir computing setup where the recurrent part
of the dynamics is fixed (see Tanaka et al., 2019, for a review), while the
general case of RNNs remains mostly an open question. Understanding
those networks would bring valuable advantages to both neuroscience and
machine learning, as suggested in Barak (2017) and Richards et al. (2019).
Some results have been recently obtained, when the representations and the
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dynamics are low dimensional (Sussillo & Barak, 2012; Mastrogiuseppe &
Ostojic, 2018; Schuessler, Dubreuil, Mastrogiuseppe, Ostojic, & Barak, 2020;
Schuessler, Mastrogiuseppe, Dubreuil, Ostojic, & Barak, 2020), a promi-
nent feature of the neural integrators that are the focus of this study. Neu-
ral integrators, whose function is to perform integration of time series,
have been studied for several decades in neuroscience, both experimentally
(Robinson, 1989; Aksay et al., 2007; Wong & Wang, 2006) and theoretically
(Elman, 1990; Seung, 1996; Lee, Reis, Seung, & Tank, 1997), and, more re-
cently, numerically, in the context of machine learning (Song, Yang, & Wang,
2016).

The goal of our study is three-fold. First, we study how exactly the task
of integration is learned from examples by RNNs. We derive rigorous re-
sults for linear RNNs and approximate ones for nonlinear RNNs, which
can be compared to numerical simulations. This approach is similar to the
one adopted by Saxe, McClelland, and Ganguli (2014) for the case of deep
networks, and more recently by Schuessler, Mastrogiuseppe et al. (2020) in
the case of recurrent networks. Second, we seek to understand the nature of
the internal representations built during learning, an issue of general inter-
est in neural network-based learning (Li, Monroe, & Jurafsky, 2017; Zhang
& Zhu, 2018; Montavon, Samek, & Miiller, 2018; Olah et al., 2018). It is, in
particular, tempting to compare representations emerging in artificial neu-
ral networks to their natural counterparts in computational neuroscience.
Third, we do not limit ourselves to a single integration, but consider the is-
sue of learning multiple integrators within a unique network. While we do
not expect an increase in performance for each individual task, as was ob-
served in the case of natural language processing by Luong, Le, Sutskever,
Vinyals, and Kaiser (2016), we are interested in finding representations ad-
equate for parallel computations within a single network, allowing for con-
siderations on the topic of “mixed selectivity” developed in computational
neuroscience and studied by Rigotti et al. (2013). The issue of network ca-
pacity, the maximum number of tasks that can be performed in parallel,
has been previously studied numerically (Collins, Sohl-Dickstein, & Sus-
sillo, 2017), but remains out of the scope of this study, which focuses on a
number D of integrals small compared to the network size.

Our letter is organized as follows. We define the RNNs we consider
in this work, the integration task, and the training procedure in section
2. The case of linear activation function is studied in detail in section 3.
RNNs with nonlinear activation functions are studied in section 4 in the
case of a single channel (D = 1), and our results for the general situation
of multiple channels (D > 2) are presented in section 5. Conclusions and
perspectives are in section 6. The letter is complemented by a series of
appendixes containing details about the calculations, simulations and fur-
ther figures. The source code for the simulations can be found at https:
/ / github.com/AFanthomme /ManifoldsSupportRNI.
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Figure 1: (A) Multiplexed recurrent neural network, with D input channels
(left) and the same number of output channels (right). The internal state of the
RNN, I, is a vector of dimension 1. The inputs are encoded by the vectors e. and
decoded from the internal state through the decoder weights d.. (B) Illustration
of the decaying integral mapping that we want networks to approximate, on a
sparse input sequence. At each time step ¢, if the input time series x; is nonzero,
the integral is increased by s x;; then it is multiplied by y < 1, which produces
the exponential decay in the absence of inputs. In practice, sequences used for
experiments were gaussian noise, and these sparse sequences are used only for
visualization.

2 Definitions and Model

2.1 Description of the Network. We consider a single-layer RNN of
size n, without any gating mechanism; while such refinements are found to
improve performance (Lipton, Berkowitz, & Elkan, 2015), we omit them as
they are not necessary for such a simple task. The computation diagram pre-
sented in Figure 1A can be summed up as follows: at time t, the scalar inputs
along all channels ¢ = 1..D, denoted x.;, are multiplied by their respective
encoder vectors e.; these vectors are summed to the previous internal state
h:_1' and multiplied by the weight matrix W before a componentwise acti-
vation f is applied to get the new internal state h;. The update equation for
h is therefore

hi = f(w), (2.1)

where the current? v; is defined through

D
=W- [ht_l + ) xe ec:| ) (2.2)
c=1

We initialize the internal state before any input to h_; = 0.

*This name is chosen in analogy with computatlonal neuroscience, where Wz-j is
a synaptlc welght from neuron j to neuron i, and the image of the activity vector,

= }_;Wijhj, represents the total current from the recurrent population coming onto
neuron i.
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The output units are linear: their values vy, are simply obtained by taking
the scalar product of i and the decoder vectors d,,

Yer =dc - hy. (2.3)

Most of this study FOCUSES on two activation functions f: the linear
activation, which is simply the identity, and the ReLU nonlinearity, which
takes component-wise maximum of a vector and zero. Linear activation al-
lows for exact results to be derived on both the learning dynamics and the
structure of solutions, while the choice of ReLU will serve as an example
of nonlinear activation that can be used to create perfectly generalizing in-
tegrators (at least in the D = 1 case) and show that the conclusions of the
linear network study remain relevant. Finally, we propose a generic proce-
dure to train an RNN with arbitrary nonlinearity f to perform multiplexed
integrations, which we illustrate with success in the case of sigmoidal
activation.

2.2 Description of the Task. The networks will be trained to map D
input time series (xct)ieny to D output ones (y.;)en: for all channels ¢ =
., D, the cth output should match the y.-discounted sum of the cth chan-

nel inputs, times the scale factor s.:

t
Vor =50 v xesi (2.4)
k=0

(see Figure 1B). The values of the decay constants y. are chosen in [0,1] to
restrict memory to recent events and avoid instabilities.?

We quantify the performance of the network through the mean square
error between the actual and target outputs across the D channels on train-
ing epochs of length (duration) T

D T-1

<ZZ (Yer —7.y) > . (2.5)
c=1 t=0 X

2.3 Description of the Learning Procedure. Except when otherwise

specified, the encoder e and decoder d will be considered as randomly fixed

at network initialization and forced to be of unit norm. The reason for this

hypothesis is two-fold. First, our focus of interest is how the network of

’If y is chosen too close to 1, the network might during training have an effective
“decay” larger than 1; in that case, the values of the outputs and the associated gradients
become large (in particular when training on long input sequences), which can then be
overcompensated and make the training divergent.
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connections between neurons evolves during training and the nature of
the solutions and representations obtained. The simplified setup allows for
deeper mathematical analysis of the dynamics of the W than the general
case, where all parameters of the network evolve simultaneously during
training. Second, while the speed of convergence is positively affected by
relaxing the constraint of fixing the decoder, numerical experiments indi-
cate that the nature of the W network is qualitatively unchanged if e and
d are also trained, in particular, when it comes to the way the integrals are
represented.

For theoretical analysis, we train the recurrent weights W using gradient
descent (GD) updates at learning rate #:

@) _ @ _ 9L o
Wi = W =0 W), (2.6)
where 7 is the discrete learning time. We also performed experiments
using the nonlinear Adam optimizer (Kingma & Ba, 2017) to ensure ro-
bustness of our results with respect to the specific choice of optimization
procedure. Numerical implementations were performed in Python, making
extensive use of the Scipy (Virtanen et al., 2020) and Pytorch (Paszke et al.,
2019) packages, respectively, for scientific computing and implementation
of automatic differentiation and gradient descent optimization.

3 Case of Linear Activation

Throughout this section, we assume that the activation function f is linear.
We start with the simplest case of a single channel (D = 1) and omit the
subscript ¢ = 1 below for simplicity; we study the case of multiple channels
D > 2 in section 3.4.

As the network dynamics h; — ;. is linear, the loss, equation 2.5, can
be analytically averaged over the input data distribution. The computation
is presented in appendix A and yields

T
LOW) = > xoplitg — s¥") sy — sy7), (3.1)
q,p=1
where
g =d Wie (3.2)

will be hereafter referred to as the gth moment of W, and y is a positive-
definite matrix, related to the covariance matrix of the inputs x;.
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The average loss implicitly depends on y, T, s, e, d and input correlations
X, which do not evolve during training and are therefore omitted from the
argument. Since y is positive-definite, the global minimum of the loss is
reached when the moments of W fulfill

g = sy, (3.3)

forallg=1,..., T. The same conditions are obtained for uncorrelated in-
puts, so we restrict to this case for the following numerical investigations.

The gradient of the averaged loss with respect to the weight matrix W
can be computed (see appendix B), with the result

L g Pz n
oW = 2 D Xap g=syN) DY daW™)ai > (W) jges. (3.4)
]

q.p=1 m=0 a=1 B=1

We emphasize that while the network update dynamics is linear, the train-
ing dynamics over W defined by equations 2.6 and 3.4 is highly nonlinear.

3.1 Conditions for Generalizing Integrators. Conditions 3.3 over the
moments u,, with g=1,..., T, ensure that the RNN will perfectly inte-
grate input sequences of length up to the epoch duration T. We call gen-
eralizing integrator (GI) an RNN such that these conditions are satisfied
for all integer-valued g, ensuring perfect integration of input sequences of
arbitrary length.

We now derive a set of sufficient and necessary conditions for a diago-
nalizable matrix W to be a GL.* Let us assume W is diagonalized as PAP!,
where the spectral matrix A = diag()) is diagonal and P is invertible, of
inverse P~!. The moments of W can be expressed from the eigenvalues as

g =d PA'Pe="ga! with g = (P'd)(Pe).
i=1

Obviously, a null eigenvalue does not contribute to the above sum;
hence, the conditions that we obtain in the following apply only to nonzero
eigenvalues. Our condition for null loss is that all of the aforementioned
moments i, are equal to s 1.

* As the set of diagonalizable matrices is dense in the space of matrices, any nondiag-
onalizable matrix W can be made diagonalizable through the addition of an infinitesimal
matrix; the moments of the resulting matrix are arbitrarily close to the ones of W, which
makes our results for diagonalizable matrices directly applicable to W. See section 3.3.
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The above set of conditions can be rewritten as follows. For any real-
valued polynomial Q(z) of degree less than or equal to T in z, such that
Q(0) = 0, we have

> &iQM) =sQ(). (3.5)

We can evaluate the previous equality for well-chosen polynomials. Let
us consider one eigenvalue, say, A, assumed to be different from y, and
the Lagrange polynomial Q(z) equal to one for z = A, and zero for z =0,
z = Aj # A, and z = y. Such a polynomial exists as soon as T > n + 1 in the
general case where all eigenvalues are distinct from each other, 0, y, and as
soon as T > r 4 1if n — r eigenvalues are equal, for example, to 0. Equality
3.5 gives

Zgi Spne =0,
i

where §.. denotes the Kronecker delta. Therefore, any eigenvalue different
from y must satisfy an exact cancellation condition for the associated g co-
efficients, ensuring that it does not contribute to the network output. Simi-
larly, a condition for the y eigenvalue can be written to ensure that an input
of magnitude 1 entails a change of magnitude s in the output.

The necessary and sufficient conditions for a diagonalizable matrix W to
be a global minimum of the loss defined with T > n + 1 therefore read

Zigi Sry =S5

Vic st he ¢ {y,0}, >;8i8,., =0.

(3.6)

These conditions are in turn enough to guarantee that W is a global min-
imum of the loss for any value of T; hence, the generalizing integrators and
the minima of the losses defined with T > 1 + 1 are equal.

Clearly, any global minimum of the averaged loss £ experimentally ob-
tained when using training sequences of length T > n + 1is a GL. Networks
trained with much shorter epochs can also be GIs if the rank of W remains
small enough throughout the training dynamics. More precisely, if we as-
sume we have found a minimum of the loss of rank r < n, it will be a GI as
soon as I > r + 1. An important illustration is provided by the null initial-
ization of the weights (W™= = 0), which ensures that W remains of rank
r =2 at all times 7 (see equation 3.4 and the following section).

3.2 Special Case of Null-Weight Initialization. We now assume that
the weight matrix W is initially set to zero and characterize all the Gls
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accessible through GD, as well as the local convergence to those solutions.
A study of the full training dynamics for two special cases (T’ = 1 and e = d)
is in appendix C.

3.2.1 Low-Rank Parameterization. From the expression of the gradients
(see equation 3.4) and the linearity of the weight updates (see equation 2.6),
itis clear that starting from W = 0, the weight matrix will remain at all times
7 in the subspace generated by the four rank-1 matrices dd', de’, ed’, and
eet. We introduce an orthonormal basis for the vi = e, v, = d space,

2
v, = Z(Eil/Z)Qb Vp, with Zab = v:vb, (37)
b=1

and the corresponding parameterization of the subspace spanned by W,

2
WO =30 5wt (3.8)
a,b=1

where »™ is a 2 x 2-matrix.

3.2.2 Generalizing Integrators. Conditions 3.6 for W to be a GI can be
turned into conditions over w (see appendix D). Let us assume that w is di-
agonalized through w = PwAwP;1 with A, = diag(X1, A2), and define g; =
(P VZ)i4 (P;l«/f )i2. The conditions for w to define a GI through (equation
3.8)are (A; = y fori=1or2),(3 ;8,18 =s),and g; = 0if &; ¢ {0, y}. Taking
into account the constraint g1 + g» = X1, = d*e, we find that the set of Gls
is spanned by the following three manifolds in the four-dimensional space
of w matrices (see appendix E for details):

* The first manifold is of dimension 2 and contains rank-1 integrators
W at all scales. These weight matrices have one eigenvalue equal
to y and the other to 0 so that one of the g coefficients remains
unconstrained:

ooV (P 1) 3.9)
B—al\aBf -«

where (a, ) € R2. Fixing the scale s to any value different from d'e
introduces exactly one relation between o and 8, making the set of
rank-1 perfect integrators at scale s a one-dimensional manifold (see
appendix E).

* The other two manifolds contain rank-2 integrators, operating at the

scale s* = d'e only. For generic independent encoder and decoder
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Figure 2: Illustration of the three GI manifolds in the space of 2 x 2 matrices
with one eigenvalue equal to y, the second to 1, and the remaining two degrees
of freedom being labeled « and B. In one manifold (red), the second eigenvalue
is zero, so that all of those matrices are GIs with decay y and any scale s. The
other two manifolds contain integrators at the particular scale s* = d'e only and
are of rank 2. The values of «y and By are computed in appendix E, where details
on the parameterization used here can also be found.

vectors, the scale s* = d'e is of the order of n/2 and vanishes in the
large size limit. We discard these solutions and focus on rank-1 solu-

tions given by (equation 3.9) at finite scale s ( d'e).

The structure of the GI manifolds is sketched in Figure 2.

In appendix F, we compute the gradient and Hessian of the loss in the
null-initialization subspace. In the case of fixed encoder and decoder, the
convergence toward a Gl is generically exponentially fast; the correspond-
ing decay time can be minimized by appropriately choosing the value s
of the scale s (see appendix G). For some specific choices of the scale s,
convergence can be much slower and exhibit an algebraic behavior (see
appendix H).

3.3 Initialization with Full Rank Connection Matrices. The results
above assumed that training started from a null weight matrix in order
to constrain the dynamics of W to a very low-dimensional space. Training
RNNSs on very short epochs (T = 3) was then sufficient to obtain rank-1 GIs
capable of integrating arbitrary long input sequences.

In practice, we observe that initializing the network with a matrix W of
small spectral norm (instead of being strictly equal to zero) does not change
the fact that only one of the eigenvalues of W is significantly altered dur-
ing training, and a Gl is obtained as soon as T > 3. The use of a nonlinear
optimization scheme such as Adam rather than GD does not change this
observation.

To gain insights into this empirical result, let us consider a perturbation
€ = ), iu;v;, with singular values bounded by one, around a generaliz-
ing integrator of rank 1, W = olr'. Under the assumption that the u and
v vectors are drawn randomly on the unit sphere of dimension 7, their dot
products with e, d and each other are realizations of a centered gaussian
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distribution of variance 1/n. We can then consider the image of e by our
perturbed matrix:

(W +ee=(or'e)l + ) e(vfe)u. (3.10)
i=1

The second term, originating from the perturbation, is a vector whose
components are sums of n terms of unfixed signs and magnitudes 1/1, and
is, hence, of the order 1/4/n. Accordingly, the dot product of this perturba-
tion vector with d, which is exactly the perturbation to the first moment 11,
will be of the order of 1/./n too. Under a similar hypothesis of indepen-
dence of gaussian vectors, all moments 1, will be perturbed by terms of
that same order.

Since unstructured eigenvectors do not contribute to the network output
at first order, the gradients with respect to those parameters will also be
subleading, and this perturbation will remain mostly unchanged during
training, in agreement with numerical simulations.

3.4 Case of Multiple Channels. We have seen that GD is generally able
to train a linear RNN exponentially fast toward a rank-1 single-channel
GI with associated eigenvalue y and singular vectors tuned to ensure the
correct scale of integration. The state of the corresponding network is easily
interpretable: it is, at all times, proportional to the output integral. Due to
the linearity of the network, this result can be straightforwardly extended
to the case of D > 1 integration channels, as we show below.

3.4.1 Interpretation of Rank—1 Solutions in the Single Channel Case. We write
the rank-1 Gl as W = oI, where I and r are normalized to 1 and ¢ is posi-
tive. Since W must have y asits eigenvalue, we need o'l = y. Additionally,
to ensure that the first nonzero input gives the correct output, we require
that o (d'1)(r'e) = sy. Itis easy to check that these conditions are sufficient
to ensure that the state of the network is

1
hy =ay, 1 with a=—, (3.11)

for all times ¢, which in turn ensures perfect integration (y; = ¥,). In other
words, rank-1 GIs rely on a linear, one-dimensional representation of the
target integral: the internal state is at all times proportional to ¥,.

3.4.2 Representation of Integrals with Multiple Channels. The above discus-
sion of the single-channel case generalizes to multiple channels. Through
training, a weight matrix W of rank D is constructed, which has (y1, ..., ¥p)
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as its eigenvalues and singular vectors compatible with the (fixed) encoder
and decoder weight vectors. The GI conditions are as follows:

Ve € [1, D], Ucr:lc =Y
Ve e [1, D], O¢ (d:lc) (r:ec) =S¢ Ye
Y(c,d) e [1,DI* c#c, rles=0 ) (3.12)

V(c,c) e [1,D]%,c#¢, dl.=0
Y(c,cd) e [1,D]%,c#c, ril.=0

The two first conditions are exactly the same as in the single channel case,
while the last three ensure that the modes of the weight matrix coding for
the different integration channels ¢ do not interfere and can independently
update the values of their outputs to match the targets /.

Assuming these conditions are satisfied, the network state is at time
equal to

D
ht = Zac yat lm (313)
c=1

where the a.’s are structural coefficients, which generalizes expression 3.11
to the case D > 2. The state of any neuron i is therefore a linear combination
of the D integrals across the multiple channels. Multiplexing is here possible
as long as D < n and encoders and decoders each form free families of R".

4 Nonlinear Activation: Case of a Single Channel

We now turn to the case of nonlinear activation. The computation of the
averaged loss is not analytically feasible any longer. However, by investi-
gating RNNs trained with gradient descent on the mean square error (see
equation 2.5) computed on batches of inputs, hereafter referred to as batch
SGD, we have identified structural and dynamical properties from which
sufficient conditions for generalization can be constructed.

4.1 Empirical Study of Neural Representations in an ReLU Network.
We start by considering the case of the ReLU activation, where f = -], =
max(-, 0) is a nonlinear component-wise operator. The simple encoding (see
equation 3.11) adopted by linear-activation networks relied on the fact that
the activity of each neuron could change sign with ¥,. This is not possible
with ReLU activation any more since activities are forced to remain non-
negative, and a novel encoding is obtained after training of the RNNs that
we explore below.
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Figure 3: Internal encoding of the integral y; by a single-channel ReLU network
using two populations. (A) Experimentally observed distributions of the com-
ponents of L., determined by fitting the activity of each neuron with (equa-
tion 4.1). Results are aggregated across 10 realizations of batch SGD training
n = 1000, s = 1. (B) Illustration of the activity shift from the + to the — popula-
tion at arrival of an input that changes the sign of the target. Mutual inhibition
between the two subnetworks guarantees that only one can be active at a given
time, and an external input is required to perform the shift.

4.1.1 Behavior of Neuron Activities. Based on numerical simulations re-
ported in Figure 3A, we argue that the population activity in ReLU net-
works depends on two vectors, referred to as L, and L_, with non-negative
components and dot products with d equal to, respectively, +1 and —1.
More precisely, these vectors determine how the neural activities vary with
the integral ¥/, depending on its sign:

B = |G,)4 Ly + |7+ L. (41)

Hence, in the space of possible internal states R’,, the state h of the RNN
lies in the union of the two half lines along L, and L_, a one-dimensional
piecewise linear manifold whose geometry is imposed by the nonlinear ac-
tivation |-] 4.

The n components of L, L_ define a priori four subpopulations: if
(Ly)i > 0and (L-); > 0 neuron i is active at all times ¢ (“shared” popula-
tion); if (L;); > 0 and (L_); = 0 (respectively, (L1); =0 and (L_); > 0), the
neuron is actively when the integral is positive (resp. negative), defining the
“+” (resp. “—") population; if (L;); = (L-); = 0, the neuron is never active
and belongs to the “null” population. In numerical experiments, the shared
and null populations account for a small fraction of the neurons (around
5%; see Figure 3A) when training is performed using batch SGD; in addi-
tion, shared neurons never have strong activities, and their contributions
to the output integral seem irrelevant. We introduce in equation 4.10 a new
loss function that allows for training of perfect integrators that do not ex-
hibit any shared or null neurons.
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Figure 4: Behavior of currents in an ReLU network trained using the batch SGD
loss, s = 2, y = 0.995. (A) Parametric plot of the currents (v;); incoming on two
representative neurons i (red, blue) versus target integral y; across time ¢t. We
observe a linear relation, with a slope that varies in both sign and magnitude
from neuron to neuron. (B) Normalized dot product between the vector of cur-
rents v and the image of the encoder We versus value of the integral, illustrating
equations 4.2 and 4.5.

4.1.2 Behavior of Neuron Currents. Numerical experiments furthermore
indicate that the dependence of the current v; (2.2) on the integral y; is sim-
pler than the one shown by the activity h;. We observe that the current vec-
tor is proportional to the integral,

Vt =Yt L, (42)

where the components L; of the vector L vary from neuron to neuron in both
amplitude and sign (see Figure 4A).

The representation of the integral based on two nonoverlapping pop-
ulations reported above may be seen as a straightforward consequence
of the linear encoding at the level of preactivation currents expressed by
equation 4.2:

hy = vl =y L1y = lyel+ L4 + [=vel+ [—L]+, (4.3)

from which we deduce that the population vectors L, and L_ defined in
equation 4.1 are equal to, respectively, |L|; and | —L] . In other words, neu-
rons i encode positive or negative values of the integral depending on the
signs of the components L;.

Hence, while the neural state h; = f(v;) of an ReLU RNN is not pro-
portional to the integral value (see equation 4.1), as was the case for linear
RNNSs in section 3.3, proportionality is recovered at the level of the preacti-
vation currents v;. We will see below that the linearity of the currents with
respect to the integrals extends to the case of multichannel integrators.
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4.2 Theoretical Analysis of the ReLU Integrators. We now explain the
origin of the linear relationship between current and integral values (see
equation 4.2), and how the vector L defining the current direction is related
to the connection matrix W, the encoder e, and the parameters s, y.

4.2.1 Sufficient Conditions for Integration. Let us first consider the network
at time t = 0, with all activities set to zero (hy = 0). As the first input x; is
read by the encoder, the current vector at time f = 1 takes value

vi = W(0+1xe) =1, We = S% We. (4.4)

The above equality agrees with the linear relationship 4.2, provided we have

1
L=— We. (4.5)
sy

This identity is in excellent agreement with numerical findings, as shown
in Figure 4B.

We now assume that the current linearly expresses the target integral ;
at time t and look for sufficient conditions for relationship 4.2 to hold at
time t 4 1 after the new input x;,; is received by the network. The current
at time t + 1 reads

virg = W +x016) = W([vi ] +xi41€)
=W (7 LI+ +x116) = W(| 7t )+ Ly + |=Ft)+ Lo) + 01 We

= i)+ WLy + [~ )+ WL_ +x41 We, (4.6)

and should match
Vg = ytj We = <% + xt+1) We (47)
sy S

according to equations 4.2 and 4.5. We deduce that WL, and WL_ have to
be aligned along We (see equation 4.5). Furthermore, based on the identity
vy = lyl+ — [—y]+, we readily obtain that

WL, = —-WL_ =s"'We. (4.8)
These relations are in very good agreement with numerics (see Figure 5).
4.2.2 Proxy Loss for Integration by a Network of ReLU Units. Conditions 4.5

and 4.8, as well as the relations between L, L., L_, ensure perfect general-
izing integration. They can be summarized in the set of four equalities
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Figure5: Contributions to the currents in an ReLU integrator trained with batch
SGD. (Left) Scatter plot of WL_ versus WL,. (Right) WL, versus We. Colors
refer to the neural populations (see Figure 3A). For both panels, we show on the
sides the histograms of current components. Results were obtained with T = 10,
y =0.995,s = 2, n = 1000. Numerical findings confirm that WL, = —WL_ and
We=sWL,.

df[+We|, =+
{ |[£We] | = +sy (4.9)

W|+We], = yWe

linking the matrix of connections, the encoder and decoder vectors, and the
scale and decay parameters.

We now introduce a proxy loss for W, whose global minimum is
achieved when conditions 4.9 are fulfilled,

LYy Z (d+ LZW9J+ _ ZS)/)Z + Z |W|_ZW€_]+ — ZJ/W3|2- (410)

z==+1 z==+1

Experimentally, training on this proxy loss is extremely effective and, as ex-
pected, leads to perfect integrators satisfying the relations between currents
shown in Figure 5. Similar to the linear case, if the encoder and decoder are
fixed during training, the convergence time of GD is strongly dependent on
s with a preferred scale around |e||d| (see the study of dynamics of learning
with £F%¥ in appendix I.)

While the batch SGD loss is by definition based on actual computation
of the network output for sample input sequences, the proxy loss imposes
strict conditions on the dynamical behavior of the network that in turn en-
sure that the batch SGD loss will be zero. While there is no a priori rea-
son to believe that all global minima of equation 2.5 are global minima of
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equation 4.10, we empirically observed that the solutions W found by min-
imizing the batch SGD seemed to also be approximate minima of the proxy
loss (see Figure 5 for the ReLU case).

4.2.3 Properties of the Connection Matrix. Training integrators with either
batch SGD or the proxy loss yields solutions with one dominant singular
value, of the form

W ~olrh

We report some properties of these solutions in appendix J. In particular,
the singular value o is, in the case of fixed encoder and decoder with unit
norms, bounded from below by 2max(1, s), where s is the scale. In prac-
tice, except for scales close to 1, this lower bound seems to be tight, that
is, 0 = 2max(1, s) (see appendix J, Figure 17). We interpret this saturation
as a manifestation of the conjecture by Arora, Cohen, Hu, and Luo (2019)
that gradient descent implicitly favors solutions with small matrix norm, as
rank—1 matrices have a Frobenius norm equal to their singular value.

4.3 Case of Generic Nonlinear Activation. We now turn to the generic
case of nonlinear activation function f. To do so, we show how the idea
of proxy loss developed in the ReLU case can be naturally extended to

any f.
4.3.1 Generic Proxy Loss. We start by writing, for an arbitrary activation

function f, the dynamical equation for the current rather than for the activ-
ity state:

i = W(f(w) + xipae). (4.11)

At the first time step, since h_; = 0, the current will be equal to vy = x)We =
Yo/(sy )We. The error will thus vanish if, and only if, for all y in the range of
values of the target integral,

dt f(% We) —. (4.12)

These relations generalize the first two conditions in equation 4.9 for
ReLU activation. Furthermore, imposing that We is an “eigenvector” of the
nonlinear operator W f(-) with eigenvalue y,

w. f(% We) - %We, (4.13)
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for any y, will force the current to remain at any time aligned along We. A
simple inductive proof similar to equation 4.6 shows that in these idealized
conditions, the coordinate along that line will evolve proportionally to the
output, similar to equation 4.2. Combined with the condition derived for the
first input, this is enough to guarantee perfectly generalizing integration.

For arbitrary f, conditions 4.12 and 4.13 can generally not be exactly sat-
isfied for y varying over a continuous domain, that is, for an infinite number
of values of y. However, these conditions can be fulfilled for a discrete and
finite subset, which will provide sufficient accuracy for good integration in
practice, and we observe that the error on the integral of a time series of T
inputs to scale as € ~ n~1/2, irrespective of T (as long as the integral values
remains below Ymax)-

Based on these considerations, we propose a proxy loss for integration
of a single scalar signal using an RNN with arbitrary nonlinearity:

£proxy.f,D:1 (W) — /

zeZ

|d' fewe) sy 2]2 +[W- fzWe) —zy We]’ .
(4.14)

This integral can be estimated via Monte Carlo, and the choice of Z =
[—Zmaxs Zmax] Will restrict the maximum value ymax = sy z of y that can be
represented through our network. It is still possible to obtain generalization
to an infinite number of integration steps, but the choice of y has to be tuned
so that the integral never exceeds the range the network was trained for.

4.3.2 Application to Sigmoidal Activation. We tested this new loss with a
sigmoidal activation function,®

1
~1r exp 5001

fx

Trained with a decay y = 0.8, scales = 1, Z = [-5, 5],° those networks con-
verge to a solution with a single dominant singular value and manage to

*The choice of the slope and bias, here 50 and 0.1 respectively, is not critical to the
results. We chose the slope so that the transition from 0 to 1 of the sigmoid happens on a
scale of 1/50, close to the expected magnitude of the currents n~/2 ~ 1/30 for n = 1000.
The bias was then chosen so that x = 0 is not in the linear portion of the sigmoid, nor in a
fully saturated portion to avoid the null weight-matrix W(® = 0 to be a fixed point of the
learbm'ng dynamics.

For y =0.8, s =1, and inputs of magnitude bounded by 1, the integral evolves in
[—4,4] as ymax is solution of Ymax = ¥ (Ymax + 5), hence zmax = Ymax/(sy) = 5. In prac-
tice, to observe the regimes [y| >~ ymax more easily, we test the network using sequences
alternating between bursts of 1 inputs and long periods with no external input, see
Figure 9.
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Figure 6: (A) Value of the preactivation current v; as a function of the integral
for two representative neurons. (B) Activity-integral characteristic curve for the
neurons of panel A. One of them (blue, right scale) saturates for low enough
values of y;, while the other (orange, left scale) never saturates. (C) Histogram
of the mean activity of neurons for different values of the integrals, aggregated
across eight realizations of the training on the proxy loss (see equation 4.14).
The range of integral values [—4, 4] was divided in 100 bins to select the time
steps in the test sequences that corresponded to the values of y indicated in
the legend. As the value of the integral increases, more neurons get strongly
activated and eventually saturate. The same evolution could be observed for
integrals y; decreasing below the zero value. Those networks were trained using
the batch SGD loss, y = 0.8, s =1, n = 1000, and the same results are found
using the proxy loss.

integrate signals of arbitrary length, despite their inability to generalize
to larger values of the integral. We observe that some neurons in the net-
work exhibit a saturated behavior when the integral is above (resp. below)
a neuron-specific threshold 6;, while other neurons never reach that satura-
tion. This results in a behavior where, during monotonous evolution of the
integral starting from 0, an increasing number of neurons get activated to
support the integral (see Figure 6). While these networks have a very dif-
ferent phenomenology from the ReLU ones in state-space, the integration is
still performed through linear currents. We also confirmed that sigmoidal
networks could be trained on the batch SGD loss, yielding integrators with
a single dominant singular value; training with y too close to 1 results in
poor performance, suggesting that the issues of generalization to large val-
ues of y are not entirely due to the choice of proxy loss, but could hint at
intrinsic limitations of the network, related to the activation function.

The proxy loss, equation 4.14, will be extended below to the general case
D > 1.1t should be noted that all nonlinear integrators need not be absolute
minima of the proxy loss and follow the linear current representation. We
only show here that it is one possible representation scheme, which can
be adapted to any nonlinearity and could therefore help bridge the gap
between idealized ReLU activation and more complex examples (e.g., in-
spired from real neurons).
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5 Nonlinear Activation: Case of Multiple Channels

We now consider the case of a multiplexed integrator with D input-output
channels, performing D integrals in parallel. In practice, numerical experi-
ments were carried out for D = 2, 3, 4.

5.1 Batch and Proxy Losses for Multiple Integrators. To train our RNN
to carry out multiple integrations, we followed two strategies. First, we
used the batch loss defined in equation 2.5 from a set of input data, com-
bined with a learning algorithm, e.g. SGD.

Second, drawing our inspiration from the detailed analysis of the single-
channel case studied in the previous section, we introduced an extension
of the proxy loss (see equation 4.14) to an arbitrary number D > 1 of input
signals,

2
L P (W) = / L /Z i > [dif (;zcmc) —s. yczc]

c

2
+ |:W - f (Z zCWeC) - Z Ve ZCWeC:| } (5.1)

where the integral runs overs the D-dimensional range of values of the in-
tegrals, Z; x Z x --- x Zp. As we shall see, training with this loss allowed
us to obtain networks with arbitrary nonlinearity that represent the integral
values linearly in the space of currents, as we shall see. Note that different
activation functions, varying from neuron to neuron, could be also consid-
ered, for example, through the introduction of a distribution of thresholds
for the sigmoidal function.

5.2 Characterization of Currents for ReLU Networks. We start with
the ReLU case. As in the linear case, training ReLU networks with stochas-
tic gradient descent of the batch loss yields networks that perform multiple
integrations with excellent accuracy. Inspection of the connection matrices
W reveals that they have D dominant singular values, as illustrated in Fig-
ure 7A for D = 3 channels. Such a spectral structure, consisting of a large
number of “bulk” values and a small number of “outliers” that perform a
computational task is reminiscent of the setting investigated in Schuessler,
Dubreuil et al. (2020) and Schuessler, Mastrogiuseppe et al. (2020).

The D corresponding left eigenvectors I, of the W matrix define a
D-dimensional linear manifold for the current vector v;,

D
v Y aeile, (@, any) € R, (5.2)

c=1
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Figure 7: Histograms of the singular values of W in an ReLU (A) and sig-
moidal (B) network across four realizations (one color each) of batch SGD with
D =3,T =10, n = 1000. The ReLU networks were trained with y; = y, = .995,
ys = .992, while the sigmoidal ones were trained with y; =y, = .8, y3 = .75. In
both cases, a bulk of eigenvalues are found close to 0, while exactly three of
them become substantially larger. A fair amount of variability can be observed
in the exact value of those large eigenvalues, even using the same values of the
decays.

while the activity state h; of the network lives on a nonlinear version of this
manifold, shaped by the ReLU activation function,

hy = v 4. (5.3)

Investigating the relation between the « coordinates in the current manifold
and the values of the different integrals 1, we empirically find that they are
related by a linear mapping. More precisely, there exists a D x D-matrix R
such that the coordinates o; along the current-manifold can be written at all
times as

D
dep =Y Ree Yoy (5.4)
=1

In Figure 8, we illustrate this mapping in the D = 2 case. The methodology
adopted is the following. While the network is performing integration, at
each time step t, we infer the o, coordinates from the values of the cur-
rents through equation 5.2. The panels of Figure 8 show the coordinate o
(left: ¢ = 1; right: ¢ = 2; see the color code in the figure) as a function of the
two integrals 7, ,. Aggregating those results across a large number of long
trajectories, we find that the value of the currents as a function of the tar-
gets is independent of the exact input sequence and linearly depends on
the value of the integrals. Hence, the linear dependence of the current on
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Figure 8: Value of the coordinates oy and o, in the current manifold as a function
of the value of the target outputs #. Both coordinates depend linearly on the
value of the two integrals (1, 1»), so that the position in the current manifolds
is a linear representation of the integrals. The points were aggregated across
256 trajectories of length T*" = 200, for networks trained using batch SGD on
the mean square error, equation 2.5, with training epochs duration T"*" = 10,
y1 = 0.995, y, = 0.992.

the integrals, empirically found for D = 1 in equation 4.2, also holds in the
multichannel case.

We emphasize that the presence of a bulk of small, but not negligible,
singular values of W (in addition to the D dominant ones) is not in con-
tradiction with the fact that the current lives in a D-dimensional manifold.
The corresponding singular vectors may be orthogonal to the encoders and
therefore never contribute to the internal state. To illustrate this point, we
provide a quantitative evaluation of the distance between the currents v,
and the D-dimensional vector space D spanned by the D largest singular
vectors I, on the right-hand side of equation 5.2 as follows. After collecting
the currents v at all time steps during 128 trajectories of duration T = 200,
we compute the projection v!' of those currents on D using least squares and
the orthogonal projection, vi. The ratio of their norms

r=-—:u (5.5)

where (-); denotes the average over time, estimates how much of the cur-
rent lies out of the D-dimensional manifold. Results for the ratios are re-
ported in the first line of Table 1 for networks obtained from the batch
and the proxy losses and are very small, r < 0.5. These values are signifi-
cantly smaller than what would be expected by chance in a null model in
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Table 1: Average Ratios r of the Projections of the Current Outside and Inside
the Best D-Dimensional Subspace (see Equation 5.5) for Different Activation
Functions and Values of D, and n = 1000.

Batch Proxy
%1072 D=1 D=2 D=1 D=2 D=3 D=5

ReLU 1.3+0.2 1.3+01 1.63+0.1 49405 33+05 25+0.1
Sigmoid 56415 334+19 322+02 113+14 100£04 59403

Note: Errors were estimated from eight realizations of the training in the same condi-
tions, and all values reported in the table are 102 x r for readability.
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Figure 9: Learning of D-dimensional integrators with sigmoidal networks.
(A) Comparison between expected and measured output on structured test se-
quences, designed to alternate between bursts of £1 inputs and long periods
with no external input to allow for visual discrimination of the origin of er-
rors between scale and decay. (B) Activity of a representative neuron in the
(v1, y2) plane, measured on white-noise inputs. The decays are equal to 0.8 and
0.75, n = 1000, and the sigmoidal networks were trained using the proxy loss,
equation 5.1.

which all directions in the n-dimensional space of currents would be equally
significant,

n
Tyull = B - 17 (56)

whose value is larger than 20 for n = 1000 and D = 1, 2.

5.3 Case of Sigmoidal Units. We have repeated the above analysis
on networks with sigmoidal units, trained both from the batch and proxy
losses. Results for a representative networks trained with the proxy loss to
integrate D = 2 channels are shown in Figure 9A. We observe an excellent
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Figure 10: Mixed selectivity in bichannel integrators. (A) Activity /; of a repre-
sentative neuron i in a ReLU network as a function of the two integrals, aggre-
gated across 512 epochs of T'! =200 time steps. This activity is of the form
max(s'y, 0), meaning that the neuron will only ever be active in half of the
(y1, y2) plane. (B) Distribution of the angle of the boundary plane between zero
and nonzero activity across the n = 1000 neurons of a ReLU network. (C) Distri-
bution of the angle in the case of a sigmoidal network. Horizontal dotted lines
represent the uniform distribution. Same parameters as in Figure 9; histograms
were aggregated across 16 repetitions of the training.

match between the output integrals and their target values. Similar results,
albeit less accurate, are obtained with the batch loss.

As in the ReLU case, the connectivity matrix W is characterized by D
large singular values and a bulk of smaller ones. This bulk is influenced by
several factors, including the initial condition over the matrix W and the
choice of the learning algorithm. Despite the presence of these small singu-
lar values, the D-dimensional nature of the current can be assessed (see the
ratios 7 reported in Table 1). The values of r are much smaller than what
would be expected from a null model and confirm the low dimensionality
of the current manifold. Not suprisingly, the values of the ratios for sig-
moidal networks are 2 to 10 times larger than for their ReLU counterparts
(for the same size 1), as expected from the higher difficulty-to-solve condi-
tions, equations 4.12 and 4.13 (see the discussion in section 4.3).

5.4 Nature of Single-Neuron Activity and Mixed Selectivity. The
above findings allow us to determine how the state /; of a neuron depends
on the integrals § = (71, 2, . . ., ¥p) in an ReLU network:

hi = sg.. with sic =Y Recla. (5.7)
"

From a geometrical point of view, as illustrated in Figure 10Ainthe D = 2
case, each neuron activity £; is the image through the ReLU nonlinearity
of the dot product between an associated direction s; and the set of inte-
grals 3. The same feature is encountered for sigmoidal units, as shown in
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Figure 9B. We have then characterized the distribution of the angular di-
rection of s; across the n neurons and find that it is equally distributed on
[0, 2] when the network activation is ReLU, while it shows clear peaks
for multiples of 7 /2 in the case of sigmoidal activation (see Figures 10B
and 10C).

In the solutions empirically obtained through gradient descent, either on
the batch loss or the proxy loss and for any number D of channels, we found
that the network jointly encodes information about all integrals in the state
of all neurons, a phenomenon similar to the one of mixed selectivity used
to interpret cortical recordings in the field of computational neuroscience
(Rigotti et al., 2013) and closely related to the issue of class selectivity in
computer vision (see Leavitt & Morcos, 2020a).

Mixed selectivity can be seen here as being deeply connected to the
choice of the input and output layers of the network. In our experiments,
all encoders and decoders have nonzero components on all neurons of the
internal state. Therefore, during training, the connectivity matrix will be
optimized in such a way that each of those neurons will extract and rep-
resent information about all integrals. If we instead constrain the encoder
and decoder for each channel to have the same support, spanning only n/D
neurons and nonoverlapping with the support for any other channel, we
find that the obtained solutions do not exhibit mixed selectivity anymore;
the connection matrices W are block-diagonal, indicating that the network
subdivided into D independent populations, each responsible for the cod-
ing of one integral. Relaxing the support constraint on either the encoders
or the decoders causes mixed specificity to reappear. Last of all, allowing
the support of the channels to overlap causes the corresponding neurons
to exhibit mixed selectivity, while the rest of the network remains simply
selective. Those findings are illustrated in Figure 11.

We interpret this difference in behavior by the fact that the heavy con-
straints imposed between the encoders and decoders through their sup-
ports are enough to modify the energy landscape in such a way that the
entropically favored connectivity matrices do not exhibit mixed selectivity
anymore. None of these support constraints have a significant impact on
the final performance or the learning dynamics, and only the topology of
the connectivity matrix is affected. Finally, we note that the choice of acti-
vation function also influences the distribution of selectivity angle, a fact
that cannot easily be understood from entropic considerations and could
potentially be related to learning.

5.5 Learning with Sign-Constrained Connections. So far, the only bio-
logical constraint we have considered regarded the states of neurons, which
were forced to remain positive through the use of the ReLU activation func-
tion in order to represent firing rates. We now introduce a constraint on the
weight matrix W itself, corresponding to the observed division between
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Figure 11: Visualization of the elements of the weight matrix W after train-
ing a ReLU network to integrate D = 2 signals through batch SGD in three
cases of initialization: (left) the encoders and decoders are independent gaus-
sian vectors without any restriction; (middle) the population is divided in two:
the first half of the neurons have nonzero encoder and decoder only on chan-
nel 1, and similarly the other half on channel 2; and (right) starting from the
nonoverlapping case, we allow a small fraction of the neurons (middle por-
tion) to have nonzero components on all e, d vectors. We find that the use of
disjoint supports produces block-diagonal solutions where one population is
in charge of one integral and isolated from the others, thus exhibiting single
selectivity.

excitatory and inhibitory neurons known as Dale’s law (Squire et al., 2012):
at initialization, we fix a certain fraction of the columns of W, correspond-
ing to the outgoing connections from a subpopulation of neurons, to have
only negative entries, while the rest of the columns will have only positive
entries. In order to maintain these constraints satisfied during training, af-
ter each step of optimization, we fix to 0 all the elements of W that changed
sign.

At the end of the training, the weight matrices exhibit one additional
relevant singular value compared to their unconstrained counterparts:

D
W ~ oo lor} Ior!
~oglory + oclet,..
c=1

The rank-1 contribution coming from this additional mode has the correct
signs to satisfy Dale’s constraint, as illustrated in Figure 12. Additionally,
the left singular vector Iy is almost orthogonal to all decoding vectors d.,
suggesting that this mode is not used for the computation of the integrals,
only as a way to satisfy the sign constraints over W. It should be noted that
our empirical result does not rule out the existence of networks of rank D
performing D multiplexed integrals while satisfying Dale’s law. However,
such solutions, if they exist, are not obtained through a simple gradient de-
scent procedure from a zero or small W.
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Figure 12: Distribution of the components of the left and right singular vectors
for the largest singular value (left) and the following D ones (right). These his-
tograms were obtained with 16 realizations of the batch SGD training, using
n =1000, D =2, and 25% of inhibitory neurons. While the signs of the com-
ponents of the second and third singular vectors appear random, they have a
particular structure in the first singular vector: the left singular vector is always
positive, while the right is positive (resp. negative) if the neuron is in the excita-
tory (resp. inhibitory) population; the corresponding rank-1 matrix has columns
of fixed signs corresponding to the ones of Dale’s constraints.

6 Conclusion and Perspectives

6.1 Summary of Results and Open Questions. We have studied in this
work how an RNN with # neurons learns to perform one or more integra-
tions of temporal inputs; each integration was characterized by the target
values of the scale factor s and the decay coefficient y (generally, slightly
below 1).

In the case of an RNN with linear activation performing a single in-
tegral, we have precisely characterized the length of the temporal input
necessary for perfect generalization (integration of any temporal signal),
the optimal learning rate, and the convergence time of the training proce-
dure when the weight matrix is initially set to zero (or is small enough in
norm). The coding of the integral is realized in a simple way: the activity
vector of the entire neural population varies along a one-dimensional direc-
tion in the n-dimensional space, with a proportionality factor equal to the
integral.

In the case of ReLU activation, accurate integration was obtained at the
end of the training too. While a full mathematical analysis seemed much
harder than for linear activation, we showed empirical evidence for the fact
that the activity vector belongs to a piecewise one-dimensional manifold.
Coding of the positive and negative values of the integrals is done by two
essentially nonoverlapping populations of neurons, switching on and off
when the integral value crosses zero. Remarkably, the preactivation current
of the ReLU units shows a simple behavior: it is proportional to the inte-
gral. We have derived sufficient conditions over the weight matrix for such
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a coding to take place and characterized the nature (directions of left and
right eigenvectors, amplitude of singular value as a function of s, y) of the
corresponding rank-1 integrator.

In the case of a multiplexed network with D input and output channels,
we have found that the weight matrix is of rank D; this statement is exact for
linear activation and approximately true for ReLU activation RNNs, whose
weight matrix has D large singular values compared to the 7 — D remaining
ones. Consequently, the network activity is restricted to a D-dimensional
manifold in R", whose geometry is imposed by the activation function of the
neurons. For ReLU activation, as in the single-integral case, strong empirical
evidence suggests that the preactivation currents are linear combinations of
the D integrals and span a D-dimensional linear subspace.

It is important to stress that the above results are not mere consequences
of the threshold-linear nature of ReLU units. We have repeated our anal-
ysis with saturating units, obeying a sigmoidal activation function, with
essentially the same results. Interestingly, some units never saturate for all
possible values of the integral(s), other do, and all participate to produce
the right outputs. To elucidate the reason for the D-dimensional nature of
the coding of integrals by the currents, we have introduced a proxy loss re-
flecting sufficient conditions for such a coding. The networks trained from
data (and the batch loss) behave similar to the networks minimizing this
proxy loss from the point of view of both performance and representations.

From a purely machine-learning point of view, our work shows the ver-
sality of RNNs to achieve simultaneously several computational tasks. The
variety of representations supporting these computations could then be
harnessed for transfer learning (see Pan & Yang, 2010, for a review) by us-
ing our trained RNN as a (possibly fixed) feature extractor. One example of
such a task is the one of context-dependent integration, studied in the pre-
frontal cortex of monkeys by Mante, Sussillo, Shenoy, and Newsome (2013),
and which we adapt to our setup in appendix K. The proxy loss we derived
could also a priori be used as part of a full-task loss, following a similar rea-
soning to Haviv, Rivkind, and Barak (2019), where one term in the loss is
used to encourage internal dynamics that are known to be relevant for the
task at hand and facilitate training.

Empirical analysis shows that very accurate multi-integrators with non-
trivial activation functions can be obtained through gradient descent, and
the representation scheme they adapt is linear in the space of currents. Three
main limitations in this observation have to be noted. First, we do not show
that this is the only representation scheme possible, and different solutions
could possibly be found from pure mathematical reasoning. Second, rigor-
ous analysis of the proxy loss remains necessary to understand in which
conditions these representations are achievable, and to which accuracy. Fi-
nally, our study has focused on the case where the number of integrals D
is small and the number of neurons 7 is large, and the question of how the
optimal computational capacity (maximal sustainable value of D) precisely
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increases with 7 remains to be understood in the case of RNNs with non-
linear activation.

6.2 Nature of Representations and Connection with Computational
Neuroscience. While scalar integration using a single-layer recurrent net-
work is far from state-of-the-art machine learning, the abundance of studies
in the field of neuroscience (often motivated by the oculomotor system in
fish) and the absence of a comprehensive theory of representation in such
networks make it a worthwhile case study. Our theoretical analysis pro-
vides new evidence for the relevance of low-dimensional representations,
and this result is robust to changes in the training method, the initial con-
ditions of the weight matrix, the choice of activation function. Our work
therefore provides additional motivation for the theoretical study of the
properties of RNNs with low-rank coupling matrix initiated in the contexts
of statistical physics (Mastrogiuseppe & Ostojic, 2018) and computational
neuroscience (see Barak, 2017, for a review).

As far as neuroscience is concerned, we believe that our result about
the encoding of multiple integrals by each neuron, expressed by equation
5.7, is of particular interest. There is, indeed, a very striking analogy be-
tween our findings and the concept of mixed selectivity used to interpret
cortical recordings in the field of computational neuroscience (Rigotti et al.,
2013). For a long time, neuroscientists have focused on neurons whose ac-
tivities depended on a single sensory relevant variable, such as the orien-
tation of a bar in the visual cortex area V1 or the animal’s head direction
in the subiculum (in our case, the value of one particular integral y.). Such
neurons are obviously easier to identify from activity recordings. However,
there is growing recognition that most cells display mixed sensitivity, that
is, have activities varying nonlinearly with several relevant variables, and
that the relative degree of importance of each variable in determining the
activity may vary considerably from neuron to neuron (as we find in Figure
10). Such mixed representations could be useful for decision making based
on multisensorial streams of information, a possibility sometimes put for-
ward to explain their relevance in neuroscience. It is, from this point of view,
remarkable that mixed representations spontaneously emerge in our study,
where the RNN lacks any explicit incentive to exploit them simply because
they are much more likely than pure representations when the encoders
and decoders have no intrinsic structure (see Figure 10). The computational
advantages of such mixed representations have been studied in Leavitt and
Morcos (2020a, 2020b) and suggest that they could improve both generaliza-
tion and the robustness of the performed computations. Other studies have
focused on the emergence of disentangled representations, which have been
shown to be relevant in both natural language processing (Radford, Joze-
fowicz, & Sutskever, 2017) and computer vision (Denton & Birodkar, 2017;
Lee, Tseng, Huang, Singh, & Yang, 2018), suggesting that the optimal type of
representation might depend on the specific task it supports. Studying the
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representations of computational tasks in artificial neural networks could
therefore be a valuable tool to understand their biological counterparts, an
approach already proposed in the domain of spatial navigation (Banino
et al., 2018).

Appendix A: Fully Averaged Loss for Linear Single-Channel
Integrators

For an arbitrary input sequence (x;)o<t<7—1, we compute through induction
the value of the output at any time t as

t t
vteN, y = th_daW”’“e = th_quqH.

The target outputisy, = s th=o xt—qy"*1, so that the square error is

2
€t

(yt - ?t)z

t

Z xt—q(ﬂq+1 - Squrl)
q=0

t
1 1
= Z Xt—qXt—p(Hhg+1 — syT* Y(ips1 — sy ).
q9,p=0

The loss to minimize is the average of the sum of those errors along input
sequences of length T

T-1 T-1 ¢
LW) = <Ze > = <Z D xgxi (g — sy (upir — sw’“>>
t=0 t=0 p,q=0
T-1T-1
< Z Xt—qXt—p q<t1p<t> (ﬂq+1 — syt )(Hp+1 - Syp+1)
t=0 p,q=0
T-1
<Z Xp—gXt—p q<t1p<t> (g1 — syT™ )(Mp+1 — syt
p.q=0 \t
= Z qu(ﬂq — Sy )(Hp —syP), (A1)
pq=1

where we introduced the time-integrated correlation matrix x.
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X is symmetric, and it is easily shown that

T-1 T-1 [T-1
T .+
YVveR ,v' xyv = Z Vg Xqplp = Z <Z uqxthtp1q<t1p<tv,,>

p,q=0 p.q=0 \t=0

I
—_—
.\1
H
)
I
<
=
ES
;1
&
14
=
<
<
A
>~
)
—~——

Therefore, x is nonnegative. Assuming now that v is such that the quadratic
form above vanishes, the term corresponding to t = 0, equal to v (x3), van-
ishes, entailing that vy = 0 as soon as the input is assumed to have positive
probability to be nonzero at this first time step. Then the t = 1 contribution,

((x0 v1 + x100)%) = {(x0 v1)?) also vanishes, which implies that v; = 0. By re-
cursion over ¢, all the components of v must vanish, which shows that y is
definite positive.

Appendix B: Gradient and Hessian of the Linear Single Channel Loss _

We have
T
Vi, £ = Z Xap |:(Vvq S)’q)i + (up — Syp) i|
g.p=1 Wi
T L
=2 Z Xap(iq — Syq)ip- (B.1)
q.p=1 Wiy

We compute through induction:

W 9 n
Z WmwP-1-m Oy _ 3 mpp-1-m,,
3Wk1 LW, f hence Wy E diWy W

m=0 i,j=1m=0

so that the gradient of £ with respect to W is

T p-1
Vi £=2 xgplg — sy > Z(d(,w;;)(w]g*meﬂ). (B.2)

q.p=1 m=0 «,B
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We now want to compute the Hessian # of this loss:

Hijx = 3Wkl =2 Z Kap(1t —S)/ ZZ(d WP 1—m es)

m=0 «,B

+2 Z Yo g i ZZ(d N ).

q.p=1 mOaﬂ

We will only be interested in the value of the Hessian at global minima of
L, so that the first term in this equation will not contribute. In that case, we
find

T p-1 n  q-1
1- fi A7~ 17
Hijn =2 Xgp > (daW)( WE ") > -wg;(wljg "ez].
q.p=1 m=0 o,B &@,f=11m=

(B.3)

Appendix C: Two Special Cases of Null Initialization

C.1 Exact Solution for T = 1. We begin by the simplest case possible,
when the epochs are of length 1. The gradient descent updates become in
that case

AW;; = —2n(d"We — sy )die;.

Hence, we have at any time W = wde’, so that we can study the optimiza-
tion dynamics on the scalar w only:

= —2n(wlle|||d|]* — sy).

Therefore, after t steps of optimization, the coefficient w is equal to

("7)_ sy 1=2 || 2 2\t
o el[2/1d1P)°].
Tegapt ~ =2 V]

This dynamics is stable if and only if < ||e||72||d||~2. When it is, the net-
work converges exponentially fast to W = de”, which gives the fol-
lowing moments:

k—1
yse-d

vk > 1,Mkzys<7> :
llell2[|d]|[>

ys
[lell?[1d1I?
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Therefore, in that case, we converge toward a solution that achieves the
desired scaling s, but has a decay constant that is fixed by the initial choice
of s, e, and d.

C.2 Same Encoder and Decoder, T > 1, Uncorrelated Inputs. For this
part, we assume that e = d. Considering that the first update in that case
is proportional to ee”, all subsequent ones are too, so we know that W =
w(t)ee" and the dynamics can be studied on the scalar o only.

Because of this, all moments are given by iy = o*[le]|**2 = ||e|*(w|le]?)E.
The corresponding scale and decay are, respectively, lell> and w|le||?, and
because of this, it is only possible to obtain a generalizing integrator at scale
s = Jlell*.

The fixed points of the gradient descent dynamics are the real roots of
the following polynomial P:

T
Aw
= = 22 KT+ 1= k@ el —sy")o! e := Plo).

k=1

Choosing s = llell?, we can check with Mathematica that for any value of T
larger than 2, this polynomial has a single real root at @ = y/||e||?, which
is a generalizable minimum. Since the leading-order term in this polyno-
mial is of odd degree, we know that lim,,_. 4 P(w) = 00, and therefore
the derivative of P at v = y/|le||? is positive, so that this value of w is an at-
tractive fixed point of the dynamics. As before, the dynamics is convergent
only if the learning rate is smaller than P'(y/|le]*)~ .

Appendix D: Expression of the Moments in the Low Rank
Parameterization

We have defined w so that

2
W=D ot
a,b=1

Because of the orthogonality conditions v, v, = §,, we can easily compute
the powers of W as

2
W= (@),
a,b=1
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which yields the following moments:

2
we = dWhe =d* Z ot v vpte
a,b=1

2
= Z VE 0k VEpy = (VESFVE) .

a,b=1
We now assume o to be diagonalizable as w = PwAngl, so that

e = WE*VE) 2 = (WEP,ALPVE)
2 2
= Y MWEP)L(P,'VE)i2 =Y M (PIVE) (P, VE)i2

i=1 i=1
2
,_ k
= Z g,')»]- .
i=1

Using a reasoning similar to the one of section 3.1, we find the same condi-
tions (see equation 3.6) for generalizing integrators, but with a new expres-
sion of the g coefficients.

Appendix E: Generalizing Integrators in the Null Initialization
Subspace

In this section, we seek to determine all matrices w that correspond to gen-
eralizing integrators at decay y. A first, obvious condition is that at least
one of the eigenvalues of w has to be equal to y. Without loss of generality,
we will consider this eigenvalue to be the first one, and we will denote the
other 1.

The matrix P, that diagonalizes @ can be parameterized as

Each column of P, can be independently multiplied by a nonzero scalar

and yield the same w. There are therefore three cases: either u; or vy is null

(but not both, since P would then not be invertible), or both are nonzero.
We also recall that

2
1+ = Z[(\/fpw)l,i(P;R/f)i,z] =%, =d'e. (E.1)

i=1

1202 1udy G0 Uo pueydle|y euowey Aq Jpd-99e L0 B 000U/E9ZZ06 /€90 L/H/EE/APA-0[0IIE/000U/NPS NUIJoR.IP//:d)Y WOl PaPEOjUMOQ



1096 A. Fanthomme and R. Monasson

E.1 Caseu; # 0and vy # 0. In that case, the modal matrix P,, of w’ will
be parameterized as follows, with « # 8 to ensure invertibility:

11
P, = .
o p
This results in the following parameterization of the space E, of 2 x 2
matrices with at least one eigenvalue equal to y:

1 1\ /[y o\ /1 1\ ,
I, o, B) = « B YAV (L a, B)eR,a#p

{ ! (M—ﬁy v=»* );(A,a,ﬂ)eR3,a¢ﬁ}. (E2)

E,

a=B\ap—y) ay—pr

E.1.1 If» = y. All values of o and g correspond to y1, a perfect integra-
tor at scale s* = d'e.

E12 If »# y and » # 0. In that case, we need to impose g»(«, 8) = 0;
otherwise the second eigenvalue will contribute to the output and the sys-
tem will not be a generalizing integrator. This will in turn impose that
g1 = d'e, and hence these will be integrators at scale s = d'e/y. We find that

ola, Bl = ZW

- B ’
where
(ke =1)r_ 4+ (k + 1)1y

o) = —

2de(r, —r_)
By = (k+1)r_+ (k—1)rg

‘T 2de(r, —1_)

7 = M

22

Ly = ||d|* £ [le|?

Kk =12 +4(d"e) €10, 1,
T+ =/ l+ +x.
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Figure 13: Structure of the minima in the null initialization subspace. On the
left, we present the structure of the manifolds of 2 x 2 matrices with exactly one
eigenvalue equal to y and both eigenvectors with nonzero first components. The
coefficients & and B parameterize the eigenvectors, and 1 is the second eigen-
value. The slow minima, which are located at the intersections of our manifolds,
are the ones toward which convergence of gradient descent can be algebraically
slow (see appendix H). On the right, we detail the structure of the iso-scale man-
ifolds in the A = 0 submanifold and show that they are indeed one-dimensional
as long as s ¢ {0, d'e}. While the lines appear to cross, they do so only on
the « = B line, which is a singularity of our parameterization and therefore
nonphysical.

Hence, there are two manifolds of points satisfying g» (e, ) = 0:

_ 2
{Mu = {T'(A, o, ), (A, &) € R?}, €3

Mﬁ = {F()"v ﬂOv :3)7 ()“? :3) € RZ}»

where I' is defined in equation E.2. These two manifolds intersect along a
one-Dimensional manifold:

Ma N Mﬁ = {F()», ,30, Ol()), A E R}

E.1.3 If » = 0. The system will always be a perfect integrator at decay
y, since no other eigenvalue can contribute to the output. Its scale is deter-
mined by

Z(Ol —ag)(B — ,30).

e (E.4)

s=gi(a, B) =

From this result, we deduce the following:

+ For any given value of s ¢ {0, d'e}, the set of values of «, g that give
cila, Bl = s is a one-dimensional manifold, as can be seen in Fig-
ure 13. A parameterization of this manifold can be obtained by in-
verting equation E.4 as the set I'(0, «, B5(«r)) where I' is defined in
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equation E.2 and

Z(o — ap)Bo — as

Bs(a) = Z@—ag)—s

* When s = 0, the two solutions are o = oy or B = By, no matter the
value of the other parameter.

+ When s = d'e, equation E.4 is not invertible and the condition g =
s is satisfied if and only if B = ag or o = By, which are exactly the
intersection of the M, (resp. Mg) manifolds of equation E.3 with the
A = 0 subspace.

E.2 From w to W. We have shown that in the generic case s ¢ {0, d+e},
the generalizing integrators at scale s correspond to w of rank 1 and form a
one-dimensional manifold.

Such matrices w can be parameterized as

_ 4 B 1) 2
MA_O_{ﬂ—a(aﬁ _a),(a,ﬂ)ER,a#ﬂ}

= 0xy+'0 =Y (@2+1)(F2+1) x = ! 1, )
Y3 0 Fa T Vi
1

y= \/ﬁ(ﬂv _1)’ (0[, ﬂ) € Rz’a #ﬂ}a

where x and y are, respectively, the left and right eigenvector of the corre-
sponding rank 1 matrix. When w is of that form, we have

W =0, xy,0.% =0, (Z xava> (Z ym*) =olr',
ab a b

so that W(w) is of rank 1 too.

E.3 Case u; = 0. The matrix P, that diagonalizes w will be parameter-
ized as

(0 1)
P, = .
1 o

and is always invertible no matter the value of v # 0.
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Now there are two degrees of freedom A and v, and the corresponding
matrices are

(o5 1)
w = .
(y =2 vy

As before, the scale s is determined by c,, which depends linearly on v.
Hence, the choice of scale fixes v, and X has to be chosen either equal to 0
when s is different from d'e (yielding a single solution) or it remains free if
the choice of scale imposes c, = 0 (yielding a 1D manifold).

A perfectly analogous reasoning can be applied when 01 = 0 and u; # 0,
and in both cases, the manifolds of solution are of lower dimension than
their counterparts, which have nonzero u; and u,; we discard those solu-
tions as we expect them to be smooth limits of the generic case.

Appendix F: Gradients and Hessian in the Low-Rank
Parameterization

We now explicitly compute the derivative of the loss with respect to the
2 x 2 matrix w. We previously found that

ty = d'Wie = (VEI VE)

2
= Z \/flua)zb\/sz,

a,b=1
and we have that

‘I

1-
Zwm - m’
8a)l]

m=0

so that

o
aw,]

Z (fw”l) (wq_l_m ‘/E) j2

m=0

which allows us to compute the gradient of the loss with respect to the
coefficients of @ through
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1100 A. Fanthomme and R. Monasson

We can now compute the Hessian of the loss, which will allow us to derive
formulas for stability and speed of convergence of gradient descent. This
Hessian can be decomposed as

We want to estimate this Hessian at rank 1 generalizing integrators, so that
the second part will always be zero. Therefore, the Hessian is simply

T q-1 p—1

Hijn = Z Xa.p (VE" (@ TV Z(ﬁwm)lk(w”*l*mﬁ)zz .

q,p=1 m=0 =0

3

(F.1)

Appendix G: Minimum Convergence Time

We are now interested in studying the dynamics of convergence toward
the GIs W* in the null initialization subspace. To do so, we use a Taylor
expansion of the loss around one of its minima:

n
LW+ W)= Y Wi Hiju(W*) sWp.
ijkI=1

Seeing §W as a vector and H as a (symmetric) matrix, we can diagonalize H
with real eigenvalues A; and normalized eigenvectors u;, and express W =

Z'f; 8iu; in that basis so that
”2
LW* + W) = ZAI 82 (G.1)
=1

Since our loss is positive for any weight-matrix W, we expect that all eigen-
values of the Hessian computed at a GI be positive. We also expect that
(in the generic case s # d'e) one of them is zero, corresponding to the local
tangent to the one-dimensional manifold of GIs.

Writing the GD dynamics on the perturbation §, we find that

1
87 = (1= mans™;

hence, § will see each of its components either be conserved (if it cor-
responds to a null eigenvalue) or evolve exponentially. This exponential
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evolution is convergent as long as |1 — ni;| < 1 and monotonic as long as
n < 1/x1. Choosing the optimal learning rate for the full system n* = 1/Amax,
the slowest component of § evolves as

(1 _ n*)\min)r — (1 _ )\min/)\max)r ~ erln(l—C—l) ~ e—r/C,

hence the characteristic convergence time will be C = Amax/ Amin.”

Since in the null initialization case, the weights are parameterized by a
2 x 2 matrix, the Hessian is 4 x 4 and its spectrum can easily be computed
numerically by using equation F.1. We therefore performed the following
study: fixing the L, norm of the encoder and decoder as well as their dot
product,8 we evaluate the spectrum of 7 and deduce from it the condition
number C along each manifold of rank 1 s-scaled GIs; we find that a min-
imum exists for «, 8 (see appendix E) of order 1, and this value will be a
lower bound for the convergence time to any GI at scale s using gradient
descent. We plot the value of this bound as a function of s for different initial
choices of i/o—vectors in Figure 14.

Appendix H: Algebraic Convergence for Specific Scale Value

From the previous analysis, it seems that when s = d'e, the A = 0 manifold
of solutions is hard to reach. Numerically, we see that gradient descent con-
verges to a solution that lies in the union of the two 2D manifolds described
earlier, corresponding to W of rank a priori 2. If we initialize with a random,
nonzero, W in the null initialization subspace, we converge exponentially;
if we start from W = 0, the convergence is algebraic as a power law 772
instead of exponential (see Figure 15).

To understand this phenomenon, we consider the continuous-time, non-
linear differential equation on the coefficients of w: @ = —d,L. We also in-
troduce the two manifolds of GIs at scale s = d'e:

1 ol — gy y —A
Mvto(aa )\) = s
a—oy \ ooy —y) ay —aor

1 By = Bor  A—vy
Mg, (B, A) = .
s B — Bo <,3,30()/ —A) BA —060)/>

;Amin is the minimum nonzero eigenvalue.

In order to generate e and d with macroscopic overlaps (larger than n~1/2), we first
draw them independently, normalize them to 1, then modify the decoder as d = oe + (1 —
0)d where 0 is the overlap; for large enough 7, the dot product d'e will be close to this
overlap. We then independently rescale them to the desired norm.
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Figure 14: Evolution of the minimum convergence time as a function of the
scale.

In the following, we refer respectively to the union and the intersection
of those manifolds as ¢/ and Z. If we consider any GIM in i/ \ Z, numerical
experiments show that the Hessian has exactly two null and two strictly
positive eigenvalues. The two null directions, which give us the linearized
center space E. around M in which convergence is at most as a power law,
correspond to the local tangent of the manifold of minima and are therefore
not relevant; convergence of the loss is exponential.

On the other hand, if M € Z, the Hessian exhibits three null eigenval-
ues (because the manifolds of minima intersect nontangentially), so that
the center space E. is now of dimension 3. Since the GlIs are only two 2D
planes, there exists an invariant manifold along which convergence is not
exponential. Denoting as x the coordinate along that slow direction, the cen-
ter manifold theorem ensures that the evolution of x is given by

X = g(x),

where g is a polynomial of order at least 2 with neither constant nor first-
order term.

Assuming that the order 2 term is nonzero, we get that locally, for x close
to 0, x = ax?. Integrating over time, we get that x evolves as r~!. We then
look at the value of the loss when w is equal to a generalizing minimum M
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Figure 15: Explanation of the dynamics of convergence toward a minimum at
s = d'e. (Left) Informal representation of GD trajectories. Two types of trajecto-
ries converging to GIs exist: starting from a random W in the null initialization
subspace (middle), we usually converge outside the intersection of the two man-
ifolds exponentially fast, with a fairly wide range of times of convergence de-
pending on the precise starting point. In rare cases, that random starting point
lies on (or close enough to) the slow manifold on which convergence is as a
power law 7 2. We illustrate this algebraic convergence by starting from W = 0
(right), which is experimentally found to be on the slow manifold. Both exper-
imental curves show eight different realizations of the training, with the same
learning rate, norms of vectors, and overlap (but scale chosen exactly to d'e after
e and d have been drawn for that particular realization of the experiment).

plus a small perturbation X of order x:

T
L= xgplitg — sy p — sv7)
q9.p=1

T
= Y xplVEM+X) VI — syl [VE M + X)P VE)2 — sy

q9.p=1

T
= D xplWVEMIVE); —sy? + OWI(VEM? VE)1, —sy? + O(x)]

7.p=1
= O(?).

Therefore, if the quadratic term of g is nonzero, x scales as 77! and the
loss as T2 when 7 is large, as is observed experimentally. It should be noted
that this result does not depend on the value of T or on the choice of e and
d, as observed experimentally too.

Therefore, algebraic convergence is observed only when very strict con-
ditions are met:

* The gradient descent starts from a very specific subspace, the pre-
image of the intersection, which we will refer to as a slow manifold.
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It is of lower dimension than the initial space of weight matrices, so
that random initial conditions will almost never satisfy this criterion.

+ The system always remains on the trajectory of GD. In particular, this
means that 1 and the noise on the computed updates need to be small
enough that we don’t accidentally leave the slow manifold, which
would then lead to exponential convergence.

Appendix I: Single-Channel ReLU Proxy Loss Gradients and Hessian __
We showed in section 4.2.2 that the two following pairs of conditions are

enough to guarantee perfect integration of arbitrary signals:

+ _
{d |+We|, = +sy 1)

W|tWe], = +yWe.

We define the proxy loss as the sum of four terms corresponding to the
residuals of those equalities:

Ly =Ll 4o+ L%+ L2

where £ = (d'|[+We], — +sy)?and L3 = W |[+We], — +yWe|*.
The gradients of these quantities are computed as

oL}

= = 2(d"|£We|, — £sy)(£d;H(We)e;)
BW,]
L%
W 2(W[xWe] — yWe)li(|£We] — Esy)l;

ij

+£2e; Y (W|tWe|, — +yWe)| W H(=We)|;
a

where H is the componentwise Heaviside function that takes a vector as
input and returns a vector whose kth component is 0 if the kth component
of the input was strictly negative, 1 if it was strictly positive, and .5 if it is
exactly 0.

The Hessian of the £! terms is readily computed as

Ll

—*  —2d;H(xWe)|e,dH(xW
W, W iH(EWe)lie;d H(+We)|ie)

+2(d" [ £We), — sy)sudieje§(EWe)l;,
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where § is the discrete Dirac distribution 8;, which is one if i =k and 0
otherwise, and 8 the componentwise Dirac distribution such that §(v) is a
vector of the same shape as v whose components are 1 if the correspond-
ing composant of v is 0, and 0 otherwise. This part of the Hessian is indeed
symmetric by exchange of ij and kI because of the §; in the second term.
The Hessian of the £2 terms is more complicated but can be found to be

1 aL%

- = W,iW yeiet H(EWe);H(xW
28W1']'8Wkl Xﬂ: aiVV ak€ ;e ( e)l ( e)k

+) (WIEWe], — £yWe)|.Wsid(=We)lieje;
a

+3i([=Wel+ — ye)l; ([EWel, — xye)l;
++ [Sp(W[tWe, — +yWe)leH(xWe) +ij < ki]
+ £ [([=Wel; — *ye)|WieH(EWe)x +ij < kl].

Combining those four terms, we get the Hessian of our full proxy loss:

1 8£§:ny
EW = die;jdre;[H(We)|;H(We)|, + H(—We)|;H(—We)|]

+ejer y W WaulHWe)H(We)|, + H(—We);H(—We)|i]

+ul[(IWel4 —ye)lj(lWel+ — ye)li
+(L-Wely +ye)lj([-Wel+ + ye)lj]
+[8x(W?e — 2yWe)lse; +ij < K]
+[Wi(We —2ye)lje; +ij < ki]

+ idieed [Wel§(We)|i

+8uejed |Wel Y W.i(W Wel).6(We)li.

a

Contrary to the linear null initialization case where the Hessian was a 4 x 4
matrix, we have no way to a priori reduce the number of degrees of freedom
and H is a n? x n’>-matrix. We are therefore restricted to a very low number
of neurons (around 50 in our case) for the diagonalization to remain com-
putationally tractable. Another major obstacle is that we do not have an
analytical expression of the GI manifolds at which we want to evaluate the
Hessian. We adopted the following methodology. First, we train networks
on the proxy loss using gradient descent at a low learning rate and wait
for convergence; we evaluate the largest eigenvalue A of H at the obtained
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Figure 16: Experimentally determined values of the highest eigenvalue of the
Hessian around the GI manifold, determining the optimal stable learning rate
for GD and of the empirical convergence time as a function of the scale. Numer-
ical experiments carried out with n = 50 neurons, independent encoder, and
decoder of norm 1.

weight matrix, but do not compute the lowest ones as they are both prone
to numerical errors and not necessarily positive, as some small negative
eigenvalues will exist when we are only close to a GI. We compute an effec-
tive lowest eigenvalue by fitting the decay of the loss during GD at learning
rate n < 1/1 and deduce the corresponding minimum convergence time.
The results of these numerical simulations are presented in Figure 16. We
performed tests on larger networks to verify if the inferred maximum sta-
ble learning rate remained valid, as well as the order of magnitude of the
convergence time, yielding the expected results.

Appendix J: Analysis of Rank-1 ReLU Generalizing Integrators ____

Training of the ReLU RNNSs, on either real data or on the proxy loss (see
equation 4.10), leads to Gls exhibiting one dominant singular value. As in
the linear case, we write W = o Ir'; with no loss of generality, we can impose
r'e > 0 by multiplying r and I by —1. Conditions 4.9 become

ot =4y
where I = |£1],.

o(rfe)d'lL) = +sy

Using a Cauchy-Schwarz inequality and denoting as 1. the vector whose
component i is equal to 1 if /; is of the corresponding sign and 0 otherwise,
we have

ld'1) = |(d1e)f (£112)] < |d1a]|l1].
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Figure 17: Behavior of the singular value o and dot products of the singular
vectors I, r with e, d as functions of s. The figure was obtained with n = 1000,
independently drawn encoder and decoder, and aggregated across six realiza-
tions of GD on the proxy loss. Error bars are not reported as they are not distin-
guishable from the line width.

Assuming half of the components of I are positive and half are negative, as
confirmed by numerical studies and given that |d| = |I| = 1, both norms on
the right-hand side are equal to 27/ in the large 7 limit, yielding |d"1.| <
1/2. Since 0 < r'e < 1, we conclude that o > 2sy. Similarly, we have that
[l <1/2, implying o > 2y. These conditions can then be summarized
into o > 2y max(s, 1).

Experimentally, we find that this lower bound is closely followed when
s is either large or small. Since W is of rank 1, its Frobenius norm is equal to
o, and we argue that the saturation of this lower bound on ¢ is a manifesta-
tion of the conjecture of Arora et al. (2019) that gradient descent implicitly
favors solutions with small matrix norm. Therefore, we have for any scale
s significantly different from 1:

o = 2y max(s, 1). (J.1)

Numerical experiments show that for a wide range of scales, I and d are
almost equal. Hence, Al = +|d|+d),? ~ +1/2, entailing rfe ~ min(s, 1)
. For s « 1, r is almost aligned with d, while for s > 1, we have r > e (this
statement holds for uncorrelated encoder and decoder). Our theoretical pre-
dictions are in very good agreement with numerical experiments, as shown
in Figure 17. Notice that the change of direction of r with s has consequences
on the signs of the couplings: W;; is positive for pairs of neurons within the
+ and — populations and negative in between at small s, but is essentially
random at large s (see Figure 18).

Appendix K: Example of Transfer Learning: Context-Dependent
Selectivity

In order to illustrate the versatility of the current-linear representations
described in the main text, we implement a simple example of transfer
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Coeflicients of W after training
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=0.08
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Figure 18: Weight matrix W of a single-channel ReLU network visualized as
a discrete heat map. Neurons were reordered so that the indices of the + pop-
ulation are from 0 to 1n/2, while the — population goes from 7/2 to n. When
s = 0.1, the sign of W;; is fully determined by whether i and j are in the same
cluster; when s = 10, this observation is no longer true. We also note that as ex-
pected, the coefficients of W are larger when s increases as the norm of W scales
as max(1, s). This figure was obtained for independent encoder and decoder of
scale 1, n = 1000.

learning to context-dependent selectivity, inspired by Mante et al. (2013).
The idea is the following: a pretrained three-channel integrator is used to in-
tegrate three time series xg, x1, X, (respectively, the motion evidence, color
evidence, and contextual cue in the experiment described by Mante et al.
(2013)) into their decaying integrals v, y1, 2, potentially with different de-
cay constants. The cue integral v, is used to determine to which integral, v
or 1, the network must be sensitive: when y, is negative, the network must
output 0 if yp < 0 and 1 if yy > 0; when the integral y» is positive, the net-
work must output 0if y; < 0,and 1ify; > 0.

To train this network, we first train the three-channel integrator using
any of the methods described in the main text. We then use it as a fixed input
transformer, mapping a three-dimensional time series to an n—dimensional
one (the state h; at any time step). For each time step, the value of the
expected output is determined using the aforementioned rules on y, and
the classification output is obtained as out; = (1 4 exp 0@k =00)=1 The
trainable parameter of this new decoding layer is the vector u. It is easy
to learn the value of u through batch SGD using the supervised learning
procedure described here, and the resulting networks behave as shown in
Figure 19.
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Figure 19: Output of an online context-dependent classifier. The task is the fol-
lowing: The network receives D = 3 input channels. When the integral i, is neg-
ative, the network must output 0 if yy < 0 and 1 if yy > 0; when the integral y,
is positive, the network must output 0 if y; < 0, and 1 if y; > 0. This result is
obtained by training a sigmoidal decoding layer on the internal states of a fixed
sigmoidal network pretrained through batch SGD.

Acknowledgments

We are grateful to the referees for useful suggestions, in particular, the con-
nection with (Mante, Sussillo, Shenoy, & Newsome, 2013); see appendix K,
as well as the study of selectivity with sigmoidal networks, which shows
preferred orientations see Figure 10C. We benefited from the support of
NVIDIA Corporation with the donation of a Tesla K40 GPU card.

References

Aksay, E., Olasagasti, I, Mensh, B. D., Baker, R., Goldman, M. S., & Tank, D. W.
(2007). Functional dissection of circuitry in a neural integrator. Nature Neuro-
science, 10(4), 494-504.

Almagro Armenteros, J. J., Sonderby, C. K., Sonderby, S. K., Nielsen, H., & Winther,
O. (2017). DeepLoc: Prediction of protein subcellular localization using deep
learning. Bioinformatics, 33(21), 3387-3395.

1202 Iudy GO uo pueydle|y euowey Aq jpd-99eL0” B 009U/€9ZZ06 L/E90 L/P/EE/HPA-B]0IE/008U/NPA W }0B.IP//:dRY WOl papeojumoq



1110 A. Fanthomme and R. Monasson

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., . . . Zhu,
Z. (2015). Deep Speech 2: End-to-end speech recognition in English and Mandarin.
arXiv:1512.02595.

Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit reqularization in deep matrix
factorization. CoRR, abs/1905.13655.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P, . . . Kumaran,
D. (2018). Vector-based navigation using grid-like representations in artificial
agents. Nature, 557(7705), 429.

Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience re-
search. Current Opinion in Neurobiology, 46, 1-6.

Chung;, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated re-
current neural networks on sequence modeling. arXiv:1412.3555.

Collins, ]., Sohl-Dickstein, ., & Sussillo, D. (2017). Capacity and trainability in recurrent
neural networks. arXiv:1611.09913.

Denton, E. L., & Birodkar, V. (2017). Unsupervised learning of disentangled represen-
tations from video. In I. Guyon, Y. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing
systems, 30 (pp. 4414-4423). Red Hook, NY: Curran.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

Haviv, D., Rivkind, A., & Barak, O. (2019). Understanding and controlling memory
in recurrent neural networks. In Proceedings of the International Conference on Ma-
chine Learning (pp. 2663-2671).

Kingma, D. P, & Ba, ]J. (2017). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Leavitt, M. L., & Morcos, A. (2020a). Selectivity considered harmful: Evaluating the causal
impact of class selectivity in DNNs. arXiv:2003.01262.

Leavitt, M. L., & Morcos, A. S. (2020b). On the relationship between class selectivity,
dimensionality, and robustness. arXiv:2007.04440.

Lee, D. D, Reis, B. Y., Seung, H. S., & Tank, D. W. (1997). Nonlinear network models
of the oculomotor integrator. In J. M. Bower (Ed.), Computational neuroscience (pp.
371-377). Boston: Springer.

Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., & Yang, M.-H. (2018). Diverse image-
to-image translation via disentangled representations. In Proceedings of the Euro-
pean Conference on Computer Vision (pp. 35-51). Berlin: Springer.

Li, J., Monroe, W., & Jurafsky, D. (2017). Understanding neural networks through repre-
sentation erasure. arXiv:1612.08220.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural
networks for sequence learning. arXiv:1506.00019.

Luong, M.-T., Le, Q. V., Sutskever, 1., Vinyals, O., & Kaiser, L. (2016). Multitask se-
quence to sequence learning. arXiv:1511.06114.

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78—
84.

Mastrogiuseppe, F., & Ostojic, S. (2018). Linking connectivity, dynamics and
computations in low-rank recurrent neural networks. Neuron, 99(3), 609-
623.e29.

1202 1udy G0 Uo pueydle|y euowey Aq Jpd-99e L0 B 000U/E9ZZ06 /€90 L/H/EE/APA-0[0IIE/000U/NPS NUIJoR.IP//:d)Y WOl PaPEOjUMOQ



Low-Dimensional Manifolds in Trained RNNs 1111

Montavon, G., Samek, W., & Miiller, K.-R. (2018). Methods for interpreting
and understanding deep neural networks. Digital Signal Processing, 73, 1-
15.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., & Mordvintsev,
A. (2018). The building blocks of interpretability. Distill, 3(3), e10.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), 1345-1359.

Paszke, A., Gross, S., Massa, F,, Lerer, A., Bradbury, J., Chanan, G,, . . . Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett
(Eds.), Advances in neural information processing systems, 32 (pp. 8024-8035). Red
Hook, NY: Curran.

Radford, A., Jozefowicz, R., & Sutskever, 1. (2017). Learning to generate reviews and
discovering sentiment. arXiv:1704.01444.

Richards, B. A., Lillicrap, T. P., Beaudoin, P, Bengio, Y., Bogacz, R., Chris tensen, A.,
... Kording, K. P. (2019). A deep learning framework for neuroscience. Nature
Neuroscience, 22(11), 1761-1770.

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., & Fusi,
S. (2013). The importance of mixed selectivity in complex cognitive asks. Nature,
497(7451), 585-590.

Robinson, D. A. (1989). Integrating with neurons. Annual Review of Neuroscience,
12(1), 33-45.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2014). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv:1312.6120.

Schuessler, F., Dubreuil, A., Mastrogiuseppe, F., Ostojic, S., & Barak, O. (2020). Dy-
namics of random recurrent networks with correlated low-rank structure. Physi-
cal Review Research, 2(1):013111. arXiv:1909.04358.

Schuessler, E, Mastrogiuseppe, F., Dubreuil, A., Ostojic, S., & Barak, O. (2020).
The interplay between randomness and structure during learning in RNNs. arXiv:
2006.11036.

Seung, H. S. (1996). How the brain keeps the eyes still. In Proceedings of the National
Academy of Sciences, 93(23), 13339-13344.

Song, H. F,, Yang, G. R., & Wang, X.-J. (2016). Training excitatory-inhibitory recur-
rent neural networks for cognitive tasks: A simple and flexible framework. PLOS
Computational Biology, 12(2), 1-30.

Squire, L., Berg, D., Bloom, F, Lac, S., Ghosh, A., & Spitzer, N. (2012). Fundamental
neuroscience (4th ed.). Amsterdam: Elsevier.

Sussillo, D., & Barak, O. (2012). Opening the black box: Low-dimensional dynamics
in high-dimensional recurrent neural networks. Neural Computation, 25(3), 626—
649.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., . . . Hi-
rose, A. (2019). Recent advances in physical reservoir computing: Areview. Neural
Networks, 115, 100-123.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D.,...van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for computing
in Python. Nature Methods, 17(3), 261-272.

1202 1udy G0 Uo pueydle|y euowey Aq Jpd-99e L0 B 000U/E9ZZ06 /€90 L/H/EE/APA-0[0IIE/000U/NPS NUIJoR.IP//:d)Y WOl PaPEOjUMOQ



1112 A. Fanthomme and R. Monasson

Wong, K.-E,, & Wang, X.-]. (2006). A recurrent network mechanism of time integra-
tion in perceptual decisions. Journal of Neuroscience, 26(4), 1314-1328.

Zhang, Q.-s., & Zhu, S.-c. (2018). Visual interpretability for deep learning: A survey.
Frontiers of Information Technology and Electronic Engineering, 19(1), 27-39.

Received June 17, 2020; accepted November 4, 2020.

1202 1udy G0 Uo pueydle|y euowey Aq Jpd-99e L0 B 000U/E9ZZ06 /€90 L/H/EE/APA-0[0IIE/000U/NPS NUIJoR.IP//:d)Y WOl PaPEOjUMOQ



