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Abstract Much of our understanding of ecological and evolutionary mechanisms derives
from analysis of low-dimensional models: with few interacting species, or few axes defining
“fitness”. It is not always clear to what extent the intuition derived from low-dimensional
models applies to the complex, high-dimensional reality. For instance, most naturally occur-
ring microbial communities are strikingly diverse, harboring a large number of coexisting
species, each of which contributes to shaping the environment of others. Understanding
the eco-evolutionary interplay in these systems is an important challenge, and an exciting
new domain for statistical physics. Recent work identified a promising new platform for
investigating highly diverse ecosystems, based on the classic resource competition model of
MacArthur. Here, we describe how the same analytical framework can be used to study evo-
lutionary questions. Our analysis illustrates how, at high dimension, the intuition promoted
by a one-dimensional (scalar) notion of fitness can become misleading. Specifically, while
the low-dimensional picture emphasizes organism cost or efficiency, we exhibit a regime
where cost becomes irrelevant for survival, and link this observation to generic properties of
high-dimensional geometry.
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1 Introduction

The image of evolution proceeding via “improvement” is such a convenient metaphor that,
although clearly known to be wrong, it still influences our intuition. Mutations make organ-
isms not better, but different; whether such differences are beneficial depends on the context,
which itself is subject to change. The issue becomes especially relevant in an ecological
context, where the environment of any one organism is defined, among other factors, by the
presence and activity of other species, and can therefore change as fast or faster than the
timescale of evolutionary processes.

The lack of timescale separation is particularly pronounced in microbial ecology, and the
subject of eco-evolutionary interplay is increasingly in the spotlight today in the context of
microbiome research [1–5]. The issue is exacerbated by the observation that most naturally
occurring microbial communities are highly diverse, harboring a large number of coexisting
species [6,7], each of which contributes to shaping the environment of others [8–12]. The
environment is therefore an intrinsically high-dimensional object, and it is well established
that large dimensionality of a problem can lead to qualitatively novel effects [13].

Developing a theoretical understanding of ecology and evolution in the high-diversity
regime is therefore an important challenge. So far, however, the barrier of dimensionality
proved difficult to cross. Although the improvement metaphor is very clearly understood to
be misleading ([14–16], and many others), most quantitative results in evolutionary theory
have been derived in a simplistic one-dimensional picture (the “fitness landscape” of classic
population genetics), which inevitably reinforces certain expectations. It is not always clear
to what extent the intuition derived from low-dimensional models applies to the complex,
high-dimensional reality [8,9,11,12,17–24].

Recent work identified a promising platform for investigating highly diverse ecosystems
using statistical physics of disordered systems [25], based on the classic resource competition
model of MacArthur [26–28]. Resource depletion is the simplest form of feedback of organ-
isms onto their environment, and the high-diversity limit of this model was recently shown
to be analytically tractable [9] (see also [11,12,29]). As the number of resources becomes
large, the community was shown to acquire increasing control over the immediate environ-
ment experienced by its members [9,11,12]. Clearly, this should have important implications
for how evolutionwould act in such a community [19,23, and references therein]. Uncovering
such implications in this model is the focus of this work. Using the high-diversity MacArthur
model as our platform, we identify some important deviations from the low-dimensional
intuition. We then argue that our conclusions are in fact more general that this particular
model, namely that the breakdown of the improvement metaphor at high diversity stems
directly from the properties of high-dimensional geometry.

We begin by briefly defining the model. We largely follow the notations of [11], but will
point out how the model used there for a purely ecological discussion can be applied to study
evolutionary questions.

2 The Model

Consider a multi-species community in a well-mixed habitat where a single limiting element
X exists in N forms (“resources” i ∈ {1 . . . N }). For example, this could be carbon-limited
growth of bacteria in a medium supplied with N sugars. Let nμ denote the population size of
species μ ∈ {1 . . . S}. Briefly, MacArthur’s model of resource competition can be described
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as a feedback loop: The availability hi of each resource i determines the dynamics of nμ.
The changes in species abundance translate into changes in the total demand for resources,
denoted Ti . This total demand, in turn, depletes resource availability hi .

Assuming for simplicity that resource dynamics are faster than changes in species abun-
dance, we can assume that resource availability hi at any moment quickly equilibrates to
reflect the instantaneous demand Ti at that same moment: hi = hi (Ti ). For concreteness,
we will posit that all organisms are sharing a fixed total influx of resource Ri , so that
hi (Ti ) = Ri/Ti , with resource supply Ri = 1 + δRi√

N
; this choice of scaling is discussed

in Appendix 1 (see also Ref. [9]). In this small-fluctuation regime, the specific functional
form of the relation hi (Ti ) is not important as long as its linearization around equilibrium has
a decreasing slope [11], which is a natural condition for stability (higher demand should result
in lower supply). It is worth noting that even the large-fluctuation regime of the MacArthur
model can be rendered analytically tractable [12]; however, for our purposes the abovemodel
is sufficient. The variance of δRi over i is a control parameter describing the heterogeneity
of resource supply, and is denoted δR2.

For a given set of S species, the ecological dynamics we consider reproduce those of Ref.
[11]:

dnμ

dt
= nμΔμ(hi ), where Δμ(hi ) ≡

∑

i

σμi hi − χμ “resource surplus”

hi = Ri

Ti (nμ)
, where Ti (nμ) ≡

∑

μ

σμi nμ “total demand”
(1)

In these equations, a species μ is characterized by its metabolic strategy {σμi } and its
requirement χμ for the limiting element X . The population growth rate of species μ is
determined by its resource surplus Δμ. In the expression for Δμ above, the first term is the
total harvest ofX from all sources, and the second is the requirement an individual must meet
to survive; Ri is the total influx of resource i . At equilibrium, each species is either absent
(nμ = 0), or its resource intake and expenditure are balanced (Δμ = 0). A stable (non-
invadeable) equilibrium is characterized by an extra condition that all the absent species,
if introduced, would be driven back to extinction: if nμ = 0, then Δμ < 0. The dynamics
defined above always has a stable equilibrium, uniquely defined [11,21,26] by the set of
competing species.

We have defined the ecological dynamics for a given set of species. To specify an evo-
lutionary process, we now need to describe how this set is constructed and evolves. In our
model, we posit that evolution “discovers” random new species one by one, and these are
added to the pool of competitors. Each new species has a random strategy vectorσ ∗, whichwe
take to be binary for simplicity (each entry σ ∗

i is 1 with probability p and 0 otherwise), and a
random cost χ∗ = ∑

i σ
∗
i +εx∗ with a normally distributed x∗. This cost model corresponds

to the assumption of approximate neutrality [11,21,30], and is discussed in Appendix 1. We
assume that new species are generated sufficiently slowly that the ecosystem has time to
equilibrate before a new species is introduced. The “evolutionary sequence” we consider is
the sequence of non-invadeable ecological equilibria resulting from the competition of all
species discovered up to that moment. In other words, we consider the increasing number of
species in the pool S as a proxy for evolutionary time. It is convenient to normalize S by N ,
defining a parameter α = S/N . We will say that a species is “alive (dead) at time α” if it is
present (absent) at the respective equilibrium.

To summarize, the control parameters of the model include N (the number of resources),
α (the size of the species pool, serving as a proxy for evolutionary time), ε (the width of the
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Fig. 1 a The geometric interpretation of MacArthur’s model. In the space of resource availability, a given
set of species defines a convex region Ω where no species can survive. The dynamical equilibrium is always
located at the boundary of Ω , and successful invaders slice off regions of Ω . In this cartoon, N = 2 and
a community of two specialists (1, 0) and (0, 1) is invaded first by one generalist (0.7, 0.3), and then by
another (0.4, 0.6), with progressively lower costs; arrows connect successive equilibria. (For the purposes of
illustration, here we allow arbitrary metabolic strategies, without enforcing the constraint σμi ∈ {0, 1}, as in
the text.) This geometric intuition suggests that evolution proceeds towards stronger depletion of resources,
and consists of organisms with progressively smaller costs, which can then be interpreted as higher efficiency.
One might expect such evolutionary process to be qualitatively similar to the simple “best N species” model,
shown in panel (b). The “best N species” model ignores any metabolic considerations; instead, each newly
generated species is simply assigned a “fitness” value, and the community consists of the N species with
highest fitness. The panel shows species presence (in black; each species is a row) for 50 invasion events
in one random realization of such a model with N = 10. Each species is present for a period of time, until

outcompeted by a more efficient species. c The actual simulations of MacArthur model (N = 15, δR2 = 1.5)
show a very different pattern of behavior. Most strikingly, the outcompeted species routinely return to again
be present at equilibrium

cost distribution), p (the sparsity of the metabolic strategy vectors), and the heterogeneity of
resource supply δR2. All simulations below use ε = 10−4, p = 0.5, and are performed as
described in Ref. [11]. Parameters N and δR2 are specified in the respective legends, and α

is taken as the variable against which all results are plotted. A Matlab script reproducing all
figures is provided as Supplementary file 1.

It is worth stressing the simplifying assumptions made above. First, we take each new
species to be fully random, rather than a small modification of an existing one. Second,
the particular evolutionary process we consider proceeds through a sequence of equilibria.
These assumptions make the model analytically tractable while preserving the main feature
of interest, namely the eco-evolutionary feedback in a high-dimensional environment, and
so provide a reasonable starting point for investigation. Finally, our cost model assumes
approximate neutrality, where the effects we seek are likely strongest. Ideally, such effective
neutrality should itself be exhibited as an outcome of an evolutionary process; here, we treat
it as an empirically-motivated assumption (see Appendix 1).

Our model has a convenient geometric interpretation, first introduced by Tilman [27]
and illustrated in Fig. 1a. Following Ref. [11], we can think of the metabolic strategies
{σμi } as S = αN vectors in the N -dimensional space of resource availability. Below each
hyperplane h · σμ = χμ lies the half-space where available resources are insufficient to
support species μ. The intersection of such regions over all competing strategies {σμ, χμ}
defines the “unsustainable region”, which we denote Ω:

Ω =
αN⋂

μ=1

{h | h · σμ < χμ} (2)
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When resource availability h is inside Ω , no species can harvest enough resources to sustain
its population. Outside Ω , at least one species can increase its abundance. Therefore, the
equilibrium state can only be located at the boundary of Ω , and can in fact be found by
solving an optimization problem over this region [11].

This geometric picture proved highly influential, and was used to study competition for
N = 1 and N = 2 resources in great detail [27, and others]. It also provides a clear
intuition for the evolutionary sequence in our model: as new species are generated, some
will have a cost low enough to allow them to invade the community, slicing another piece
off the unsustainable region (Fig. 1a). As a result, resource depletion becomes progressively
stronger, and community composition shifts towards progressively more efficient species,
where efficiency is measured as the species’ cost per pathway. In fact, the dynamics (1)
has a Lyapunov function, and each successive equilibrium corresponds to a lower value of∑

i Ri log hi , precluding any rock-paper-scissors scenarios, and reinforcing the expectation
of a “linear” progression [21].

This intuitive picture emphasizes the role played by the individual species’ efficiency,
and suggests that the evolutionary sequence should be qualitatively similar to the “best N
species” model illustrated in Fig. 1b. This is a much simpler model where every species is
described by a single value one calls “fitness”, and at each point in time, the community
consists of the best N species “discovered” to date. In other words, this model is a natural
generalization of “survival of the fittest” to the case where N resources allow coexistence of
up to N species. In the “best N” model, each species enjoys a period of existence, until it is
outcompeted by someone better.

However, the expectations set up by a low-dimensional picture often prove incorrect at
high dimension. Fig. 1c shows an evolutionary sequence for one simulation of theMacArthur
model at N = 15. The striking qualitative difference between Fig. 1b, c is that the supposedly
“outcompeted” species keep returning to again become part of the equilibrium state.

In our model, species are never removed from the pool of competitors. Although a par-
ticular species may be driven to zero abundance at a certain equilibrium state, it never goes
completely extinct: biologically speaking, we assume that each previously discovered species
is preserved in some other spatial patch, or in a dormant form (a spore). Thus, the model is
set up to allow a previously outcompeted species to keep trying its luck again at subsequent
times. Nevertheless, such “returns from the dead” appear surprising.

A clear qualitative phenomenon that contradicts the naive intuition is a good window into
how evolution might be acting differently at high diversity. We therefore start by character-
izing this effect within our model: for a species that was alive at time α1 but dead at α2, what
is the probability of its return at time α3? (Once again, in our model, the number of species
in the competitor pool serves as a proxy for evolutionary time.)

3 The Replica-Theoretic Calculation

MacArthur model is special in that it is a global optimization problem [26], and this makes it
analytically tractable usingmethods of statistical physics of disordered systems [9,11,12,25].
At equilibrium, we expect hi ≈ 1 (see Appendix 1), and we therefore introduce:

gi ≡ 1 − hi .

The order parameters are:
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Fig. 2 The structure of the joint distribution pα1...αk (Δ
(1) . . . Δ(k)). a For k = 1, the probability distribution

pα(Δ) is a Gaussian whose weight over the positive semi-axis is collected into a delta-peak corresponding to
the survivors [11]. b For k = 2, the 2-point distribution is a 2-dimensional Gaussian restricted to the negative
quadrant, with excess probability accumulating at the quadrant boundaries. The projection of this distribution
on any of the two axes takes the shape shown in (a), as it must. Knowing the marginals leaves one free
parameter to be determined through a replica-theoretic calculation, corresponding to the correlation of Δ(1)

andΔ(2). c For k = 3, the shape of the distribution is again a multi-dimensional Gaussian restricted to negative
Δ(1),(2),(3). Importantly, for all k ≥ 3 such a distribution is fully determined by its known 2-dimensional
projections (gray lines)

m =
∑

i

gi

q =
∑

i

g2i

Bothm and q can be explicitly computed as functions of the control parameters of the model.
The surviving species are those whose resource surplus Δ is exactly zero. For any one α,

the probability distribution pα(Δ) was also computed in Ref. [11] and is shown in Fig. 2a.
Its Gaussian part is centered at −pm with variance p(1 − p)q + ε2, and the delta-peak
corresponds to the survivors.

To understand evolutionary sequences in our model, we need to know what happens if
new species are added to the system.We know the new number of survivors, but howmany of
these were already present and stayed on, and howmany are newcomers? This information is
encoded in the joint probability pα1...αk (Δ

(1) . . . Δ(k)), computed for a typical evolutionary
sequence. In particular, the return probability of a previously outcompeted species (alive at
α1, dead at α2, alive again at α3) is encoded is the three-point joint probability pα1α2α3 .

Before tackling the 3-point problem, let us begin by computing the 2-point joint probability
pαα′(Δ,Δ′). To do so, consider two copies of a system, where the first has αN species, while
the second has those same species plus (α′ − α)N extra ones. The calculation is similar to
that of Ref. [11], except in addition to m, q and m′, q ′ characterizing each of the two copies
(and satisfying the same equations as in Ref. [11] for respectively α and α′), there is now an
additional order parameter describing the coupling:
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r =
∑

i

gi g
′
i

The replica calculation is relatively straightforward and is detailed in Appendix 1. We find
that the 2-point distribution pαα′ is a double Gaussian restricted to the negative quadrant
(Fig. 2b), with excess probability accumulating at the quadrant boundaries (corresponding
to species alive only at α or only at α′) and at the origin (corresponding to species that are
alive at both α and α′). Just as the variance of pα(Δ) was given by p(1− p)q + ε2, we find
that the correlation matrix of the Gaussian in pαα′(Δ,Δ′) is given by:

C = p(1 − p)

(
q r
r q ′

)
+ ε2

(
1 1
1 1

)

The truncated double-Gaussian formof pαα′(Δ,Δ′)was expected, since the twomarginals
of this distribution pα(Δ) and pα′(Δ′)must take the form shown in Fig. 2a. The key parameter
to determine from the replica calculation is r . For a homogeneous resource supply (δR2 = 0,
i.e. all Ri are identical), the equation we find takes an especially simple form:

r = α

p(1 − p)

∫ ∞

0
D(ω, ω′) ωω′ (3)

Here ω, ω′ are auxiliary noise variables, and D(ω, ω′) is a 2-dimensional Gaussian measure
with the correlation matrix C above:

D(ω, ω′) = dω dω′

2π
√
detC

exp

{
−1

2

(
ω+pm
ω′+pm′

)t [C(r)]−1
(

ω+pm
ω′+pm′

)}

We use the notation C(r) to stress that the unknown r enters on both sides of the Eq. (3). For
a given set of parameters, this equation can be solved numerically. The general equation for
a heterogeneous resource supply (δR2 
= 0) and its derivation is provided in Appendix 1.

We now return to the problem of computing the complete multi-point joint distribution.
Thanks to the mean-field nature of our model, and similarly to the 2-dimensional case,
the 3-point joint distribution pα1α2α3 can only take the form of a 3-dimensional Gaussian
restricted to the negative octant Δ(1),(2),(3) < 0 (Fig. 2c). Now, however, this distribution is
entirely determined by its projections, with no free parameters. Our 2-point calculation above
is therefore sufficient to write the expression for the 3-point (or indeed any n-point joint
distribution). Specifically, inside the octant the probability distribution is a 3-dimensional
Gaussian with the correlation matrix:

C (3) = p(1 − p)

⎛

⎝
q1 r12 r13
r12 q2 r23
r13 r23 q3

⎞

⎠ + ε2

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ ,

and excess probability accumulates at the octant boundary. In this expression, the quantities
q1,2,3 are known from the single-copy calculation [11], and ri j are found as solutions to the
appropriate version of the two-copy Eq. (3).

Knowing the joint distribution pα1α2α3(Δ1,Δ2,Δ3), the “return probability” is easily
computed as the conditional probability:

preturn(α3 | alive at α1, dead at α2) = pα1α2α3(Δ1 = 0,Δ2 < 0,Δ3 = 0)

pα1α2(Δ1 = 0,Δ2 < 0)
.

For α1 < α2 < α3, this is the probability that a previously outcompeted species (alive at α1,
dead at α2) will again be present at equilibrium at a later time α3.
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4 The Return Probability as a Window Into Evolutionary Process

Figure 3a shows preturn(α3 | α1, α2) as a function of α3 − α2 for several values of α1, with
α2 fixed at 10 for all curves. For comparison, the panel also shows the 2-point conditional
probability p(alive at α3 | dead at α2); this corresponds to not specifying any information at
α1, and so this curve is labeled “α1 = �”. The analytical results are in good agreement with
simulations (Fig. 3a). The observed deviations are a small-N effect of simulations. Although
we used a value of N as large as computationally feasible (N = 200), estimating many-point
correlation functions from simulations is especially demanding in sample size; but note the
excellent match with the α1 = � curve, which is a two-point function.

This agreement allows us to use our analytical results to investigate the large-argument
behavior of preturn(α3 | α1, α2). Information about a species’ past modifies the expected
probability of its survival: knowing it was present or absent a particular time in the past
makes our chances to observe it at a future time, respectively, higher or lower. Any consistent
“selection pressure” (when species favored in the past continue to be favored in the future)
should create persistent memory effects. Thus, the long-term behavior of preturn provides
important insight into how evolution proceeds in this model.

When α3 is large, preturn goes to zero and it is convenient to multiply this probability
by α3. Indeed, the number of survivors at equilibrium is of order N (in fact, asymptotes to
exactly N ; see [11]), while the number of species in the pool is α3N . The probability of a
randomly drawn species to be present at equilibrium is therefore 1/α3. At large α3, this is a
natural baseline against which the return probability should be evaluated. The ratio of preturn
to 1/α3 quantifies the “effect of knowing a species’ past”, and is shown in Fig. 3b.

Fig. 3 a The return probability preturn(α3 | alive at α1, dead at α2) as a function of α3 − α2, for α2 = 10

and several values of α1. Theoretical curves (solid lines) agree with simulations (N = 200; δR2 = 1; error
bars in both a, c show standard error of the mean over 100 replicates). Also shown is the 2-point conditional
probability of a species absent at α2 to appear at α3 (dotted line labeled α1 = �). b Same as a, normalized
by 1/α3 (the asymptotic probability of a randomly drawn species to be present at α3) to show long-term
behavior. Knowing that a species was absent at α2 makes it less likely to be present at α3 than a randomly
drawn species (dotted line, always below 1). Additional information of being alive at α1 enhances the chances
[colored lines as in (a)]. For a large α3 (transect) the enhancement remains substantial only if α1 exceeds a
critical value αC ≈ 3.7 (inset; black line is the theoretical prediction). This critical value corresponds to the
V/S phase transition in the model [11], and signals a change in how selection pressure acts in the two phases.
c The correlation of species cost x with resource surplus Δ (and therefore survival) as a function of α. Shown

are three curves for different heterogeneity of resource supply δR2, a parameter that shifts the location of the
phase transition (the critical alpha αC = 2.0, 2.7 and 3.7, respectively). For α < αC , cost and resource surplus
are uncorrelated. In this phase cost is irrelevant for survival, in stark contrast to the intuition of Fig. 1
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Consider the dependence of these curves on parameter α1. Qualitatively, the behavior
is easy to understand. For fixed {α2, α3}, the return probability increases with α1, and the
α1 = � curve is the lowest of all (Fig. 3a, b). This is the expected behavior: knowing that a
species was previously alive increases its chances of being found alive again, and the effect
is stronger if the information is recent.

Quantitatively, the behavior is much more interesting. Keeping α2 = 10, let us fix α3 to
some large value, for instance α3 = 103, and consider preturn as a function of α1 (the transect
in Fig. 3b). We find that the return probability exhibits a marked transition in behavior:
knowing that a species was present at α1 can greatly increase its likelihood of survival at
α3 — but only if α1 exceeds a critical value α1 > αC (Fig. 3b, inset). This behavior stems
from the V/S phase transition described previously in this model, and indicates that the
“selection pressure” is very different in the two phases. Indeed, one can show that for α

below αC , a species’ cost has no bearing whatsoever on its survival, in stark contrast with
the intuition of Fig. 1a. This surprising behavior is demonstrated in Fig. 3c which shows
the correlation coefficient between a species’ cost xμ and its resource surplus at equilibrium
Δμ. The theoretical curves (derived in Appendix C) predict zero correlation for α < αC ,
again in excellent agreement with simulations. Knowing that a species was alive at α1 < αC

tells us nothing about its cost, and so does not modify its likelihood of survival at a large α3,
explaining the behavior observed in Fig. 3b (inset).

As we can see, the phase transition exhibited by our model endows it with a rich behavior.
Although highly interesting, this transition is specific to this particular model and critically
relies on the assumption of approximate neutrality, and we will return to its detailed explo-
ration elsewhere. Here, we will focus instead on the general lesson, namely the failure of
the intuition suggested by the low-dimensional picture of Fig. 1. In the final section, we will
trace the origin of this failure to a generic property of high-dimensional geometry.

5 Improvement Versus Innovation

What exactly was wrong with the intuition of Fig. 1a? The low-dimensional picture places
significant emphasis on cost. However, a simple argument illustrates why this emphasis is
misleading at high dimension.

Consider a pool of αN species, whose strategy vectors σ are drawn uniformly from
the (N − 1)-dimensional sphere, all with cost exactly 1. Together, they define a certain
unsustainable region Ω . For any other species, let us call it viable if there exists a point in Ω

that can support its growth. Viability of a species means that there exist circumstances (an
appropriately chosen vector of resource supply) under which it would be able to invade. For
a given, externally fixed supply R, viability is required, but not sufficient for invasion.

Drawing a random new strategy σ ∗ uniformly from the same sphere, what cost χ should
we give it to ensure, say, a 90% probability that this species is viable? Specifically, how high
can we go above χ = 1?

For N = 2, the unsustainable region lies almost entirely within the unit circle (Fig. 4a),
and the maximum tolerated δχ ≡ χ − 1 is exceedingly small (Fig. 4b; numerical results).
However, as dimensionality increases, the relative volume of the shaded regions in Fig. 4a
explodes; this property is often used to illustrate the counter-intuitive nature of high-
dimensional geometry, e.g. by comparing the volume of a cube and its inscribed sphere.
As a result, the cost of the strategy becomes essentially irrelevant for viability. As an exam-
ple, let us take α = 10. At N = 2 ensuring 90% viability requires a cost of at most 1.00008,
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Fig. 4 a The unsustainable region Ω defined by species with strategies drawn from a unit sphere, all of cost
1. For N = 2, most of the regionΩ lies within the unit circle, and any successful invader must have a cost very
close to 1. However, as dimensionality increases, the relative volume of the shaded “corners” lying outside
of the circle grows exponentially, and higher cost differences can be tolerated. b The tolerated cost difference
δχ ≡ χ − 1 for a random new strategy to be “viable” (see text), i.e. to intersect the unsustainable region Ω

defined by αN random strategies of cost 1 as in (a). For each N and α, 1000 trials were simulated (sampling
100 random invaders, in 10 independent replicates); shown is the δχ sufficient to ensure viability in 90% of
the cases. Error bars not shown to reduce clutter. At N = 2 the tolerated δχ is very small, but quickly becomes
of order 1 as the dimension increases. c The two paths to invade a community

so cost is extremely important: any successful invader is required to be as efficient as the
existing community members. But at N = 20, the threshold becomes 1.25, and so any new
species with a cost close to 1 is viable. In this regime, the cost has virtually no role in deter-
mining invasion success: whether a species can invade the community depends exclusively
on its metabolic strategy.

To put this in intuitive terms, there are twopaths to invade a given community (Fig. 4c).One
is to dowhat someone is already doing, but better. This corresponds to slicing off a region ofΩ
by a cut parallel to an existing plane, andwe call this path “improvement”. The alternative is to
slice off one of the many corners ofΩ along a new plane, introducing a strategy distinct from
any existing ones (and quite possiblymore costly): a path that statistical-mechanicsmodels of
economies call “innovation” [9,31,32]. In dimension 1 (the classic one-dimensional fitness),
the innovation path (not reducible to improvement) does not exist, but in high dimension it
can easily become the dominant mode of invasion, as we have seen in our model.1

6 Discussion

In this work, we have used an exactly solvable model with eco-evolutionary feedback [9] to
demonstrate how the intuition derived from a low-dimensional picture fails at high dimen-
sion (in our model, the dimension is the number N of resources for which organisms are
competing). To the extent that metaphors are useful, we propose that the high-dimensional
evolutionary process considered here can be better described through themetaphor of innova-
tion, rather than improvement. Borrowed from the business literature, the term “innovation”

1 More specifically, Refs. [9,31] and others use the term “innovation” for any act of increasing the pool of
available “technologies”, which in our language corresponds to the introduction of a new species. Here, we
draw the contrast between this general scenario and the particular case where the invader is highly similar to
an existing species or technology, which we call “improvement”. In the evolutionary context, the picture of
gradual incremental changes singles out improvement as a particularly much-discussed form of innovation, a
focus which, we argue, becomes misleading as dimensionality increases.
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also seems to carry the connotation of enhancement, but it is often stressed that innovation
is rarely focused on cost reduction, but rather on finding new markets (niches), and is often
costly, but necessary for survival of an enterprise [33]. Importantly, innovation is also dis-
tinct from invention: while some evolutionary “discoveries” result in a qualitative change of
lifestyle or physiology (e.g., the evolution of photosynthesis or flight), most need not have
that character. As far as metaphors go, the analogy seems appropriate.

In real life, the reasons for the improvement metaphor to be violated are plentiful, and
frequently cited. For instance, coevolution of predator and prey can proceed in circles, prey
continuously changing its strategy to avoid the predator, and the predator adapting. Other
mechanisms include non-transitivity (rock-paper-scissors scenarios; see e.g. Ref. [34] in this
issue), or non-adaptive evolutionarymechanisms such as inherent stochasticity, or hitchhiking
mutations. For all these reasons, as is often discussed, it would certainly be naive to expect
real ecological or evolutionary dynamics to ever be a simple gradient ascent. It is therefore
important to stress once again that all the phenomena described in this work were studied
in a model whose global dynamics does constitute a gradient ascent, making the initial
observation of Fig. 1 all the more surprising. Our analysis highlights that in high dimension,
the intuition promoted by a one-dimensional notion of fitness is likely misleading even if
none of the additional mechanisms are at play.

Acknowledgements We thankMichael P. Brenner, Andreas Engel, Daniel S. Fisher, Carl P. Goodrich, Alpha
Lee, David Zwicker, Harvard Center of Mathematical Sciences and Applications, IESC Cargese and the
Simons Foundation. MT was supported in part by National Science Foundation Grant DMS-1411694.

Appendix 1: Assumptions of the Model

Resource Fluctuations

The model considered in this work assumed that the external supply of resources takes the
following form:

Ri = 1 + δRi√
N

. (4)

To formally justify this choice, we note that taking fully homogeneous resources yields a
solution where the fluctuations (over i) of harvest values hi scale as 1√

N
. This is necessarily

the case when h is determined from an optimization problem of the form (5), with the
integration measure μ ∝ exp(NF(h)). To probe non-trivial behavior, an externally imposed
perturbation of hi (imposed via Ri ) must be of the same order. The purpose of this section
is to supplement this formal argument with some intuition about what this scaling ansatz
encodes.

Intuitively, the form (4) may appear restrictive, describing a close-to-homogeneous
resource supply. However, in any simulation (or any real ecosystem) N is finite, and the
relevant question is the range of values of δR2 for which our analytical results provide a
good approximation. Empirically, the results hold far beyond the range δR2 
 1 assumed by
the derivation. We illustrate this by plotting the number of species coexisting at equilibrium

for N = 100 as a function of δR =
√

δR2, for the extreme (maximally heterogeneous) case
of a step-like resource perturbation (with R1,...,50 = 1 + δR√

100
and R51,...,100 = 1 − δR√

100
)

(Fig. 5):
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Fig. 5 Number of survivors for a strongly heterogeneous resource supply. Datapoints show simulation results
for N = 100, with first and last 50 resources supplied at 1 ± δR√

N
. Insets illustrate the supply heterogeneity

at three specific values (δR = 1, 6 and 9; dotted line indicates mean supply, i.e. 1). Solid line shows theo-
retical prediction [11] computed under the “small-fluctuation” assumption. The curve provides an excellent
approximation up to δR = 6, and remains reasonably accurate even at extreme values of resource supply
heterogeneity. For δR < 1.98 the number of survivors hits N (the V/S phase transition [11])

We see that the theoretical prediction computed under the “small-fluctuation assumption”
provides an excellent approximation up to δR ≈ 6, and remains reasonably accurate even at
δR approaching the largest possible value

√
N = 10.

This “surprising” agreement can be understood as follows. The most important qualitative
implication of the “small-fluctuation” scaling adopted here is that no resource is ever depleted
to 0. For the resource depletionmodel introduced in themain text,hi (Ti ) = Ri

Ti
remains always

positive, and our results extrapolate well. For other models of resource supply, however, a
complete depletion of over-exploited resources becomes a possibility. For instance, in his
original formulation of the model, MacArthur considered resources renewing at a finite rate.
In this case the function hi (Ti ) (the dependence of resource availability on total demand)
takes a linear form hi (Ti ) = a − bTi [11]; in particular, it hits zero at a finite demand Ti . In
this regime, our small-fluctuation theory will no longer be correct, and we refer the reader to
Ref. [12] where it is studied.

The large-fluctuation regime is no longer universal, and different resource supply models
are no longer equivalent. For our purposes, however, this additional complication appears
unnecessary. Indeed, all the effects considered here stem from the feedback of organisms
onto their environment. Since the qualitative properties of evolutionary sequences described
here are already observed for weak feedback, it is sufficient to consider this simpler scenario.
Stronger feedback, capable of fully depleting a certain resource, can be expected to only
increase the relevance of our findings.

Cost Model: Approximate Neutrality

In our model, a species with a strategy vector σ ∗
i is assigned a cost:

χ∗ =
∑

i

σ ∗
i + εx∗
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with a normally distributed x∗ and a small ε. This costmodel corresponds to the assumption of
approximate neutrality. Indeed, setting ε = 0 (at finite N ) yields a fully degenerate scenario
where setting hi ≡ 1 satisfies the resource balance of any species. In other words, for ε = 0
any combination of species where the total supply matches the total demand (Ti = Ri , N
equations for S variables) constitutes a dynamical equilibrium. Any non-zero ε breaks this
degeneracy, reducing the S − N -dimensional space to a single true equilibrium.

Assuming a small ε places us close to the neutral regime. This assumption stems, in part,
from the empirical observation of large ecological diversity, which has longmotivated neutral
or neutral-likemodels of ecology [30]. An intuitive argument suggests that evolutionmight be
driving systems to “emergent neutrality”: organisms that are obviously inferior competitors
are eliminated, leaving a self-selected pool of species with approximately similar efficiency.
In the context of the model considered here, this argument is detailed in the Supplemen-
tal material to Ref. [11], Sect. S6. For a purely ecological discussion, the nearly-neutral
assumption thus appears reasonable [11,21]; see also Ref. [?] detailing other mechanisms
for marginal stability to become generic.

When the model is extended to include evolutionary mechanisms, as done here, this
empirically motivated shortcut becomes somewhat unsatisfactory. Ultimately, any model
adding evolution to a close-to-neutral ecological model should explain how it might be
driven into and stabilized in this regime. This is very far from obvious (e.g., see Ref. [35]),
and has long been an active topic of discussion in the literature under the name “paradox of
the plankton”.

Here, we explicitly choose to sidestep this question. For our purposes, we postulate a
cost model placing us close to ecological neutrality, and study evolutionary sequences in this
regime.

Note that since the solution for the degenerate regime is hi ≡ 1, for small ε we expect
hi ≈ 1. It is therefore convenient to work with the shifted variables gi ≡ 1 − hi . Note that
this definition corrects the unfortunate choice of scaling made in Ref. [11], which introduced
an extra factor of 1/N (Ref. [11], Sect. S7.1), only to later remove it with another change of
variables (Sect. S7.6, ibid). Except for this modification, the other notations have been kept
consistent with Ref. [11].

Appendix 2: Replica Calculation of the 2-Point Joint Distribution

Introduction: Recap of the Single-Copy Calculation

The calculation we are about to undertake is a more complex (two-copy) version of the
calculation performed in [11], continuing from Sect. S7.1 of the supplemental material to
that paper. However, to make the narrative self-sufficient, we begin by briefly recapitulating
the logic of that computation. We start from the observation that in the MacArthur model,
the ecosystem dynamics possess a Lyapunov function F({nμ}); for the particular resource
supplymodel considered here, F takes the form F = ∑

i Ri log hi ({nμ})−∑
μ χμnμ, where

the second sum runs over species in the competitor pool. This function is convex and bounded
from above [11]. In other words, locating the equilibrium is an S-dimensional optimization
problem, where S = αN is the number of species.

With a little algebra (see Ref. [11] for details), the problem of optimizing a complicated
function F({nμ})over the species abundance space can be converted into optimizing a simpler
function F̃({hi }) over a complicated region of the resource availability space. The region in
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question is exactly the unsustainable region Ω introduced in the main text (Eq. (2):

Ω =
αN⋂

μ=1

{h | h · σμ ≤ χμ}

In order to locate the maximum of F̃ , we investigate the large-β limit of the partition
function Z(β):

max F̃({hi }) = lim
β→∞

(
log Z

β

)
, where Z(β) =

∫

Ω

eβ F̃({hi }) ∏

i

dhi (5)

The problem of locating the equilibrium of an ecosystem is thus converted into the problem
of computing a partition function.

Since we expect gi ≡ 1 − hi to be small, F̃({hi }) can be expanded to second order in
gi . In the case considered here, we have F̃ = −∑

i Ri
[
gi + 1

2 g
2
i

]
(for derivation, see Ref.

[11], Sect. S5.3; there are no cross terms gi g j , because the availability of each resource is
set exclusively by the demand for that same resource). In the interest of conciseness, for now
we will simply write F̃ = ∑

i F̃i (gi ).
Recall now the definition of resource surplus of a species, and the cost model χμ =∑
i σμi + εxμ:

Δμ ≡ h · σμ − χμ ≡ −
∑

i

giσμi − εxμ

Rather thanworkingwith a funny-shaped integration regionΩ , we introduce resource surplus
as an extra integration variable, constrained to be negative: Δμ ≤ 0.

Z =
∫

Ω

∏

i

dhi e
β F̃

=
∫ ∞

0

∏

i

dhi e
β F̃

αN∏

μ=1

θ
(
χμ − h · σμ

)

=
∫ 1

−∞

∏

i

dgi e
β F̃({gi })

αN∏

μ=1

∫
dΔμ θ(−Δμ) δ

(
Δμ + εxμ +

∑

i

giσμi

)

=
∫ 1

−∞

∏

i

dgi e
β F̃({gi })

αN∏

μ=1

∫
dΔμ dΔ̂μ

2π
θ(−Δμ)

× exp

[
i
∑

μ

Δ̂μ

(
Δμ + εxμ +

∑

i

giσμi

)]

This partition function was computed in Ref. [11]. Our aim now is to generalize that calcu-
lation to allow studying the effect of changing α.

Generalizing the Single-Copy Calculation

Consider a system of α1N species. We would like to understand what will happen when the
number of species is increased to α2N with α2 > α1. To do so, we formally consider two
ecosystems, onewith α1N species, and another with α2N , the first α1N of which are identical
to the species in the ecosystem #1. Denoting Z1 and Z2 the partition functions for each of
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the two copies, we seek to compute 〈log(Z1Z2)〉xμ,σμi , where the angular brackets denote
the averaging over “disorder”, namely the particular realization of the organisms’ costs xμ

and metabolic strategies σμi . Using the replica trick:

〈log Z〉 = lim
n→0

〈Zn〉 − 1

n
(6)

we replace this problem by the (much easier) task of computing 〈Zn
1 Z

n
2 〉xμ,σμi , which we

will do for an integer n, but then reinterpret n as being a real number one can send to zero.
The validity of this procedure, as always, is justified a posteriori by the agreement with
simulations.

Now that we formally have two coupled ecosystems, we denote the resource availability
in each as hik ≡ 1− gik and the resource surplus of each species as Δμk , where the index k
takes two values, k = 1 or 2.

With these notations, the individual partition functions for the two systems are given by:

Zk =
∫ ∏

i

dgike
βFi ({gik })

αk N∏

μ=1

∫
dΔμk dΔ̂μk

2π
θ(−Δμk) exp

[
i
∑

μ

Δ̂μk

(
Δμk + εxμ +

∑

i

gikσμi

)]
.

Splitting the Partition Function Into Parts: Ai , B1 and B2

Introducing replicas, and considering separately the species shared by the two systems, and
those unique to the second ecosystem:

〈
Zn
1 Z

n
2

〉
xμ,σμi

=
∫ ∏

i,a,k

[
dgaike

β
∑

i,a,k Fi (g
a
ik )

]

×
α1N∏

μ=1

{
∏

a

[
dΔa

μ1 dΔ̂a
μ1

2π

dΔa
μ2 dΔ̂a

μ2

2π
θ(−Δa

μ1) θ(−Δa
μ2)

]

×e
i
∑

a

(
Δ̂a

μ1Δ
a
μ1+Δ̂a

μ2Δ
a
μ2

)

×
〈
eiεxμ

∑
a(Δ̂

a
μ1+Δ̂a

μ2)
〉

xμ

×
∏

i

〈
e
i
∑

a

(
Δ̂a

μ1g
a
i1+Δ̂a

μ2g
a
i2

)
σμi

〉

σμi

}

×
α2N∏

μ=1+α1N

{
∏

a

[
dΔa

μ2 dΔ̂a
μ2

2π
θ(−Δa

μ2)

]
ei

∑
a Δ̂a

μ2Δ
a
μ2

×
〈
eiεxμ

∑
a Δ̂a

μ2

〉

xμ

×
∏

i

〈
ei

∑
a Δ̂a

μ2g
a
i2σμi

〉

σμi

}

Performing the averaging over disorder is no different than in the single-copy calculation
[11], and we find:
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〈
Zn
1 Z

n
2

〉
disorder =

∫ ∏

i,a,k

dgaike
β

∑
i,a,k Fi (g

a
ik )

∏

a

∏

all valid (μ,k)

dΔa
μk dΔ̂a

μk

2π
θ(−Δa

μk)

×
α1N∏

μ=1

exp

⎧
⎨

⎩i
∑

a,k

Δ̂a
μk

[
Δa

μk + p
∑

i

gaik

]

−1

2
ε2

[∑

a,k

Δ̂a
μk

]2 − p(1 − p)

2

∑

i

[∑

a,k

Δ̂a
μkg

a
ik

]2
⎫
⎬

⎭

×
α2N∏

1+α1N

exp

{
i
∑

a

Δ̂a
μ2

[
Δa

μ2 + p
∑

i

gai2

]

−1

2
ε2

[∑

a

Δ̂a
μ2

]2 − p(1 − p)

2

∑

i

[∑

a

Δ̂a
μ2g

a
i2

]2
}

Our next step is to decouple indices i and μ by introducing new variables:

ma
k ≡

∑

i

gaik

qabk ≡
∑

i

gaikg
b
ik

rab ≡
∑

i

gai1g
b
i2

Here, q1, q2 as well asm1,m2 are quantities that refer only to a single copy; when it comes to
solving saddle-point equations, we will be able to simply substitute the (already established
[11]) single-copy values expected for the correspondingα. Note that unlike q1, q2, the overlap
matrix rab is not manifestly symmetric in its indices.

Introducing new variables requires inserting a corresponding delta-function:

1 =
∏

a,k

∫
dma

k dm̂
a
k

2π
eim̂

a
k (m

a
k−

∑
i g

a
ik)

∏

a,b

∫
drab dr̂ab

2π
eir̂

ab
(
rab−∑

i g
a
i1g

b
i2

)

×
∏

a≤b;k

∫
dqabk dq̂abk

2π
eiq̂

ab
k

(
qabk −∑

i g
a
ik g

b
ik

)

We can now factor our integral as follows:

〈
Zn
1 Z

n
2

〉 =
∫ ∏

a≤b;k

dqabk dq̂abk
2π

∏

a,b

drab dr̂ab

2π

×
∫ ∏

a,k

dma
k dm̂

a
k

2π
exp i

⎡

⎣
∑

a≤b;k
qabk q̂abk +

∑

a,b

rabr̂ab +
∑

a,k

m̂a
km

a
k

⎤

⎦

×
∏

i

⎧
⎨

⎩

∫ 1

−∞

∏

a,k

dgaik × exp

⎡

⎣
∑

a,k

βFi (g
a
ik) − i

∑

a,k

m̂a
k g

a
ik
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−i
∑

a≤b;k
q̂abk gaikg

b
ik − i

∑

a,b

r̂abgai1g
b
i2

⎤

⎦

⎫
⎬

⎭ ×
α1N∏

μ=1

⎧
⎨

⎩

∫ ∏

a,k

dΔa
μk dΔ̂a

μk

2π
θ(−Δa

μk)

× exp

⎡

⎣i
∑

a,k

Δ̂a
μk(Δ

a
μk + pma

k ) − 1

2

∑

a,b,k

(
p(1 − p)qabk + ε2

)
Δ̂a

μkΔ̂
b
μk

−
∑

a,b

(
p(1 − p)rab + ε2

)
Δ̂a

μ1Δ̂
b
μ2

⎤

⎦

⎫
⎬

⎭ ×
α2N∏

1+α1N

∫ ∏

a

dΔa
μ2 dΔ̂a

μ2

2π
θ(−Δa

μ2)

× exp

⎡

⎣i
∑

a

Δ̂a
μ2(Δ

a
μ2 + pma

2) − 1

2

∑

a,b

(
p(1 − p)qab2 + ε2

)
Δ̂a

μ2Δ̂
b
μ2

⎤

⎦

=
∫ ∏

a≤b;k

dqabk dq̂abk
2π

∏

a,b

drab dr̂ab

2π

∫ ∏

a,k

dma
k dm̂

a
k

2π

× exp i

⎡

⎣
∑

a≤b;k
qabk q̂abk +

∑

a,b

rabr̂ab +
∑

a,k

m̂a
km

a
k

⎤

⎦

× exp

[
N∑

i=1

log Ai + α1N log B1 + (α2 − α1)N log B2

]
.

with Ai , B1 and B2 given by:

Ai =
∫ 1

−∞

∏

a,k

dgak exp

⎡

⎣
∑

a,k

βFi (g
a
k ) − i

∑

a,k

m̂a
k g

a
k − i

∑

a≤b;k
q̂abk gak g

b
k − i

∑

a,b

r̂abga1g
b
2

⎤

⎦

B1 =
∫ ∏

a,k

dΔa
k dΔ̂a

k

2π
θ(−Δa

k ) × exp

⎡

⎣i
∑

a,k

Δ̂a
k (Δ

a
k + pma

k )

−1

2

∑

a,b,k

(
p(1 − p)qabk + ε2

)
Δ̂a

k Δ̂
b
k −

∑

a,b

(
p(1 − p)rab + ε2

)
Δ̂a

1Δ̂
b
2

⎤

⎦

B2 =
∫ ∏

a

dΔa dΔ̂a

2π
θ(−Δa) × exp

[
i
∑

a

Δ̂a(Δa + pma
2)

− 1

2

∑

a,b

(
p(1 − p)qab2 + ε2

)
Δ̂aΔ̂b

⎤

⎦

At a fully replica-symmetric saddle point, we must have ma
k = m∗

k (similarly for m̂a
k ). For

two-index quantities we distinguish the diagonal and off-diagonal parts, e.g.:

q̂ab =
{
q̂D if a = b

q̂O if a 
= b
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This yields:

log〈Zn
1 Z

n
2 〉 = extr

{
∑

k

[
inqD

k q̂ D
k + i

n(n − 1)

2
qO
k q̂O

k + inm̂∗
km

∗
k

]
+ inr Dr̂ D

+ in(n − 1)r Or̂ O +
∑

i

log Ai + α1N log B1 + (α2 − α1)N log B2

}
.

Introduce rescaled notations:

i m̂∗
k ≡ βm̂k

m∗
k ≡ mk

qD
k ≈ qO

k ≡ qk

r D ≈ r O ≡ r

qD
k − qO

k ≡ N

β
xk

r D − r O ≡ N

β
ρ

i

(
q̂ D
k − 1

2
q̂ O
k

)
≡ βak

√
−i q̂ O

k ≡ βbk√
N

i
(
r̂ D − r̂ O

)
≡ βγ

√
−i r̂ O ≡ βδ√

N

These are similar to the ones used in [11], except with new variables (r , ρ, γ and δ) added
to describe the coupling between our two ecosystems. Note that the somewhat non-orthodox
scaling of some of the variables is retained to preserve consistency with Ref. [11]. In these
notations, and taking the limit n → 0:

〈log Z1Z2〉 = lim
n→0

extr β
{∑

k

[
akqk − 1

2
b2k xk + m̂kmk

]
+ γ r − ρδ2

+ 1

nβ

∑

i

log Ai + α1N

βn
log B1 + (α2 − α1)N

βn
log B2

}
. (7)

The calculation of Ai and B2 in this expression is a straightforward generalization of the one
performed in [11], and we will do this first (Sects. 1, 1). The final ingredient, namely the
expression for B1, will take slightly more effort, and will be the subject of Sects. 1 through 1.

Computing log Ai

Symmetric Resources

First, let us assume for simplicity that the supply of all resources is identical Ri ≡ R̄ = 1.
We then have Ai ≡ A:
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A =
∫ 1

−∞

∏

a,k

dgak exp

⎡

⎣
∑

a,k

βF(gak ) − i
∑

a,k

m̂∗
k g

a
k − i

∑

a≤b;k
q̂abk gak g

b
k − i

∑

a,b

r̂abga1g
b
2

⎤

⎦

Recall now the expression for the resource supply function F(g) = −g − 1
2 g

2 to find:

A =
∫ 1

−∞

∏

a,k

dgak exp

⎡

⎣−β
∑

a,k

gak − β

2

∑

a,k

(gak )
2 − i

∑

a,k

m̂∗
k g

a
k

−i
∑

a≤b;k
q̂abk gak g

b
k − i

∑

a,b

r̂abga1g
b
2

⎤

⎦

We now write (leaving the subscript k implicit):

∑

a≤b

q̂abgagb = q̂ D
∑

a

(ga)2 + 1

2
q̂ O

∑

a 
=b

gagb

=
(
q̂ D − q̂ O

2

)∑

a

(ga)2 + q̂ O

2

(∑

a

ga
)2

∑

a,b

r̂abga1g
b
2 = (r̂ D − r̂ O)

∑

a

ga1g
a
2 + r̂ O

(∑

a

ga1

)(∑

a

ga2

)

= (r̂ D − r̂ O)
∑

a

ga1g
a
2 + r̂ O

2

[(∑

a

(ga1 + ga2 )
)2 −

(∑

a

ga1

)2 −
(∑

a

ga2

)2
]

Substituting this into the expression for A:

A =
∫ 1

−∞

∏

a,k

dgak exp

⎧
⎨

⎩
∑

a,k

[
−βgak − β

2
(gak )

2 − i m̂∗
k g

a
k − i

(
q̂ D
k − 1

2
q̂ O
k

)
(gak )

2
]

−i(r̂ D − r̂ O)
∑

a

ga1g
a
2 − i

r̂ O

2

(∑

a

(ga1 + ga2 )
)2 − i

∑

k

[
(q̂ O

k − r O )
(
∑

a g
a
k )

2

2

]}

In rescaled notations:

A =
∫ 1

−∞

∏

a,k

dgak exp

⎧
⎨

⎩
∑

a,k

[
−βgak − β

2
(gak )

2 − βm̂kg
a
k − βak(g

a
k )

2
]

− βγ
∑

a

ga1g
a
2

+1

2

(
βδ√
N

∑

a

(ga1 + ga2 )

)2

+
∑

k

1

2

⎛

⎝
β

√
b2k − δ2

√
N

∑

a

gak

⎞

⎠
2⎫⎪⎬

⎪⎭

In this expression, the first terms have the desired form
∑

a(. . . ) (uncoupled replicas). To
deal with the last two, we use Feynman’s trick of introducing extra Gaussian variables:

exp

(
1

2
(Cx)2

)
=

∫
Dz ez Cx
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(the curly D denotes the standard Gaussian measure with variance 1). This lets us write:

A =
∫

Dw1Dw2Du
n∏

a=1

∫ 1

−∞
dg1 dg2 expβ

{
−

∑

k

(
ak + 1

2

)
(gk)

2 − γ g1g2

− 1√
N

∑

k

[
uδ + wk

√
b2k − δ2 + √

N (1 + m̂k)
]
gk

}

As in Ref. [11], we shift the variable m̂k by setting m̂k ≡ −1 + δm̂k√
N

(note that the “1” in

this substitution is actually the average resource supply R̄, which we set to 1). This scaling
ansatz will later be verified by the extremum condition for δm̂.

A =
∫

Dw1 Dw2 Du
n∏

a=1

∫ 1

−∞
dg1dg2 expβ

{
−

∑

k

(
ak + 1

2

)
(gk)

2 − γ g1g2

− 1√
N

∑

k

[
uδ + wk

√
b2k − δ2 + δm̂k

]
gk

}

=
∫

Dw1 Dw2 Du

[∫ 1

−∞
dg expβ

(
−1

2
gTMg − 1√

N
gT · v

)]n

where g ≡ (g1, g2) and

M =
(
2a1 + 1 γ

γ 2a2 + 1

)

v =
(

v1
v2

)
≡

⎛

⎝δm̂1 + w1

√
b21 − δ2 + uδ

δm̂2 + w2

√
b22 − δ2 + uδ

⎞

⎠

Conveniently, for small n:

log
∫

Dz xn = log

[∫
Dz (1 + n log x + . . . )

]

= log

[
1 + n

∫
Dz log x + . . .

]
= n

∫
Dz log x + . . .

Therefore:

lim
n→0

log A

n
=

∫
Dwk Du log

∫ 1

−∞
dg e

β
[
− 1

2 g
TMg+ 1√

N
gT ·v

]

= β

N

∫
Dw1 Dw2 Du

(
1

2
vTM−1v

)

This is a Gaussian integral of a quadratic form, and is easily computed:

lim
n→0

log A

n
= β

2N

(2a1 + 1)(b22 + δm̂2
2) + (2a2 + 1)(b21 + δm̂2

1) − 2γ (δ2 + δm̂1δm̂2)

(2a1 + 1)(2a1 + 1) − γ 2
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As in the single-copy calculation [11], the extremum conditions with respect to δm̂k set
δm̂k = 0, and the expression for the partition function simplifies to:

〈log Z1Z2〉 = lim
n→0

extr β

{
∑

k

[
akqk − 1

2
b2k xk − mk

]
+ γ r − ρδ2

+ 1

2

(2a1 + 1)b22 + (2a2 + 1)b21 − 2γ δ2

(2a1 + 1)(2a2 + 1) − γ 2 + α1N

βn
log B1

+ (α2 − α1)N

βn
log B2

}
.

The variables ak , bk , γ , δ do not appear in B1 or B2. Consequently, the extremum conditions
for these variables can already be computed, and these variables eliminated:

extra,b,γ,δ

{
∑

k

[
akqk − b2k xk

2

]
+ γ r − ρδ2 + 1

2

(2a1 + 1)b22 + (2a2 + 1)b21 − 2γ δ2

(2a1 + 1)(2a2 + 1) − γ 2

}

= −q1 + q2
2

+ 1

2

q1x2 + q2x1 − 2rρ

x1x2 − ρ2

The partition function is now a function of only mk , qk , xk , r , and ρ:

〈log Z1Z2〉 = extr β

{
∑

k

[
−qk

2
− mk

]
+ 1

2

q1x2 + q2x1 − 2rρ

x1x2 − ρ2

+α1N

βn
log B1 + (α2 − α1)N

βn
log B2

}

Restoring Generality

In the interest of clarity, the calculation above assumed fully symmetric resources. Restoring
full generality renders the intermediate expressions slightly more complicated, but is fairly
straightforward, so we summarize it briefly. The exact same steps lead us to the following
expression:

log Ai

n
= β

N

∫
Dw1 Dw2 Du

(
1

2
vTi M

−1
i vi

)

where

Mi =
(
2a1 + Ri γ

γ 2a2 + Ri

)

vi =
(

v1
v2

)
≡

⎛

⎝δm̂1 + δRi + w1

√
b21 − δ2 + uδ

δm̂2 + δRi + w2

√
b22 − δ2 + uδ

⎞

⎠ .

As a sanity check, note that setting Ri ≡ 1, with δRi ≡ 0 yields the expression for the
homogeneous case. Taking the Gaussian integral is again straightforward, at which point we
recall that what we need is not Ai individually, but the sum

∑
i
log Ai
n . After summation over

i , the term linear in δm̂ cancels to leading order in N ; the expansion starts with the quadratic
term. The extremum condition will therefore set δm̂k = 0 as before. Also to leading order in
N , in the expression for Mi the difference between Ri and R̄ = 1 is negligible. Integrating
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away ak , bk , γ , δ as before, we obtain our final expression, which now includes two new
terms, each proportional to δR2:

〈log Z1Z2〉 = extr β
{∑

k

[
−qk

2
− mk + δR2

2
xk

]
+ 1

2

q1x2 + q2x1 − 2rρ

x1x2 − ρ2

+ δR2ρ + α1N

βn
log B1 + (α2 − α1)N

βn
log B2

}

Computing log B2

Recall the definition of B2:

B2 =
∫ ∏

a

dΔa dΔ̂a

2π
θ(−Δa)

× exp

⎡

⎣i
∑

a

Δ̂a(Δa + pma
2) − 1

2

∑

a,b

(
p(1 − p)qab2 + ε2

)
Δ̂aΔ̂b

⎤

⎦

This is a single-copy expression: it pertains to the species that are present only in one of the
ecosystems. Not surprisingly, therefore, this B2 is an exact match to an expression already
computed in Ref. [11], where it was called simply B with no subscripts. We can therefore
write the result directly:

lim
n→0

log B2

n
= − βψ2

2

2Nx2 p(1 − p)

∫ ∞

λ2

Dw (w − λ2)
2 = − βψ2

2

2Nx2 p(1 − p)
I (λ2),

where ψ2 ≡ √
p(1 − p)q2 + ε2, λ2 ≡ pm2/ψ2 and I (λ) is given by:

I (λ) ≡
∫ ∞

λ

e− w2
2 (w − λ)2

dw√
2π

= − λ√
2π

e− λ2
2 + 1 + λ2

2
erfc

(
λ√
2

)
.

Computing log B1 (and Introducing X )

So far our calculation was a straightforward generalization of Ref. [11]. The only thing that
remains is B1, and this is the part that requires some effort:

B1 =
∫ ∏

a,k

dΔa
k dΔ̂a

k

2π
θ(−Δa

k ) exp

⎡

⎣i
∑

a,k

Δ̂a
k (Δ

a
k + pma

k )

−1

2

∑

a,b,k

(
p(1 − p)qabk + ε2

)
Δ̂a

k Δ̂
b
k −

∑

a,b

(
p(1 − p)rab + ε2

)
Δ̂a

1Δ̂
b
2

⎤

⎦
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Under replica-symmetric assumptions:

∑

ab

[
p(1 − p)rab + ε2

]
Δ̂a

1Δ̂
b
2

= p(1 − p)(rD − rO)
∑

a

Δ̂a
1Δ̂

a
2 + [

p(1 − p)rO + ε2
] (∑

a

Δ̂a
1

)(∑

b

Δ̂b
2

)

= p(1 − p)(rD − rO)
∑

a

Δ̂a
1Δ̂

a
2 + p(1 − p)rO + ε2

2

×
⎡

⎣
(

∑

a

Δ̂a
1 +

∑

a

Δ̂a
2

)2

−
(∑

a

Δ̂a
1

)2 −
(∑

a

Δ̂a
2

)2
⎤

⎦ .

By analogy with ψ ≡ √
p(1 − p)q + ε2, introduce a yet another notation:

√
p(1 − p)r + ε2 ≡ ζ

√
p(1 − p)(qk − r) ≡ φk .

The exponent in B1 becomes:

exp

{
−1

2

Np(1 − p)

β

∑

a

[
x1(Δ̂

a
1)

2 + 2ρΔ̂a
1Δ̂

a
2 + x2(Δ̂

a
2)

2
]

+ i
∑

a,k

Δ̂a
k (Δ

a
k + pma

k ) − 1

2

∑

k

φ2
k

(∑

a

Δ̂a
k

)2 − 1

2
ζ 2

(
∑

a

[
Δ̂a

1 + Δ̂a
2

])2
⎫
⎬

⎭

Decoupling replicas by introducing auxiliary Gaussian fields:

B1 =
∫

Dw1 Dw2 Du
∫ ∏

a,k

dΔa
k dΔ̂a

k

2π
θ(−Δa

k )

×
∏

a

exp
{

− Np(1 − p)

2β

[
x1(Δ̂

a
1)

2 + 2ρΔ̂a
1Δ̂

a
2 + x2(Δ̂

a
2)

2
]

+ i
∑

k

Δ̂a
k

[
Δa

k + pma
k + wkφk + uζ

] }

=
∫

Dw1 Dw2 Du

[∫ 0

−∞
d�

2π

∫
d�̂

2π
exp

(
−1

2

Np(1 − p)

β
�̂

T
M�̂ + i�̂

T · v
)]n

=
∫

Dw1 Dw2 Du

[
1√

detM

∫ 0

−∞
d�

2π
exp

(
−1

2

β

Np(1 − p)
vTM−1v

)]n
(8)

where � ≡ (Δ,Δ′) (both with and without the “hats”), and

M ≡
(
x1 ρ

ρ x2

)
,

v ≡
(

Δ1 + pm1 + w1φ1 + uζ

Δ2 + pm2 + w2φ2 + uζ

)
.
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As a result, and neglecting additive terms of lower order:

lim
n→0

log B1

n
=

∫
Dw1 Dw2 Du log

∫ 0

−∞
d�

2π
exp

(
−1

2

β

Np(1 − p)
vTM−1v

)

= β

2Np(1 − p)

∫
Dw1 Dw2 Du max

Δ1,Δ2≤0

(
−vTM−1v

)

To avoid carrying around the overall multiplication factor, let’s rewrite the partition func-
tion a little bit, and state this as an intermediate result:

〈log Z1Z2〉 = 1

2
extr β

{∑

k

[
−qk − 2mk + δR2xk

]
+ q1x2 + q2x1 − 2rρ

x1x2 − ρ2

+ 2δR2ρ − α2 − α1

p(1 − p)x2
ψ2
2 I (λ2) − α1

p(1 − p)
X

} (9)

The X in the last term is given by:

X =
∫

Dw1 Dw2 Du min
Δ1,Δ2≤0

(
vTM−1v

)
,

where

M ≡
(
x1 ρ

ρ x2

)
, v ≡

(
v1
v2

)
=

(
Δ1 + pm1 + w1φ1 + uζ

Δ2 + pm2 + w2φ2 + uζ

)
,

and it would perhaps be helpful to remind the reader of our notations:

ζ ≡
√
p(1 − p)r + ε2 φk ≡ √

p(1 − p)(qk − r).

The full expression for X is rather complicated, but we will now make an important obser-
vation that will simplify our life dramatically.

Simplifying Observation: ρ = 0

Recall the original definition of rab:

rab ≡
∑

i

gai1g
b
i2

Note, however, that the numbering of the two sets of replicas (for one ecosystem and for the
other) is arbitrary, and we can reorder one set without changing the other. It follows that at the
saddle point, all the entries in this matrix must be the same (this is the parameter we called
r ). In particular, there can be no difference between the diagonal and the off-diagonal entries,
and therefore the variable we called ρ ≡ β

N (r D − r O ) must vanish at the saddle point.
This observation means that we only need to calculate X up to linear order in ρ. Indeed,

to determine r all we need is the saddle-point condition for ρ, which is computed at ρ = 0:

∂

∂ρ

∣∣∣∣
ρ=0

〈log(Z1Z2)〉 = 0 ⇒ will determine r.
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Final Ingredient: Computing X to Linear Order in ρ

Let us rotate the basis of the Gaussian noise variables to introduce:

ξ1 = pm1 + w1φ1 + uζ

ξ2 = pm2 + w2φ2 + uζ

(note that these are not orthogonal, and therefore these Gaussian variables are no longer
independent). We choose the third basis vector to be of unit length, and orthogonal to both
ξ1 and ξ2; its explicit expression need not be specified. Since the integrand only involves ξ1
and ξ2, this third Gaussian noise variable can be integrated out, and we are left with:

X =
∫

D̃ξ min
Δ1,Δ2≤0

[
(� + ξ)TM−1(� + ξ)

]
, where M−1 =

(
1
x1

− ρ
x1x2− ρ

x1x2
1
x2

)
+ o(ρ).

Here ξ ≡
(

ξ1
ξ2

)
and the integration measure D̃ξ is that of two correlated Gaussian variables:

D̃ξ = 1

2π
√
detC

exp

{
−1

2
(ξ − pm)TC−1(ξ − pm)

}
,

with the correlation matrix:

C =
(

φ2
1 + ζ 2 ζ 2

ζ 2 φ2
2 + ζ 2

)
≡

(
ψ2
1 ζ 2

ζ 2 ψ2
2

)
, where ψk =

√
p(1 − p)qk + ε2 as before.

Minimizing a quadratic form is not hard; the only complication is the negativity constraint
on Δ1, Δ2. Globally, the global minimum is always zero, but depending on the values of
ξ1, ξ2, the point where it is achieved may lie outside of the allowed quadrant, in which case
we will have to content ourselves with the smallest value at the quadrant boundary (where
either Δ1 or Δ2 is zero). We must therefore consider several cases, and the expression for
the integrand will be different. Specifically, we find that the integration plane splits into 4
regions we label A, B, C and D:

Region B:

⎧
⎨

⎩

ξ1 < 0

ξ2 − ρ

x1
ξ1 > 0

Region A:

{
ξ1 > 0

ξ2 > 0

Integrand:
ξ21
x1

Integrand: 0

Region C:

⎧
⎪⎨

⎪⎩

ξ1 − ρ

x2
ξ2 < 0

ξ2 − ρ

x1
ξ1 < 0

Region D:

⎧
⎨

⎩
ξ1 − ρ

x2
ξ2 > 0

ξ2 < 0

Integrand:
ξ21
x1

+ ξ22
x2

− 2ρ ξ1ξ2
x1x2

Integrand:
ξ22
x2

To get some reassurance we are on the right track, note that setting ρ = 0 decouples the
integrals over ξ1 and ξ2, and we immediately find:

X |ρ=0 =
∫

{ξ1<0}
D̃ξ

ξ21

x1
+

∫

{ξ2<0}
D̃ξ

ξ22

x2
= ψ2

1

x1
I

(
pm1

ψ1

)
+ ψ2

2

x2
I

(
pm2

ψ2

)
. (10)
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This is precisely the expected result. Indeed, substituting this into our expression (9) yields

〈log Z1Z2〉 =
∑

k

extr β
{

− qk
2

− mk + δR2

2
xk + qk

xk
− αkψ

2
k

p(1 − p)xk
I

(
pmk

ψk

)}
,

which is reassuring, as we of course expect 〈log Z1Z2〉 = 〈log Z1〉 + 〈log Z1〉.
To determine r , we now need to calculate the first-order correction to (10) and find the

relevant saddle-point equation ∂
∂ρ

∣∣∣
ρ=0

(. . . ) = 0. A non-zero ρ brings two differences: first,

the integration region is not quite the same, and second, there is an extra term in the integrand.
Let us write this as follows:

X =
∫

C+B
D̃ξ

ξ21

x1
+

∫

C+D
D̃ξ

ξ22

x2
− 2ρ

∫

C
D̃ξ

ξ1ξ2

x1x2
+ o(ρ)

=
∫

C+B−{ξ1<0}+{ξ1<0}
D̃ξ

ξ21

x1
+

∫

C+D−{ξ2<0}+{ξ2<0}
D̃ξ

ξ22

x2
− 2ρ

∫

C
D̃ξ

ξ1ξ2

x1x2
+ o(ρ)

=ψ2
1

x1
I

(
pm1

ψ1

)
+ ψ2

2

x2
I

(
pm2

ψ2

)

+
∫

C+B−{ξ1<0}
D̃ξ

ξ21

x1
+

∫

C+D−{ξ2<0}
D̃ξ

ξ22

x2
− 2ρ

∫

C
D̃ξ

ξ1ξ2

x1x2
+ o(ρ)

(Here we add and subtract integration regions in the obvious sense of adding/subtracting the
integrals taken over them.) The terms in the last line all vanish at ρ = 0: the first two, because
the integration region vanishes, and the final one, because it is explicitly multiplied by ρ.

Conveniently, therefore, only the very last term contributes to the derivative ∂
∂ρ

∣∣∣
ρ=0

, and we

find:

∂

∂ρ

∣∣∣∣
ρ=0

X = ∂

∂ρ

∣∣∣∣
ρ=0

[
−2ρ

∫

C
D̃ξ

ξ1ξ2

x1x2

]
= − 2

x1x2

∫

ξ1,ξ2<0
D̃ξ ξ1ξ2

Recalling Eq. (9), we write the saddle-point equation:

0 = ∂

∂ρ

∣∣∣∣
ρ=0

〈log Z1Z2〉 = ∂

∂ρ

∣∣∣∣
ρ=0

[
1

2

q1x2 + q2x1 − 2rρ

x1x2 − ρ2 + δR2ρ − α1

2p(1 − p)
X

]

= − r

x1x2
+ δR2 + α1

p(1 − p)x1x2

∫

ξ1,ξ2<0
D̃ξ ξ1ξ2

Changing the sign of the integration variable, we find the equation for r :

r = δR2x1x2 + α

p(1 − p)

∫ ∞

0

dξ1 dξ2

2π
√
detC

exp

{
−1

2
(ξ + pm)T [C(r)]−1(ξ + pm)

}

where

C(r) =
(

ψ2
1 ζ 2

ζ 2 ψ2
2

)
≡

(
p(1 − p)q1 + ε2 p(1 − p)r + ε2

p(1 − p)r + ε2 p(1 − p)q2 + ε2

)
,

and xk = 1 − αk
2 erfc

(
pmk

ψk
√
2

)
at the saddle point (see Eq. (S17) in Ref. [11]). The version

quoted in the main text assumed δR2 = 0 for simplicity.
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The Joint Distribution p(Δ1,Δ2)

Having computed r , we will now demonstrate how this parameter is related to the shape of
the joint distribution p(Δ1,Δ2) (for species that are common to both ecosystems). For this,
we go back to the expression for B1 given in Eq. (8). Instead of directly sending n → 0, we
separate out one of the replicas, leaving n − 1 remaining ones, and only then send n to zero
(for a more detailed explanation of this trick, see Ref. [11], Sect. S9). We find:

p(Δ1,Δ2) =
∫

Dw1 Dw2 Du

⎡

⎣
exp

(
−β

2 v
TM−1v

)

∫
Δ1,2<0 dΔ1dΔ2 exp

(
−β

2 v
TM−1v

)

⎤

⎦

≡
∫

Dw1 Dw2 Du p(Δ1,Δ2|w1, w2, u).

where

M ≡ Np(1 − p)

(
x1 ρ

ρ x2

)
, v ≡

(
v1
v2

)
=

(
Δ1 + pm1 + w1φ1 + uζ

Δ2 + pm2 + w2φ2 + uζ

)
,

and φk = √
p(1 − p)(qk − r). The key observation is that the conditional distribution

p(Δ1,Δ2|w1, w2, u) is manifestly a properly normalized probability distribution on the neg-
ative quadrantΔ1,2 < 0. For any {w1, w2, u}, the limit of p(Δ1,Δ2|w1, w2, u) as β → ∞ is
therefore easy to compute: it is always a (properly normalized) delta-function, concentrated
where the quadratic form in the exponent reaches its minimum, which could be either within
the quadrant, or at its boundary.

Let us determine the portion of p(Δ1,Δ2) for purely negative Δ1, Δ2. As β → ∞,
the conditional distribution p(Δ1,Δ2|w1, w2, u) concentrates into a 2-dimensional delta-
function:

p(Δ1,Δ2|w1, w2, u)
β→∞−→ δ(Δ1 + pm1 + w1φ1 + uζ ) δ(Δ2 + pm2 + w2φ2 + uζ )

Therefore, for strictly negative Δ1,Δ2:

p(Δ1,Δ2) =
∫

Dw1 Dw2 Du δ(Δ1 + pm1 + w1φ1 + uζ ) δ(Δ2 + pm2 + w2φ2 + uζ ).

Introduce new noise variables ξ1 = w1φ1 + uζ and ξ2 = w2φ2 + uζ . The noise direction
orthogonal to both can be integrated away and gives 1. What remains is a 2-dimensional
integral:

p(Δ1,Δ2) =
∫

Dξ1 Dξ2 δ(Δ1 + pm1 + ξ1) δ(Δ2 + pm2 + ξ2),

where the measure is that of two correlated Gaussian variables:

Dξ1 Dξ2 = 1

2π
√
detC(r)

exp

{
−1

2
ξ t · [C(r)]−1 · ξ

}
where C(r) =

(
ψ2
1 ζ 2

ζ 2 ψ2
2 .

)

(C depends on r through ζ .) The result, obviously, is a double Gaussian with the exact same
correlation structure, for variables Δ1,2 + pm1,2:

p(Δ1,Δ2) = 1

2π
√
detC

exp

{
−1

2
(� + pm)t · [C(r)]−1 · (� + pm)

}
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This expression is valid only for strictly negative Δ1,2. We find that, as claimed in the main
text, the variable r indeed controls the degree of correlation betweenΔ1 andΔ2 (the resource
surplus of the same species between the two ecosystems).

Following the same procedure, one can verify that the probability weight at the quadrant
boundary is precisely the weight of the same double-Gaussian expression integrated over the
forbidden (positive) range of Δ, also as claimed. For instance:

p(Δ1 < 0,Δ2 = 0) =
∫ ∞

0
dΔ2

1

2π
√
detC

exp

{
−1

2
(� + pm)t · [C(r)]−1 · (� + pm)

}
.

The simplest way to prove this is to observe that the distribution we computed must have the
marginal computed in Ref. [11], and shown in Fig. 2(a).

Appendix 3: Correlation of Cost and Resource Surplus (Fig. 3(c))

In this appendix, we compute the correlation of a species’ cost with the resource surplus it
experiences. Our goal is to prove the claimmade in Fig. 3c, namely that for α below a critical
value (called the V phase in Ref. [11]), this correlation vanishes. In other words, we will show
that in the V phase, the cost of a species has no effect on its survival (the survivors are those
species whose resource surplus is zero rather than negative), illustrating the non-intuitive
nature of the “selection pressure” in this phase of our model.

The computation in this section is a single-system calculation, i.e. we are working with
a single α, and only one set of species. Our starting point is Ref. [11, Sect. S7.2] (here
and below, all section numbers refer to the supplemental material of Ref. [11]). In order to
compute 〈∑μ xμΔμ〉, we need to add to the partition function a generating term log Z →
log Z + η

∑
μ xμΔμ, so that we have

∑

μ

xμΔμ = ∂

∂η

∣∣∣∣
η=0

log Z .

The extra termmodifies the result of averaging over the “disorder” xμ, namely the expression
which was labeled as (1) in Sect. S7.2. The modified expression is:

(1) ≡
∏

μ

〈
eiε

∑
a Δ̂a

μxμ+η
∑

a Δa
μxμ

〉

xμ

= exp

[
−1

2

∑

μ

(∑

a

εΔ̂a
μ − iηΔa

μ

)2
]

.

This causes a corresponding modification in the expression for B (Sect. S7.3):

B =
∫ ∏

a

dΔa dΔ̂a

2π

∏

a

θ(−Δa) exp
{
i
∑

a

Δ̂a(Δa + pma)

− 1

2
p(1 − p)

∑

a,b

qabΔ̂aΔ̂b − 1

2

[∑

a

(
εΔ̂a − iηΔa)]2}

Introducing a replica-symmetric ansatz and decoupling replicas with the Feynman trick, we
write:

B =
∫

DwDw′ [b(w,w′, η)
]n

(11)
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where

b(w,w′, η) =
∫

dΔ dΔ̂

2π
θ(−Δ) exp

{
iΔ̂(Δ + pm) − 1

2
p(1 − p)(qD − qO))Δ̂2

+ i
[
w

√
p(1 − p)qOΔ̂ + w′(εΔ̂ − iηΔ

)]}

Grouping together the terms with Δ̂ and taking that integral:

b(w,w′, η) =
∫ 0

−∞
dΔ ew′ηΔ

∫
dΔ̂

2π
exp

{
− 1

2
p(1 − p)(qD − qO))Δ̂2

+ iΔ̂
(
Δ + pm + w

√
p(1 − p)qO + w′ε

)}

=
∫ 0

−∞
dΔ ew′ηΔ 1√

2π

1√
p(1 − p)(qD − qO)

× exp

⎡

⎢⎣−
(
Δ + pm + w

√
p(1 − p)qO + w′ε

)2

2p(1 − p)(qD − qO)

⎤

⎥⎦

In the limit n → 0, from Eq. (11) it follows:

log B = log
∫

DwDw′ bn = n
∫

DwDw′ log b(w,w′, η) + . . . ,

and therefore

∂

∂η

∣∣∣∣
η=0

log B

= n
∫

DwDw′
∫ 0
−∞ dΔ w′Δ√

2πp(1−p)(qD−qO )
exp

{
−

[
Δ+pm+w

√
p(1−p)qO+w′ε

]2
2p(1−p)(qD−qO )

}

b(w,w′, 0)
.

Omitting the constants that cancel out, recalling that qD − qO = N
β
x , and rescaling the

integration variable by a factor
√
p(1 − p)x , we can write:

〈xΔ〉 =
∫

DwDw′ b1(w,w′)
b0(w,w′)

,

where the numerator and the denominator are given by:

b1(w,w′) =
∫ 0

−∞
dΔ√
2π

exp

{
−1

2

β

N
(Δ + Δ0)

2
}

× w′Δ
√
p(1 − p)x

b0(w,w′) =
∫ 0

−∞
dΔ√
2π

exp

{
−1

2

β

N
(Δ + Δ0)

2
}

.

Here Δ0 ≡ pm+w
√
p(1−p)q+εw′√
p(1−p)x

. If Δ0 is positive, then as β → ∞, the exponent tends to a

delta function (centered at−Δ0), and the ratio tends to−w′Δ0
√
p(1 − p)x . If, however,Δ0

is negative, then the exponent starts concentrating at Δ = 0, where the numerator vanishes.
As a result:
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〈xΔ〉 =
∫

DwDw′ θ
(
pm + w

√
p(1 − p)q + εw′

√
p(1 − p)x

)

×(−w′)(pm + w
√
p(1 − p)q + εw′).

Denoting F(u) ≡ u θ(u) and integrating by parts (note that w′Dw′ is a full derivative):

〈xΔ〉 = −
∫

DwDw′ w′ F
(
pm + w

√
p(1 − p)q + εw′)

= −
∫

DwDw′ ∂

∂w′ F
(
pm + w

√
p(1 − p)q + εw′)

= −ε

∫
DwDw′ θ

(
pm + w

√
p(1 − p)q + εw′) .

Rotating the (w,w′) basis to integrate away the one of the noise directions, we are left with
a 1-d integral in which we recognize the function E(λ) ≡ 1

2 erfc
(

λ√
2

)
, concluding with a

very simple formula:

〈xΔ〉 = −εE

[
−pm√

p(1 − p)q + ε2

]
≡ −εE

[−pm

ψ

]

The parameter combination λ ≡ pm/ψ plays an important role throughout our model;
for instance, the number of survivors is αE(λ) [11]. Here we see that it also controls the
correlation of species’ cost and resource surplus (and thus their survival as well). To get the
correlation coefficient as plotted in Fig. 3c, we should normalize this result by the standard
deviations. The standard deviation of x is 1. As for Δ, its distribution is shown in Fig. 3a;
the standard deviation of the Gaussian part is ψ . Neglecting the effect of the delta-shaped
tail (whose total weight is at most 1/α, and whose effect on the variance quickly becomes
negligible as α increases), we find:

corr(x,Δ) ≡ 〈xΔ〉√〈x2〉√〈Δ2〉 
 −εE(−λ)

ψ

Consider the behavior of this expression as ε → 0; this is the limit where V/S becomes a
true phase transition. As established in Ref. [11], for α below a critical value, ψ remains of
order 1, and we find that the correlation vanishes in the V phase, as promised. For α above
the critical value, ψ was shown to go to zero linearly with ε, so that their ratio is of order
1 and the correlation becomes non-trivial. For small, but finite ε the behavior retains these
qualitative features and agrees with simulations, as shown in Fig. 3c.
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