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Abstract
The availability of large-scale neural multi-electrode or optical
recordings make now possible the modelling of the simulta-
neous activities of tens to thousand of neurons. One promising
approach relies on the inference of detailed functional con-
nectivity between the recorded cells, that is, of an effective
coupling network reproducing the correlation structure of the
spiking events. Here we report some recent applications of
those approaches to retinal, hippocampal, and cortical data,
illustrating in particular how functional coupling networks may
be useful to decode complex brain representations, and how
their changes may be tracked in behaving animals, with a
possible connection to behavioral learning. Statistical, theo-
retical, and neurobiological issues raised by the inverse
modeling of population activity are discussed.
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Introduction
Functional connectivity across neurons has long been
investigated through pairwise correlations [1,2], inde-
pendently of the activity of the other recorded neurons.
The availability of large population neural recordings,
with tens to thousands of cells [3e9], has recently
www.sciencedirect.com
fostered interest for inverse approaches to reconstruct
functional connectivity [10,11], in particular from
snapshots of the activity [12,13] (Box 1). These ap-
proaches are coherent in that they process all recorded
cells together, and are able to disentangle direct corre-
lations between cells from indirect effects mediated
through other recorded neurons [11,14]. We report
below some applications to various brain areas, in
connection with the following issues:

1. Functional couplings a priori vary with the sampling

conditions (Box 2), such as brain state or external
stimuli (Box 2). How strong is this variation, and
what features remain invariant across different
states?

2. Are functional models accurate enough to identify
(decode) brain states [15e17], even in the absence
of any sensory correlate?

3. Can we measure experience-related changes in
functional couplings [18,19], and do they reflect
properties expected for physiological plasticity
[20,21]?

4. Are functional networks helpful to identify cell as-
semblies, postulated by Hebb to be the central units
of neural computation and memories [22,7,23,18,24]?
Functional networks show both invariant structure
and specificity with respect to neural states
Functional connectivity reproduces the patterns of cor-
relations in the neural activity across the recorded

population. Those correlations reflect both the synaptic
underlying interactions, as well as common inputs spe-
cific to the environmental, sensorial or cognitive state.
To study the importance of both contributions we focus
on three multi-electrode recording data sets (DS), in
which the same cells were recorded with different
external stimuli or conditions:

(DS1) salamander Retina ganglion cell (RGC) were
recorded in the absence of light (dark) and with a
randomly flickering checkerboard stimulus (flicker) [4].

Figure 1a shows the effective couplings between RGC,
located at the centers of their receptive fields in the
retinal plane [14]. In both dark and flickers stimuli a
short-range network of large and positive couplings is
found, similarly to [13], presumably due to gap junctions
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Box 1. Functional connectivity models for neural data

Data consists of the times of all spikes emitted by a population of N neurons during a recording of duration T (A). We first discretize the data into
time bins t = 1,…, T/Dt of width Dt, and define for each bin a variable si,t = 1 if neuron i has emitted one or more spikes, and 0 otherwise. Typical Dt
values range from 10 to 100 ms depending on the recorded brain area.

Inference of functional model. A.Multi-electrode or optical recordings are analyzed to obtain the raster plot of the neural activity (left). Activities
are binned into time windows of duration Dt (dashed box) to define the configuration St = (s1t, s2t,…,sNt). The functional network Jij describing the
spiking dependencies among the neuron activities is then inferred, together with the local inputs hi acting on the neurons. B. Single-cell firing
probabilities pi and pairwise correlations pij − pipj in data (x-axis) vs. predictions from inferred Ising model (y-axis). C. Scatterplot of inferred
couplings Jij vs. log. correlation indices CIij = pij/pipj [42]. Data in B and C are RGC recordings from Ref. [12].

We look for a distribution model over the set of activity configurations in time bins, St = (s1t,s2t,…,sNt). In the simplest model, neural cells are
supposed to spike independently of each other. This model is generally poor, as it cannot reproduce correlations between spiking events [12]. In
functional-connectivity models the probability that neuron i is active (si = 1) is conditioned to the activities sj of the other neurons j:

Pcond

�
si ¼ 1j�sj ; jsi

�� ¼ F

0
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jsi

Jij sj þ hi
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A [1]

whereFðxÞ is a sigmoidal increasing function of its argument x. The local input hi controls the average activity of neuron i (the higher the input, the
larger the activity), while the couplings Jij encode the conditional dependence of the activities of neurons i and j (large positive, respectively,
negative couplings correspond to pairs of neurons with correlated, respectively, anticorrelated activities). In practice the N inputs and N(N − 1)/2
couplings are fitted to maximize the probability of the data configurations; this is a non-trivial computational problem, which can be tackled with
various approximate inference techniques [56–59]. A natural choice is FðxÞ ¼ ex

1+ex , which corresponds to the well-studied Ising model of sta-
tistical physics, and to a simple expression of the probability of activity configurations,
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up to some multiplicative normalization factor.

When onlyN = 2 cells are recorded the unique coupling, J12, is related to the correlation index,C12, equal to the ratio of the probability that neurons
1 and 2 both spike in a time bin, over the product of their individual spiking probabilities, through J12 = log C12. When more cells are recorded no
general relationship exists between couplings and correlation indices [42], unless the activity is extremely sparse [41].

We stress that Eqs. [1] & [2] are approximate; modified Ising models, including non linear combinations of the neural activities in the argument of
F, have been proposed [53].
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Box 2. Sampling issues

An important issue is whether couplings are accurately inferred. This question may be considered from different points of views.

How much data are needed? Errors on statistical observables, e.g. 1- and 2-neuron spiking probabilities, are of the order of 1=
ffiffiffiffi
B

p
, when the

number B = T/Dt of time bins is large. Since there are ~N2 pairs of neurons, we expect, from extreme value theory, the largest error to be
e ffiffiffiffiffiffiffiffiffiffiffiffi

log N
p

=
ffiffiffiffi
B

p
. This value is the minimal coupling J (in absolute value) that can be inferred reliably from B configurations [58].

How to avoid overfitting data? Maximizing the probability of the data set with the Ising model can lead to overfitting, that is, to fine-tuning of
couplings to reproduce details in the data due to partial sampling rather than to their underlying structure. An illustration is offered by the case of N
independent neurons, whose apparent correlations (due to incomplete sampling) are reproduced with an intricate network of couplings Jij
[Cocco11c]. In practice, statistical error bars assess the relevance of inferred parameters, and overfitting is limited by penalties over large and/or
small nonzero couplings.

Is the inverse problem well conditioned? Multi-electrode recordings give access to the activity of a limited part of the neural system under study.
Would couplings change if more cells were to be recorded (FigureA)? The stability of the inferred couplingswas tested in practice upon removal of
one neuron from data. In DS1 the coupling between two RGC remained unchanged if their receptive field centers (RFC) are far from the RFC of
the removed neuron [14]. In DS3 the identification of experience-related cell assemblies can be largely affected when the removed neuron is part
of this assembly. The availability of massive optical recordings will soon allow for a better understanding of how well-conditioned are functional
networks.

What happens if the model distribution is multimodal? The distribution of neural configurations S may be multimodal, and define largely different
states of activity (B). If experimental data come from one state, can we trust the existence of other (not sampled) states predicted by the inferred
model P(S)? A theoretical study of the Hopfield model, in which states are defined by the memorized items, gives a positive answer to this
question, provided enough data are collected [27]; for limited sampling, an apparent connectivity matrix, specific to the state in which data are
collected, will be inferred. Notice that extreme multimodality does not seem to be a generic feature of functional models inferred from neural data
[14], contrary to “glassy” Ising models with random couplings (Figure B).

Sampling and inference. A. The recorded population of neurons is usually a small subset of the brain area under consideration. The inverse
problem is well conditioned if the couplings J do not vary much when other neurons are recorded [59]. B. The distribution of neural configurations
may have different modes, identifying specific activity states. The model distribution is inferred from one of these modes (purple or blue data). A
glassy distribution would exhibit many low-lying states, see right edge of the panel.

Inverse modeling of neural population activity Cocco et al. 105
and to the local pattern of bipolar and amacrine cells
connecting photoreceptors to neighboring RGC. In
addition, common inputs due to the visual stimulus in

flicker conditions produce extra long-range effective
couplings.

(DS2) the activities of CA1 hippocampal place cells
were recorded, after a rat had been trained in two en-
vironments, identical in shape but differing by light
www.sciencedirect.com
conditions [25]. Figure 1B shows that Jij takes quite
different values in the two associated cognitive maps for
most pairs of cells i,j [17], emphasizing the functional

differences between the inferred networks due to place
field (PF) remapping [26]. These differences may be
due to environment-specific cortical inputs to the hip-
pocampus; they are also expected even if the hippo-
campal activity is generated by a unique physiological
network, when limited sampling of the bimodal activity
Current Opinion in Systems Biology 2017, 3:103–110
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Figure 1

Dependence of functional networks and couplings on external stimuli or conditions. A. Couplings were inferred from recordings of 32 retinal ganglion cells
(RGC) in dark condition (Dark) and in presence of a flickering stimulus (Flicker) [14]. Data courtesy of M. Meister [4]. Left: Scatter plots of couplings Jij in
Flicker (x-axis) vs. Jij in Dark (y-axis). Unreliable couplings, i.e. such that |J|/DJ < 3, where DJ is the statistical error bar due to finite sampling, in both
sessions are shown with grey dots. Black dots show reliable couplings in both sessions; couplings reliable in only one session are shown with purple
(Dark) and blue (Flicker) dots. Middle: Couplings between pairs of neurons vs. distances between their receptive-field centers in Dark and Flicker
conditions. Negative couplings are absent at short distances (<200 mm) in Dark and Flicker conditions, and positive couplings are rare in Dark at large
distances (>500 mm), but not in Flicker. Red lines represent moving averages over 15 successive points. Right: Spatial maps of largest couplings
(Jij > 0.3). Links are connecting the receptive field centers (indicated by circles of different colors) of the recorded 32 cells in Dark and in Flicker. B.
Couplings inferred from recordings of a population of 38 CA1 place cells as a rat explores two environments, A and B, differing by light conditions [17].
Data from Ref. [25]. Left: Scatter plots of couplings inferred from the reference session recordings of A (x-axis) vs. B (y-axis). Same color code as in panel
A. Note the presence of many zero couplings, especially in the network associated to map A, due to the regularization in the inference procedure [55,42].
Middle: Couplings between pairs of neurons vs. distances between their place-field centers, estimated as the locations corresponding to maximal firing
activities. Right: Spatial maps of the largest couplings (Jij > 0.5) in the functional networks associated to maps A and B. Links are connecting the centers
of the place fields, which are partially remapped across the two maps (each neuron is indicated by the same color in both maps). C. Couplings inferred
from recordings of a population of 37 cells in the medial Prefrontal Cortex during the performance of a cross-modal task (Task), and in preceding (Sleep
Pre) and following (Sleep Post) sleep periods [33,39]. Data from Ref. [7]. Left: Scatter plots of couplings in the three periods show the presence of
conserved couplings, and a group of potentiated couplings supported by 5 cells (red circles). Reliable couplings in both periods are shown with dark dots.
Right: subnetwork of couplings between those 5 cells in the three periods. Line thicknesses are proportional to intensities of couplings, all couplings
shown are positive.
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distribution is done around either of the memorized
map [27] (Box 2).

The dependence of couplings upon distance between
PF centers is similar in both maps (Figure 1B). The
positivity of couplings at small distances (comparable to
PF size), and negativity at larger distance, is compatible
Current Opinion in Systems Biology 2017, 3:103–110
with models of continuous attractors sustaining bump
formation and motion [28e30].

(DS3) neurons in the prefrontal cortex of a behaving rat
were recorded [7] during sessions, composed of a cross-
modal rule shift task, preceded and followed by sleep
periods, to study replay and memory consolidation
www.sciencedirect.com
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[5,31,32]. Figure 1C shows that most couplings are
conserved across the sleep periods in a session, but a few
undergo experience-related potentiation [33], which we
study below.

Experience-related changes in functional
connectivity and cell assemblies
The ’two-stage’ theory of memory assumes that neural
sequences formed during the awake period are trans-
ferred during sleep phases to cortical areas, such as
medial prefrontal cortex, where they are memorized.

This process of memory consolidation is concomitant to
the onset of hippocampal excitations, called sharp-wave
ripples [34], during which experience-related neural
assemblies are replayed [5,7,23].

DS3 offers a natural test ground to study replay from the
point of view of functional connectivity [18]. The
neurons supporting the potentiated couplings in DS3
(Figure 1C) strongly coactivate during the task-
performing and the subsequent sleep periods over few
tens of ms [33], as expected for a cell assembly [35], but

not in the preceding sleep epoch. It is possible that, in
some sessions, the activation of the potentiated group
mostly results from external inputs, in particular hip-
pocampal ripples [34,7,36], and reflect early stages of
learning; the corresponding functional networks are
densely connected (Figure 1C), as expected when
neurons are coactivated by a common input. In other
sessions, the activation of the potentiated group does
not seem to be related to ripples, and presumably cor-
responds to consolidated PFC networks, supporting
memory-related cell assemblies [33].

Identifying a repeated replay-related cell assembly, with
potential variations in the set of recruited neurons and
in the relative timings of spikings, is a computationally
hard task. The combinatorial nature of spatio-temporal
possible sequences makes exhaustive search practically
impossible unless templates, e.g. place-cell sequences
in awake periods, are available [5,37,23,32]. Functional-
connectivity-based approaches can help reveal cell as-
semblies without templates [38]. An approach based on
direct simulations of the inferred model in the presence

of an external drive, grossly mimicking hippocampal
inputs, unveils groups of coactivating neurons, see
Figure 2C [39].

Functional connectivity models reproduce multi-
neuron statistics
Effective interactions are inferred from data to repro-
duce low-order statistics of firing events, such as the
neuron firing rates and their pairwise correlations [12],
see application to retina ganglion cell data in Box 1.
Remarkably the model distribution (Box 1) is able to
accurately predict higher order statistical features, such
as the frequencies of coactivation of all triplets of
www.sciencedirect.com
neurons, the probability that K out of the recorded cells
are active in a time bin, and the frequencies of all 2K

possible patterns of activity of a subset of K cells [12,40]
(Figure 2A). As a consequence, while functional pairwise
models are trivially adequate for the modelling of very
sparse activity data, e.g. in which two or less neurons are
active in any time bin [41] (Box 2), their range of
applicability extends in practice much beyond [42].

Specificity of functional model distributions allows
for efficient state decoding
As seen above functional-connectivity-based models
inferred in different conditions (states C) define accu-
rate and condition-specific distributions PC(S) over
neural population activities S (Box 1, Eq. [2]).
Comparing and ranking different PC(S)’s for a given S
allows for decoding the unknown state, even in the
absence of sensory correlate. Such an approach was
applied in Ref. [17], to track the fast dynamics of
retrieval of two cognitive maps (A & B) evoked by
environmental light conditions subject to immediate
switches, see DS2 above. Figure 2B represents the log.

ratio PA(St)/P
B(St) of the activity configuration at time t,

St. As found in the CA3 region of the hippocampus [25]
we observe a short-term instability after the switch,
extending over a few seconds, before stabilization of the
internal map, coherentely with the external light
condition.

The decoding of maps is much harder in CA1 than in
CA3, where remapping of PFs between environments is
stronger and makes maps orthogonal. Yet functional-
connectivity-based decoders show very good perfor-

mances in CA1, and can detect map changes on very
short time scales (few tens of ms), without any knowl-
edge of the place fields and the animal position.

Similar information-theoretic approaches [16,43] were
applied to decode visual stimuli from RGC activity, see
for instance [40,44].

Extensions
Due to space limitations we have considered here
models for activity snapshots only. As the precise
ordering of spikes in a (narrow) time bin is not taken
into account in the modeling the functional connec-

tivity matrix is symmetric: the presence of a nonzero
coupling Jij signals a conditional dependence of the
spiking events of neurons i and j, but is not informative
about the causality between those events. Functional
connectivity can also be inferred to capture some
dynamical features in the neural data, e.g. with
Generalized Linear Models (GLM) [45,46], Integrate-
and-Fire Models (IF) [47,48], Kinetic Ising models
[49,50]. Within these approaches couplings are not a
priori symmetric, and could serve to define a temporal
ordering in the sequence of activation events. However,
Current Opinion in Systems Biology 2017, 3:103–110
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Figure 2

Predictive Power of Functional-Connectivity Models. A. Predictions for multi-neuron spiking frequencies from functional pairwise model. Top: Scatter plot
of correlations cijk ¼ pijk � pij pk � pik pj � pjk pi+2pipj pk between triplets of cells; Middle: Probability of K neurons spiking in the same time window [42];
Bottom: Frequencies of all 210 possible patterns of activity for a subpopulation of 10 neurons obtained from the independent (Blue) and the pairwise (Red)
models are compared to the empirical frequencies in the data. Models were inferred after binning in Dt = 20 ms time windows of the activity of a population
of N = 40 RGC. Data courtesy of M. Berry [12]. For the top and middle panels, predictions of model were obtained through Monte Carlo sampling [42]; for
the bottom panel, predictions were obtained through an exact calculation. B. Decoding of hippocampal place-cell maps as function of time in a ‘tele-
portation’ experiment, in which maps are evoked by switches of light conditions [17]. Initially map B is retrieved, in agreement with the external light
condition. Around t ~ 551 s (vertical red line) the light condition is abruptly switched to the one corresponding to environment A. The dynamically retrieved
map is decoded from the activity configuration at time t, St, based on the sign of the log. ratio of PA(St)/P

B(St) (y-axis), where PA, PB are the model
distributions inferred in both environment in stable conditions (no switch, reference sessions) [17]. An instability period is observed for few seconds after
the light switch. Data from K. Jezek (N = 38 CA1 place cells) [25]. C. Identification of replay-related cell assemblies in medial Prefontal Cortex [39]. Data
from F. Battaglia (37 recorded cells) [7]. After inference of the functional model from spiking activity in each one of the three periods (see text and caption
Figure 1C) the model is simulated under the action of an external input (drive H), added to the argument of F, Eq. [1] of Box 1 [39]. Plots show the
susceptibility, that is, the derivative of the average value of si with respect to H, for the 5 cells i identified in the subnetwork of Figure 1C. The green curve is
the average susceptibility c over the remaining 32 cells; the dotted line c ¼ 1

4 corresponds to the top susceptibility for an independent cell. In the Task
and Sleep Post periods the same cell assembly is found, corresponding to a group of 5 cells, whose activities maximally respond to the same value of the
drive (top susceptibilities, red triangles) In the Sleep Pre period this assembly does not exist: the top three susceptibilities barely exceed what is expected
for independent neurons, and the remaining two cells do not respond at all to comparable drive.
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couplings are often close to being symmetric [14,39],
especially if the bin width used for their inference is
comparable to (or larger than) synaptic delays [48].

Note that those models are not generative, as they
make extra assumptions with respect to maximum en-
tropy models, e.g. GLM often assumes that the neural
spiking activity is Poissonian. Moreover it is crucial to
reduce the number of free parameters to avoid over-
fitting data.
Current Opinion in Systems Biology 2017, 3:103–110
To end with, while this review has focused on functional
models with pairwise couplings only, different approaches
have been introduced to infer multi-neuron interaction at

higher orders [14,51e53]. The existence ofmulti-neuron
connectivity is expected due to the presence of common
inputs coming from nonrecorded cells. Restricted Boltz-
mann machines [54], in which effective, high-order cou-
plings are introduced through additional hidden variables,
were recently applied to cortical microcolumn data. How
www.sciencedirect.com
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important these effective multi-neuron interactions are
remains an open question.
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