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Spectrum of multispace Euclidean random matrices
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We consider the additive superimposition of an extensive number of independent Euclidean Random Matrices
in the high-density regime. The resolvent is computed with techniques from free probability theory, as well as
with the replica method of statistical physics of disordered systems. Results for the spectrum and eigenmodes
are shown for a few applications relevant to computational neuroscience, and are corroborated by numerical
simulations.
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I. INTRODUCTION

In the 20 years following their introduction, Euclidean
random matrices (ERM) have been studied in a variety of
contexts in physics [1,2] and mathematics [3–5]. Examples
of applications of ERM include the theoretical description
of vibrations in topologically disordered systems [6–8], wave
propagation in random media [2,9], relaxation in glasses [10],
Anderson localization [11], and many more [12].

While determining the spectral properties of ERM is gen-
erally quite involved due to the existence of correlations
between the entries of these matrices, a well-understood limit
is the so-called high-density regime [1,3]. Assume N points
ri are drawn uniformly at random in a bounded space, e.g.,
the unit D-dimensional hypercube HD, and define the N-
dimensional ERM M(1) with entries M (1)

i j = �(|ri − r j |)/N .
Here, | · | denotes the Euclidean distance (with periodic
boundary conditions over HD), and � is a given function that
depends only on the distance | · | and that has a finite range,
independent of N . In the large-N limit (for fixed D), the points
effectively form a dense, statistically uniform sampling of the
hypercube; the eigenmodes of M(1) are well approximated by
Fourier plane waves [1,12], with eigenvalues

�̂(k) =
∫
HD

dr e−i 2π k·r �(|r|), (1)

where the components of k = (k1, k2, . . . , kD) are integer
valued.

Hereafter, we introduce a novel statistical ensemble of
ERMs in the high-density regime obtained by mixing mul-
tiple spaces. Instead of having a single set of N random
points ri, we consider L such sets, r�

i , with � = 1, . . . , L (and
i = 1, . . . , N as usual). Each index � points to a different
“space” (hypercube), and for simplicity all points are drawn
uniformly at random in the different spaces. We define the
superimposition of all the ERM attached to the spaces, with
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entries

Ci j = 1

L

L∑
�=1

�
(∣∣r�

i − r�
j

∣∣). (2)

We refer to such matrices as multispace ERM (MERM). To
our knowledge, MERM have not been considered so far in
statistical physics.

Our motivation to study MERM arises from computational
neuroscience, more precisely, the need to understand how the
hippocampal place-cell network can account for multiple cog-
nitive maps, coding for various environmental and contextual
situations. A review on place cells and the representation of
space in the hippocampus can be found in Ref. [13]. From a
model perspective the points r�

i correspond to the positions
of the centers of the place field of place cell i in map �. The
resulting statistical ensemble for MERM is sketched in Fig. 1.
An important issue is the maximal number L of maps the
hippocampal recurrent neural network (with N neurons) can
sustain, more precisely, the maximal ratio

α = L

N
, (3)

called critical capacity. This capacity depends on the dimen-
sion of the maps, D � N , and of their spatial accuracy (the
precision with which N-dimensional neural configurations
encode D-dimensional positions along the map). In a recent
work, we have shown how the critical capacity could be
determined from the knowledge of the resolvent of C [14]. A
nontrivial statistical setting is obtained when the number L of
spaces is of the order of the matrix size, N . More precisely, we
consider herefater the double infinite size limit L, N → ∞ at
fixed ratio α. This choice corresponds to the assumption that
the hippocampal network activity can code for many different
environments [15] or different contexts [16], and operates, as
hypothesized for other cortical areas [17], in a regime close to
maximal capacity.

Our paper is organized as follows. The spectrum of MERM
is computed using arguments borrowed from free probability
theory in Sec. II, and rederived using the replica method in
Sec. III. We show the results for the spectrum and eigenmodes
for the choice of � corresponding to Fig. 1 and compare with
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FIG. 1. Basic statistical ensemble of MERM considered in this work. L = 3 sets of N = 5 points, r�
i , with � = 1, . . . , L and i = 1, . . . , N

are drawn uniformly at random in unit squares H2 (dimension D = 2). Points are represented by crosses, whose colors identify their indices
i. The MERM is defined through (2), where � is a generic function of the distance between points, see main text. A possible choice for �,
inspired from the so-called place cells in neuroscience, is the overlap (common area) between pairs of disks of surface φ0 < 1 and having
centers r�

i in each space �.

numerical simulations in Sec. IV. Variations on the choice
of � are discussed in Sec. V. Last, Sec. VI presents some
conclusions.

II. SPECTRUM OF MERM:
FREE-PROBABILITY-INSPIRED DERIVATION

Let us consider an extensive number L of spaces, see (3),
with

M (L)
i j = 1

N

L∑
�=1

�
(∣∣r�

i − r�
j

∣∣), (4)

where the points are independently drawn from one space �

to another and where the single elements of the sum are ERM
defined from N points r�

i drawn uniformly at random in the
D-dimensional unit hypercube HD:

M (1)
i j = 1

N
�
(∣∣r�

i − r�
j

∣∣). (5)

A. Case of the extensive eigenvalue: k = 0

We compute the resolvent (Stieltjes transform) of M(L) us-
ing free-probability arguments [18,19]. Heuristically, asymp-
totic freeness between the different ERMs relies on the fact
that their eigenvectors basis are mutually incoherent. In the
N → ∞ limit, the eigenvalues of M(1) in space � are the
Fourier coefficients (1) of �, where k ∈ ZD and the associated
eigenvectors have components vi(k) � ei 2π k·r�

i /
√

N [1,3,12].
All ERMs defined in the sum in (4) have mutually incoherent
eigenbasis only if we restrict the analysis to the subspace
orthogonal to the uniform mode attached to k = 0, shared by
all the spaces. Though this argument is not rigorous, we expect
this restriction to allow us to find all the eigenvalues of M(L),
except the one corresponding to the asymptotically uniform
eigenvector.

Furthermore it is easy to determine the leading behavior
(when N is large) of the eigenvalue of M(L) corresponding to
k = 0. As the corresponding eigenvector is expected to have
all components equal to N−1/2, we find that the corresponding

eigenvalue is extensive in N and approximately equal to � =
N α �̂(0). For the matrix C the corresponding eigenvalue is
zext = �

α
= N �̂(0).

From now on we concentrate on calculating the spectrum
of M(L) corresponding to k �= 0; the term “resolvent” will
refer to the resolvent in the k �= 0 subspace.

B. Case of a single space (L = 1)

The resolvent of M(1) is defined as

s1(z) = 1

N
〈Trace (M(1) − z Id)−1〉(1), (6)

where 〈·〉(1) stands for the average over the distribution of the
matrix (5). It is easy to rewrite the resolvent when N � 1,

s1(z) = − 1

zN

⎡
⎢⎢⎢⎣N +

∞∑
�=1

∑
k �= 0

(|k| � N )

�̂(k)�
1

z�

⎤
⎥⎥⎥⎦

= −1

z
− 1

N z
γ

(
1

z

)
(7)

with

γ (u) =
∑
k �=0

u �̂(k)

1 − u �̂(k)
(8)

and where the sum runs over ZD without the k �= 0 term.

C. Case of multiple spaces (L = αN)

We now consider the case of M(L). Its resolvent sL(z) is
defined as

sL(z) = 1

N
〈Trace (M(L) − z Id)−1〉(L), (9)

where 〈·〉(L) stands for the average over the distribution of the
matrix (4), can be computed through the following steps:
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(i) Invert (functionally) the resolvent s1(z) of M(1): We
first rewrite (7) into the following implicit equation for the
inverse resolvent:

z1(s) = −1

s
− 1

N s
γ

[
1

z1(s)

]
. (10)

We then send N to infinity in the above equation, and obtain
that z1(s) = −1/s in this limit. Using this expression for the
argument of the γ function in (10) we obtain the 1

N correction
to the inverse resolvent:

z1(s) = −1

s
− γ (−s)

N s
. (11)

(ii) Compute the R transform of M(1), defined through

R1(s) ≡ z1(−s) − 1

s
. (12)

Note the unusual presence of a minus sign in the argument of
z1 in the above equation, due to the fact that our resolvent
is defined as the opposite of the standard resolvent [18].
Using (11), we obtain

R1(s) = γ (s)

N s
+ o

(
1

N

)
. (13)

(iii) Compute the R transform of M(L) through

RL(s) = L R1(s). (14)

Using (13), we obtain

RL(s) = α
γ (s)

s
+ o(1), (15)

where the corrections o(1) vanish when both N, L → ∞ at
fixed ratio α.

(iv) Write the functional inverse resolvent of M(L) through

zL(s) = RL(−s) − 1

s
= −1 + α γ (−s)

s
. (16)

(vi) Compute the resolvent sL(z) of M(L). From (16)
and (8) we find the implicit equation satisfied by sL:

z = α
∑
k �=0

�̂(k)

1 + sL �̂(k)
− 1

sL
. (17)

Note that we are eventually interested in the spectral prop-
erties of the matrix C with entries

Ci j = 1

L

L∑
�=1

�
(∣∣r�

i − r�
j

∣∣) = 1

α
M (L)

i j . (18)

Obviously, the resolvent s of C is related to the resolvent sL of
M(L) through the equation s(z) = α sL(α z). Hence we obtain
our fundamental implicit equation for the resolvent of C:

z =
∑
k �=0

α �̂(k)

α + s �̂(k)
− 1

s
. (19)

III. SPECTRUM OF MERM: REPLICA-BASED
DERIVATION

Here we rederive the implicit equation (17) for the resol-
vent of M(L) defined in (9) using the replica method coming

from statistical physics of disordered systems. We start by
rewriting the definition of the resolvent as

sL(z) = 2

N
∂z〈log det[M(L) − z Id]−

1
2 〉(L), (20)

where 〈·〉(L) it is still the average over the distribution of
the matrix (4). With this representation the determinant

det
[
M(L) − z Id

]− 1
2 can be expressed as a canonical partition

function:

ZL(s) = det[M(L) − z Id]−
1
2

=
∫ ∏

i

dφi√
2π

exp

⎡
⎣ z

2

∑
i

φ2
i − 1

2

∑
i j

φiM
(L)
i j φ j

⎤
⎦ ,

(21)

where i, j go from 1 to N . Notice that it is legit to adopt a
real-valued Gaussian representation for the inverse square root
of the determinant. Each ERM M(1) is a correlation matrix,
and have real, non-negative eigenvalues; consequently, M(L),
which is the sum of correlation matrices, also has real and
non-negative eigenvalues.

Resolvent (20) can be calculated using the replica
trick [20]:

sL(z) = 2

N
∂z〈logZL(s)〉(L) = 2

N
∂z

[
lim
n→0

1

n
log

〈
ZL(s)n

〉
(L)

]
(22)

with

〈ZL(s)n〉(L) =
∫ ∏

ia

dφa
i√

2π
exp

[
z

2

∑
a

∑
i

(
φa

i

)2

]

×
˝

exp

⎡
⎣−1

2

∑
a

∑
i j

φa
i M (L)

i j φa
j

⎤
⎦
˛

(L)

, (23)

where we have replicated the system n times, i.e., a goes from
1 to n.

In order to perform the average in (23) we rewrite (4) by
considering the �th space ERM in its eigenbasis:

M (L)
i j = 1

N

L∑
�=1

�
(∣∣r�

i − r�
j

∣∣) =
∑

�

∑
k �=0

v�
ki �̂(k) v�

k j, (24)

where � goes from 1 to L, and the sum over k dis-
cards the k = 0 extensive mode because as discussed in
the previous section. The eigenvector components, v�

ki �
1√
N

sin
(
2π k · r�

i

)
, 1√

N
cos

(
2π k · r�

i

)
, are real due to the

symmetry �̂(k) = �̂(−k). Hence we get
˝

exp

⎡
⎣−1

2

∑
a

∑
i j

φa
i M (L)

i j φa
j

⎤
⎦
˛

(L)

=
˝

exp

⎡
⎣−1

2

∑
a,�,k �=0

�̂(k)

(∑
i

v�
kiφ

a
i

)2
⎤
⎦
˛

(L)

. (25)
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We now use the Stratonovich trick to linearize (
∑

i v
�
kiφ

a
i )2:

˝
exp

⎡
⎣−1

2

∑
a,�,k �=0

�̂(k)

(∑
i

v�
kiφ

a
i

)2
⎤
⎦
˛

(L)

=
∏

�

∫ ∏
a,k �=0

dua
�,k√
2π

exp

⎡
⎣−1

2

∑
a,k �=0

(
ua

�,k

)2

⎤
⎦

×
˝

exp

⎡
⎣−i

∑
a,k �=0

√
�̂(k) ua

�k

∑
i

φa
i v

�
ki

⎤
⎦
˛

(L)

. (26)

Using the fact that 〈v�
ki〉 = 0 and 〈v�

kiv
�
k′ j〉 = 1

N δi jδkk′ it is easy
to perform the average in the above equation, with the result

˝
exp

⎡
⎣−i

∑
a,k �=0

√
�̂(k) ua

�k

∑
i

φa
i v

�
ki

⎤
⎦
˛

(L)

= exp

⎡
⎣−1

2

∑
a,b

∑
k �=0

�̂(k)qabua
�kub

�k

⎤
⎦, (27)

where we have defined the overlap qab as

qab = 1

N

∑
i

φa
i φ

b
i (28)

to be fixed through

1 =
∫ ∏

a�b

dq̂abdqab

2π i
N

exp

⎛
⎝N

∑
a�b

q̂abqab−
∑
a�b

q̂ab
∑

i

φa
i φ

b
i

⎞
⎠.

(29)

We can finally write 〈ZL(s)n〉(L) as

〈ZL(s)n〉(L) =
∫ ∏

a�b

dq̂abdqab

2π i
N

exp

(
N

{
log

∫ ∏
a

dφa

√
2π

× exp

⎡
⎣ z

2

∑
a

(φa)2 −
∑
a�b

q̂abφaφb

⎤
⎦

+
∑
a�b

q̂abqab + α log
∫ ∏

k �=0,a

dua
k√

2π

× exp

⎡
⎣−1

2

∑
k �=0,a

(
ua

k

)2

− 1

2

∑
k �=0

∑
a�b

�̂(k)qabua
kub

k

⎤
⎦
⎫⎬
⎭
⎞
⎠ . (30)

The Gaussian integrals over φa and ua
k can be easily computed.

We then make the replica symmetric (RS) ansatz on the struc-
ture of the order parameters qab and their conjugate variables
q̂ab, so that

qab = r + (q − r)δab (31)

and

q̂ab = r̂ + (q̂ − r̂)δab. (32)

The integrals over q, r, q̂, and r̂ are then estimated using the
saddle-point method valid for large N , and then taking the
small-n limit. The resulting expression for the resolvent of (4)
is

sL(z) = 2∂z

[
optq,r,q̂,r̂ lim

n→0
lim

N→∞
1

nN
log〈ZL(s)n〉(L)

]
= 2∂z[optq,r,q̂,r̂ f (q, r, q̂, r̂)], (33)

where f is the free energy density equal to

f (q, r, q̂, r̂) = q̂q − 1

2
r̂r − α

2

∑
k �=0

{
log[1 + �̂(k)(q − r)]

+ �̂(k)r

1 + �̂(k)(q − r)

}
− 1

2
log(2q̂ − r̂ − z)

− r̂

2(2q̂ − r̂ − z)
. (34)

The saddle-point equations obtained by optimizing
f (q, r, q̂, r̂) with respect to q̂, r̂, q, and r read

q = − r̂

(2q̂ − r̂ − z)2
+ 1

2q̂ − r̂ − z
, r = − r̂

(2q̂ − r̂ − z)2
,

q̂ = α

2

∑
k �=0

{
�̂(k)

1 + �̂(k)(q − r)
− r �̂(k)2

[1 + �̂(k)(q − r)]2

}
,

r̂ = −α
∑
k �=0

r �̂(k)2

[1 + �̂(k)(q − r)]2
. (35)

This system of equations admits r = r̂ = 0 as a solution,
which gives, according to (33), the following implicit equation
satisfied by sL(z):

z = α
∑
k �=0

�̂(k)

1 + sL �̂(k)
− 1

sL
. (36)

This equation is identical to (17) obtained using free probabil-
ity theory.

IV. APPLICATION AND COMPARISON WITH NUMERICS

A. Numerical computation of the spectrum

We now aim at solving the implicit equation (19) satisfied
by the resolvent of C. We show in Fig. 2(a) the representative
curve of z as a function of s around the pole at the origin
(s = 0). A set of forbidden disjoint intervals, z ∈ [z(m)

− , z(m)
+ ],

with m = 1, . . . , M is found, which cannot be reached for
real-valued s; the number M of these intervals is a decreasing
function of the ratio α. When z lies in one of these intervals,
we look for a solution to Eq. (19) with

s = sr + i si, (37)

where the imaginary part si is strictly positive. For z =
x + i ε, the density of eigenvalues at x is given by ρ(x) =
limε→0 si(z)/π by virtue of well-known properties of the
Stieljes transform. From now on we will indicate with z the
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)

z

( )
z

αs

(a) (b)

FIG. 2. (a) z vs. s, see (19), close to the origin (s = 0), for different values of α. (b) Support of the spectrum for different values of α: black
segments show the interval of eigenvalues z with nonzero density ρ(z). Results obtained by taking for � the overlap (common length) between
segments of length φ0 = .2, centered in points r�

i randomly drawn in the unit interval H1 (D = 1), more precisely �(|r�
i − r�

j |) = φ0 − |r�
i − r�

j |.

eigenvalue and with ρ(z) the correspondent density, bearing
in mind the ε → 0 limit.

The implicit equations fulfilled by sr and si for z ∈
[z(m)

− , z(m)
+ ], with m = 1, . . . , M read

z =
∑
k �=0

α2 �̂(k)

[α + sr �̂(k)]2 + [si �̂(k)]2
, (38)

1

s2
r + s2

i

=
∑
k �=0

α �̂(k)2

[α + sr �̂(k)]2 + [si �̂(k)]2
, (39)

and can be solved numerically. Figure 3 shows the density
of eigenvalues for various values of α. We observe the pres-
ence of the disconnected intervals [z(m)

− ; z(m)
+ ] corresponding

to nonzero density ρ(z), referred to as “connected compo-
nents” below. These connected components originate from the
discrete spectrum of ERM (with eigenvalues labeled by k)
and progressively merge as α increases [Fig. 2(b)]. We now
discuss the mechanism leading to merging in the large |k|,
small-α regime.

B. Merging of density “connected components”: Behavior
of the density at small α

For small α, we look for a solution of Eq. (19) near the
poles, so that to consider only a value k �= 0 in the sum over
the modes:

z(k) = α �̂(k)

α + s(k) �̂(k)
− 1

s(k)
. (40)

We find then s(k) such that dz(k)
ds(k) = 0, i.e., where the resolvent

has singularities (eigenvalues), obtaining:

s±(k) = − α

�̂(k)
(1 ± √

α), (41)

this implies that the spectrum has the edges located at:

z±(k) = �̂(k)

α
(1 ± 2

√
α). (42)

This means that when α become sufficiently small the spec-
trum develop a connected component in correspondence of
every k �= 0 centered in zk = 1

2 [z−(k) + z+(k)] = �̂(k)
α

and

of half-width 1
2 [z+(k) − z−(k)] = 2�̂(k)√

α
. In order now to un-

derstand how the density of eigenvalues behaves inside these
connected components we look to a solution of equation (40)
of the form

s(k) = sr (k) + i si(k), (43)

so that to finally obtain the parametric equations for the
density ρ(z) of eigenvalues equal to z:

ρ(x; k) = α
3
2

π�̂(k)

√
1 − x2, z(x; k) = �̂(k)

α
(1 + 2x

√
α),

(44)

where x ∈ [−1; 1]. This solution makes sense only for the
modes k and ratios α such that the local semicircle distribu-
tions attached to two contiguous eigenvalues do not overlap.
More precisely, the ratio α should be smaller than

αmerging(k) � [�̂(k) − �̂(kc)]2

4[�̂(k) + �̂(kc)]2
, (45)

where kc is the momentum vector corresponding to the closest
eigenvalue to �̂(k). This formula gives the values of the ratios
at which the small connected components of ρ(z) [Figs. 2(b)
and 3] successively merge and is asymptotically correct for
large |k|.
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FIG. 3. Density of eigenvalues of C, without the extensive eigenvalue zext, for various values of α. Orange: Results from (38). Blue: Outputs
of numerical diagonalization for N = 2500. Same model as in Fig. 2.

When α is sufficiently large, all connected components
have merged into a single continuous, semicircle distribution,
as could be expected from the vanishing correlation between
the matrix elements of C, centered in z1 = 1

2 (z− + z+) =
�̂1 and of half-width 1

2 (z+ − z−) = 2
√

�̂2/α, with �̂1 =∑
k �=0 �̂(k) and �̂2 = ∑

k �=0 �̂(k)2.

C. Eigenvectors of MERM and Fourier modes associated
to the ERMs

We briefly discuss here the properties of the eigenvectors of
MERM. We consider a connected component of eigenvalues
originated from the same ERM eigenvalue (labelled by k),
see previous section. To quantify how much the MERM
eigenvectors v are related to the 2L eigenvectors (Fourier

modes) of the L ERMs, we write

vi =
L∑

�=1

[
γ�

1√
N

cos
(
2π k · r�

i

)+ δ�

1√
N

sin
(
2π k · r�

i

)]

+ Ri, (46)

where γ� and δ� are the projection coefficients onto the 2L
ERMs eigenvectors and R is the component of v orthogonal
to this subspace.

The distributions of the coefficients γ� and δ� and of the
norm of R are shown in Fig. 4 in the case L = 5 and for
increasing values of N . We observe the following:

(i) The magnitude of γ� and δ� seems to be independent
of N [Fig. 4(a)], which implies that these coefficients remain
finite as N → ∞. Conversely, the projections of v on Fourier

052133-6



SPECTRUM OF MULTISPACE EUCLIDEAN RANDOM … PHYSICAL REVIEW E 101, 052133 (2020)

FIG. 4. (a) Histogram of the coefficients γ� and δ� for different values of N . Results correspond to the k = 1 connected component of
eigenvalues in dimension D = 1 and for L = 5 spaces, averaged over 50 samples. Same model as in Fig. 2. (b) Histograms of the projections
of eigenvectors v to the k = 2 Fourier modes of the ERMs. (c) Histograms of the norm of the orthogonal component R, see (46).

modes attached to a momentum k′ �= k vanishes with increas-
ing N , see Fig. 4(b). Hence, v retains some coherence with
the 2L eigenvectors of the ERMs attached to the connected
component even in the infinite size limit (provided L remains
finite).

(ii) The norm of R seems to get peaked as N grows around
a nonzero value. Therefore, v has a substantial component
outside the 2L-dimensional subspaces spanned by the ERM
eigenmodes.

Notice that the magnitudes of the γ and δ coefficients and
of the norm of R are related to each other through 〈γ 2〉 =
〈δ2〉 = (1 − 〈R2〉)/L to ensure the normalization of v. The
results above were derived for finite L and large N ; in the
double scaling limit where both L, N are large at fixed ratio
α, we find that the coefficients γ , δ of the projections on the
Fourier modes attached to the connected component also scale
as N−1/2, in accordance with the number of those modes.

V. VARIANTS OF MODEL

The function � we have considered so far corresponds to
the simple model defined in Fig. 1. In a unit cube HD in D
dimensions, a set of N positions r�

i (centers of D-dimensional
spheres of volume φ0 < 1) are drawn uniformly and indepen-
dently at random for each “map” �.

The term �(|r�
i − r�

j |) entering in the correlation matrix (2)
is simply the overlap (common volume) between the two
spheres in the same space, see Fig. 1. We consider below
three variants of this model, of interest for computational
neuroscience, see Sec. VI.

A. Dilution

Let us first consider single-space ERM in which a fraction
ρ0 of the N positions (chosen at random among 1, . . . , N)
carry vanishingly small spheres, and the remaining points
are centers of standard spheres of volume φ0, see Fig. 5(a).
All the entries of ERM M (1)

i j = �(|ri − r j |)/N such that i
or j belongs to the first subset (with pointlike spheres) are
equal to zero. We are left with a block matrix of dimension
(1 − ρ0)N × (1 − ρ0)N , equal to the ERMs considered so far

with the model of Fig. 1. As a consequence, in the large N
limit, the eigenvalues of this block-ERM are equal to ρ0 �̂(k),
while the remaining eigenvalues are equal to zero.

The resolvent of this diluted version of ERM in the high-
density regime has the same form as (7):

s1(z) = − 1

zN

⎡
⎢⎢⎢⎣ρ0N +

∞∑
�=1

∑
k �= 0

(|k| � ρ0N )

�̂(k)�
1

z�
+ (1 − ρ0)N

⎤
⎥⎥⎥⎦

= −1

z
− 1

N z
γ

(
1

z

)
, (47)

where

γ (u) =
∑
k �=0

u ρ0�̂(k)

1 − u ρ0�̂(k)
. (48)

The computation of the functional inverse of the resolvent of
the dilute MERM can be done as in the standard case, and we
get:

z =
∑
k �=0

α ρ0�̂(k)

α + s ρ0�̂(k)
− 1

s
. (49)

We can now solve equation (49) in order to get the density of
eigenvalues. The agreement with the spectrum obtained from
numerical simulations is excellent, see Fig. 5(d).

B. Spheres of different volumes

We now discuss the case of a multinomial distribution
of sphere volumes. We consider first that, in each space,
a fraction ρ1 of the N spheres have volume φ1, while the
remaining fraction ρ2 = 1 − ρ1 have volume φ2, see Fig. 5(b).
For every space we build a matrix composed of four blocks:

M(1) = 1

N

(
�11 �12

�21 �22

)
, (50)

where the block �ab is a ρaN × ρbN ERM depending on the
overlaps between spheres of volumes φa and φb, and with
a, b taking values 1 or 2. We look for eigenvectors of M(1)
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FIG. 5. Top panels: Sketches of the model variants, respectively (a) dilution, (b) spheres of different sizes and (c) multiple spheres. Bottom
panels: (d) Density of eigenvalues for the MERM for φ0 = 0.2 with different dilution fractions ρ0. (e) Density of eigenvalues of MERM
with different fractions ρφ0=0.2 of spheres with volume φ0 = 0.2 and ρφ0=0.4 of spheres with volume φ0 = 0.4 in each space. (f) Density of
eigenvalues of MERM for φ0 = 0.2 with c = 2 spheres for each index i in each map. Parameters: N = 2500, D = 1, α = 1. In all cases we do
not show the extensive eigenvalue.

of components vi(k) ∝ ei 2π k·ri multiplied by αa for the sites
i in the fraction ρa, with a = 1, 2. We obtain the following
eigensystem :{

ρ1 �̂11(k) α1 + ρ2 �̂12(k) α2 = λ(k) α1

ρ1 �̂21(k) α1 + ρ2 �̂22(k) α2 = λ(k) α2
. (51)

In the system above �̂ab(k) = γ̂a(k)γ̂b(k) with a, b taking
value 1 or 2 and

γ̂a(k) =
∫
HD

dr γa(r) e−i2πk·r (52)

with γa(r) being the indicator function of the place field
of volume φa. We find αa ∝ γ̂a(k) and λ(k) = ρ1[γ̂1(k)]2 +
ρ2[γ̂2(k)]2.

This result immediately extends to more than two sphere
types. If we have K finite (as N → ∞) types of spheres, with
associated volumes φa and fractions ρa, with a = 1, . . . , K ,
then the eigenvalue of ERM attached to the momemtum k is
given by

λ(k) =
K∑

a=1

ρa [γ̂ (k)]2. (53)

It is straightforward to write the resulting self-consistent equa-
tion for the MERM resolvent by simply changing �̂(k) →

∑K
a=1 ρa [γ̂aa(k)]2 in (19). In Fig. 5(e) we show the per-

fect agreement of this theoretical result with numerical
simulations.

C. Multiple spheres per site in each space

We extend the above setting to the case of multiple spheres
per site in each space. More precisely, we assume that for
each site i = 1, . . . , N , there are c centers r�

i,m of spheres, with
m = 1, . . . , c in each space �, see Fig. 5(c); we assume that
c remains finite as N, L are sent to infinity. The MERM is
defined as follows

Ci j = 1

L

L∑
�=1

c∑
m,m′=1

�
(∣∣r�

i,m − r�
j,m′
∣∣). (54)

To better understand what happens in this case we consider
the limit case of a single map:

M (1)
i j = 1

N

c∑
m,m′=1

�(|ri,m − r j,m′ |). (55)

In the high-density regime the eigenvectors of this ERM have
components vi(k) ∝ ∑

m ei 2π k·ri,m with eigenvalues equal to
c �̂(k) (for k �= 0). The only change to the functional inverse
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of the MERM resolvent is �̂(k) → c �̂(k), so that we obtain:

z =
∑
k �=0

α c �̂(k)

α + s c �̂(k)
− 1

s
. (56)

We have solved Eq. (56) in order to get the density of
eigenvalues; results are in excellent agreement with numerics,
see Fig. 5(f).

VI. CONCLUSION

In this work we have introduced a novel statistical ensem-
ble for ERM, where the element i, j of the matrix depend on
the distances between representative points of i and j in more
than one space. Using a combination of heuristic assumptions
and analytical and numerical calculation, we have shown
that the high-density limit is nontrivial when the number L
of spaces and the size N of the matrix are sent to infinity,
with a fixed ratio α = L/N . We have analytically studied
the density of eigenvalues of this MERM ensemble, based
on free-probability identities and on the replica method. Our
results are in very good agreement with numerical simulations
for all the cases we have considered. We stress that our results
are, at this stage, not rigorous, and we hope that mathematical
studies will focus on MERM properties in future.

Our motivation to introduce and study MERM came from
computational neuroscience [14], in particular the modeling
of spatial representations in the mammalian hippocampus.
The activity of place cells strongly depends on the position of
the animal in the environment, defining spatial place fields in
which they are active. Experiments on rodents and bats show
that place fields are approximately disks in two-dimensional
environments and spheres in three dimensions. Our basic
model, shown in Fig. 1, assumes that all place fields cover
the same area or volume. However, in the CA3 region of the
hippocampus in particular, neurons may have place fields in
some environment and none in other environments, which

corresponds to the dilute model introduced in Sec. V. In
addition, we have introduced other variants, in which the
radius of place fields varies or a place field is made of
more than one connected spatial component, as seen in large
environments [21]. While the variants of the model considered
here lead to different densities of eigenvalues z, the behaviours
of these densities for z → 0 and α → 0 seem qualitatively
robust, which suggests that the storage capacity of recurrent
neural networks is a robust property of the space-to-neural
activity encoding [14].

In addition to the neuroscience motivation reported above,
we hope that MERM will find applications and be of interest
in other fields, i.e., in applied mathematics or in information
theory. In particular, our results could be used for functions �

with a dependence on the pairwise distances different from
the ones considered in this article. From a random matrix
point of view, it would also be natural to consider models for
MERM, where the statistical features of the L ERM’s are non-
independent from space to space. In the context of place cells
and fields, it is known that neurons have some individuality,
that is, retain some properties in the different environments.
In particular it was reported experimentally [21,22] that each
place cell has its own propensity to have one place field per
square meter: many neurons have very low propensity values,
i.e., have no place field at all in many maps as in Fig. 5(a), and
few neurons that have very high propensity and therefore tend
to code almost all maps even with more than one place field
connected component per map [Fig. 5(c)]. It would be very
interesting to study the consequences of nonindependence
between the elementary ERMs composing the MERM on the
density of eigenvalues and the structure of the eigenvectors.
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