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Abstract Selection at the molecular level is generally measured by amino-acid
alterations, for instance, through the ratio of non-synonymous and synonymous
substitutions. While it is known that codons coding for identical amino acids are not
perfectly identical in terms of fitness cost, e.g. due to differences in the kinetics of
the associated t-RNAs, mechanisms exist for selection acting at the nucleotide level
rather than the amino-acid level. In this work, we consider two such mechanisms.
The first is the action of the innate immune system, with pattern recognition
receptors capable of recognizing small nucleotidic motifs, such as CpG dinu-
cleotides. Pathogens such as viruses are under this selective pressure while strongly
constrained by the fact that their short genomes must code for essential proteins.
A second tentative mechanism, referred to as the Ambush Hypothesis, suggests that
codons are optimized to favor the presence of off-frame stop codons, which are
useful to abort translation of non-functional proteins in case of accidental ribosomal
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frame-shift. We show how the same statistical physics inspired formalism can be
applied to both questions to compute selective pressure or make predictions in a
null model, called random codon model, in which the coding nature of the genomic
sequence and its essential statistical features are retained. Our formalism is based on
the notion of transfer matrix, developed in statistical physics to deal with systems of
particles with short-range interactions; here, particles are codons and interactions
result from the presence of selection mechanism acting at the nucleotidic level,
possibly on contiguous codons along the sequence. Our approach is computa-
tionally efficient as it requires a computation time growing only linearly with the
length of the sequence under study.

1 Introduction

Selection is generally measured in terms of modifications to proteins. A popular
approach to estimate the level of evolutionary pressure on a protein is the ratio
Ka=Ks for amino acid residues, which estimates the ratio between the number of
non-synonymous substitutions at a particular site over the number of synonymous
mutations. This approach allows one to estimate how much amino acid evolution at
that site is dictated by natural selection, versus how much change an be expected
randomly (Li et al. 1985; Nei and Gojobori 1986). However there are other patterns
of natural selection that cannot be captured by looking at amino acid changes. In
particular, synonymous mutations may not actually be equivalent, but are them-
selves influenced by natural selection. For instance, codon usage depends on the
tissue under consideration and varies across genes. One possible explanation is that
the kinetics of corresponding t-RNA varies. This can create a codon usage bias,
where more favorable codon usage can offer an organism a replicative fitness
advantage (Plotkin and Kudla 2011; Sharp and Li 1987). In the case of, say, an
amino acid which is coded for by four codons, synonymous changes at the third
position that would be assumed neutral could have a fitness cost.

A clear case where synonymous changes may have a fitness cost is when the
genome of a pathogen is targeted by the innate immune system. The innate immune
system is a non-specific set of receptors that may target sequence features found in
pathogens, but rare or absent in host genomic material found in the receptor’s
location (Medzhitov and Janeway 2000). Such features may be sequence specific,
such as nucleic acid motifs or structural features, and as a result nucleotide changes
that alter the presence of such features will have a consequence for pathogen fitness.
For instance, the CpG dinucleotide is avoided in the DNA of many genomes, and
hence has become a target of the innate immune system which can detect its presence
in pathogen genomes (Hemmi et al. 2000). This is just one example of sequence
specific patterns which can be sensed (Vabret et al. 2016). In the case of the genomes
of RNA viruses, their compact genome is mostly devoted to protein coding. Hence, if
one wants to detect the evolution of recognizable patterns, the protein coding aspects
of a genome become a constraint (Greenbaum et al. 2014, 2008).
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To capture these evolutionary processes in a theoretical framework, we devel-
oped a formalism where selective evolutionary forces on motifs and structures are
pitted against randomizing forces of constrained nucleotide sequences (Greenbaum
et al. 2014). Hence, a viral genome, such as influenza, will avoid a recognizable
pattern due to innate immune mediated forces, even when randomizing patterns in
codon usage are accounted for in a genome constrained by protein coding and
codon usage. To calculate selective and entropic forces we utilized a transfer matrix
formalism from statistical physics, which was originally developed to treat systems
with short-range interactions in low dimension. Here, the dimension of the “sys-
tem” is one as a coding sequence can be seen as a linear chain of codons, and the
effective interactions between nearest codons along the coding sequence are pro-
duced by the selective pressure acting on motifs overlapping contiguous codons.
The payoff for the formal development is a reward in terms of computational speed,
which allows such forces to be calculated efficiently in large datasets. We showed
the forces on CpG dinucleotides in influenza, a motif predicted to be stimulatory in
RNA viruses, have the greatest selective forces in influenza and HIV, and created
dynamical models based on these principles (Jimenez-Baranda et al. 2011).

Here, after reviewing briefly applications of this framework, we present new
results detecting abnormal short nucleotidic motifs. In particular, we present new
simultaneous calculations of forces acting on different motifs. This allows us to
decide whether the pressures acting on those motifs are independent or not. We also
show Monte Carlo (MC) simulations of simple mutational dynamical models that
reproduce the equilibrium calculations. We also better characterize the nature of the
space of sequences under pressure from the immune system, in particular how
similar two randomly picked up sequences are. This information can be useful to
understand how constrained are viral sequences by selective pressure, and how the
virus can evolve in the constrained space.

The generality of our statistical-physics formalism allows us to adapt it to detect
and measure any kind of pressure acting at the nucleotidic level, not necessarily
related to the immune system. An example of interest is the so-called Ambush
Hypothesis introduced by Seligmann and Pollock (2004). According to the Ambush
Hypothesis deleterious effects (production of long and non-functional proteins) due
to ribosome frame-shifts during translation can be avoided by increasing the fre-
quency of off-frame STOP codons. This hypothesis is similar, in spirit, to the
pressure exerted by the immune system evoked above, as it acts at the nucleotidic
level (to produce excess STOP codons in shifted frames by virtue of the genetic
code degeneracy) under the constraint of having coding sequences (in the right
frame). In the present work, we introduce a new estimator of the presence of
off-frame STOP codons, which is not sensitive to the genomic AT content (contrary
to most estimators). Our statistical analysis of *1800 bacterial genomes shows no
evidence at all in favor of the Ambush Hypothesis. In addition, extending our
transfer-matrix formalism to the study of off-frame STOP codons, we compute the
distribution of distances between the position at which the frameshift takes place
and the first off-frame STOP codon in the same random codon model used to
estimate the immune system pressure. We obtain that the average distance is small
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(less than 10 codons), giving further statistical evidence for the fact that, even if the
Amubush hypothesis does not hold, off-frame translation rapidly aborts.

The plan of the paper is as follows. In Sect. 2 we review previous works on the
estimation of selective pressure based on our statistical physics formalism. New
results for nucleotidic motifs under immune pressure and the Ambush hypothesis
are reported in, respectively, Sects. 3 and 4. A short discussion with perspectives is
given in Sect. 5.

2 Statistical Physics Framework for Detecting Aberrant
Short Nucleotide Motifs

2.1 Viral Evolution and Pressures on Nucleotide Usage

The particular problem we are studying is what drives the evolution of a virus
which changes its host, and, therefore, its environment. In addition to “local
pressures” whose fitness effects derive from the consequences of changing residues
to protein function, there are “global pressures”, such as the codon bias of the new
host, or changes in the innate immune system from one host to the next. Separating
these two effects can be challenging.

For example, suppose a DNA virus were to change from a non-mammalian host
to a human host. That virus, if it contained many CpG dinucleotides, could stim-
ulate the human innate immune system via Toll-like receptor 9. Such feedback
could generate a selective pressure to eliminate CpG dinucleotides. At the same
time, altering the number of CpGs could effect the codon usage bias of arginine
codons, since two thirds of these codons start with CpGs. If such a pressure were
strong enough and arginine not particularly essential, one might even imagine cases
where the amino acid itself would change, in a way that might be mistaken for
positive selection at the protein level if that site were examined in isolation. As
shown in Greenbaum et al. (2014), such a pressure may also exist in an RNA virus,
where elimination of the CpG dinucleotide was detectable in the sequence history
of influenza and where the codon bias of arginine also was altered as a conse-
quence. This non-random evolution was associated with avoiding motifs that may
be detectable (Jimenez-Baranda et al. 2011).

Hence there are at least three possible selective effects: a virus may alter repli-
cation efficiency by adopting host codon usage, detectability by altering chemical
signatures that bind to host immune receptors, and adaptation via mutations that
alter amino acids. We have recently developed an approach from statistical physics
which is particularly useful in quantifying the first two of these effects, while
offering a general program for analyzing sequences evolving under these global
pressures and, therefore, broadly separating the contributions from all three types of
effects. The goal is to quantify how much information one can superimpose the
nucleotide sequence, at fixed amino acid sequence, thanks to the degeneracy of the
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genetic code. The virus has to avoid a global pressure, such as an innate immune
receptor targeting a given nucleotide word or phrase, while keeping its capability to
make both viable and fit proteins, and, at the same time, operating under a host
codon bias that may differ from its own.

To quantify this selective pressure acting in a coding “context” we use a random
codon model (RCM) with a given codon usage and fixed amino-acid sequence. The
degeneracy of the genetic code allows a number of possible genomes (sequences of
codons compatible with the fixed amino-acid sequence) to code for the same
protein. We associate to this number an entropic force allowing multiple synony-
mous mutational paths to the viral sequences in the course of evolution. We then
quantify the change in entropy associated with an alteration in the number of
possible genomes once a reasonable set of biological and physical constraints are
imposed on a virus, such alteration is the pressure associated with moving the virus
from an entropically favored configuration to a less favored one due to the external
pressure exerted by the innate immune system on nucleotide phrases. In this way,
we can infer when a virus is operating under a significant external pressure, since it
will be in a lower probability state than the maximum entropy configuration.

In the following we review the statistical physics approach we have introduced
in Greenbaum et al. (2014) to characterize the pressure associated to the number of
occurrence of small nucleotidic motifs. We will start by computing for the RCM the
entropy of sequences as a function of the number of occurrences of one particular
dinucleotide motif. Then we draw the occurrences of the motifs sampled on the true
sequence, which will correspond to a point in the distribution. The corresponding
entropy will tell us how much the set of sequences is reduced or constrained by the
presence of the motifs. We will define a ‘pressure’, equal to the derivative of the
distribution in that point, to quantify the degree of such a constraint. We will study
the selective pressures on all the dinucleotidic motifs in influenza and HIV viruses
of different subtypes for a set of coding regions. The characterization of a given
genomic viral sequence in term of the selective pressure, which is an extensive
parameter and in particular does not depend on the length of the sequence, will
allow us to compare all such cases. Moreover, as detailed in Greenbaum et al.
(2014) the selective pressure can be followed during the evolution of a virus which
adapts to a human host, and it can be shown to evolve to reach an equilibrium
value. We will finally focus on CpG motifs and compare the selective pressures on
different viruses.

In a second part of the chapter which contain new results we will extend the
approach in several directions: First we will introduce a technique based on
Monte-Carlo simulation to evolve in silico a sequence, starting from an initial,
non-equilibrium selective pressure, to the final equilibrium value. Secondly we will
also extend the approach to more motifs. In this way we will obtain a surface in a
multi-dimensional space. Finally we will discuss how a selective pressure alters the
space of coding sequences, in particular the loss in entropy due to a selective
pressure can be associated to an increase of homology between two random
sequences under the same selective pressure.
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2.2 Random Codon Model: Definitions and Notations

We review here the approach introduced in Greenbaum et al. (2014). The idea is to
quantify the motif frequencies in a given sequence with respect to what is expected
from a random model (RCM) where the only constraints are the fixed amino acid
sequence and the codon bias. We start with particular coding sequence:

�C ¼ f!C1; !C2; . . .; !CLg ; ð1Þ

where !Ci the ith codon coding for the ith amino-acid !ai, and L is the number of
amino-acids in the sequence. �C can be seen as a sequence of 3$ L nucleotides. Let
!ci;‘ denote the ‘ nucleotide in codon i, with ‘ ¼ 1; 2; 3, i.e. !Ci ¼ f!ci;1;!ci;2;!ci;3g. In
the following we will label a nucleotide c with two indices, e.g. ci;‘ to indicate the
codon position i and the position ‘ of the nucleotide in the codon, or, alternatively,
with only one index to refer to its absolute position along the sequence, e.g. cj,
j ¼ 1. . .3L. We therefore have:

�C ¼ f!c1;1;!c1;2;!c1;3;!c2;1;!c2;2;!c2;3. . .;!cL;1;!cL;2;!cL;3g ¼ f!c1;!c2; . . .!c3Lg : ð2Þ

We generate random sequences C ¼ fC1;C2; . . .;CLg coding for the same
amino acids as �C, such that each codon in the random sequence, Ci ¼
fci;1; ci;2; ci;3g (coding for ai), has a probability equal to the codon bias pðCijaiÞ. At
most six codons Ci have a non-zero probability for a given ai. Codons are drawn
independently and at random, and the probability of C is simply the product of the
probabilities of the codons,

pðCÞ ¼
YL

i¼1

pðCijaiÞ : ð3Þ

A motif of length K is a sequence of K characters among fA;C;G; Tg, which we
denote by m ¼ ðm1;m2; . . .;mKÞ. We want to compare the number of occurrences
of this motif in the natural sequence,

!Nm ¼
X3L%Kþ 1

j¼1

YK%1

k¼0

d!cjþ k ;mk ; ð4Þ

to the average number of occurrences of the same motif in the RCM model,

hNmi ¼
X

C

pðCÞ
X3L%Kþ 1

j¼1

YK%1

k¼0

dcjþ k ;mk : ð5Þ

Here, dc;m is the Kronecker function: dc;m ¼ 1 if the nucleotides c and m are
identical, 0 otherwise. The first sum in Eq. (5) is computed over all possible codon
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sequences compatible with the amino-acid content. As this number is enormous
(typically, exponential–in–L), Monte Carlo simulations were used to compute such
average number in Li et al. (1985); in the following we will review the faster
method introduced in Greenbaum et al. (2014), based on the transfer matrix
approach (Onsager 1944). We will also need to determine whether any difference
between N̂m and hNmi is statistically meaningful or not. To do so, we will consider

hN2
mi ¼

X

C

pðCÞ
X3L%Kþ 1

j¼1

YK%1

k¼0

dcjþ k ;mk

 !2

; ð6Þ

and compare hNmi% !Nm to the statistical fluctuation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2

mi% hNmi2
q

within the
random codon model.

2.3 Statistical Physics Approach: Partition Function

A way to calculate the moments of the distribution of the number of motifs in the
random model, borrowed from statistical physics, is to introduce the so-called
partition function:

ZðxÞ ¼
X

C

pðCÞ exp x
X3L%Kþ 1

j¼1

YK%1

k¼0

dcjþ k ;mk

 !

: ð7Þ

The derivative

NmðxÞ ¼
@ log ZðxÞ

@x
; ð8Þ

gives the average number of occurrences of the motif for the fixed parameter x. In
particular,

hNmi ¼
@ log ZðxÞ

@x

""""
x¼0

ð9Þ

is the average number of times the motif is found in the unbiased RCM, as can be
verified by comparing with Eq. (5). Similarly, the second derivative of the partition
function gives access to the variance of the number of motifs:

hN2
mi% hNmi2 ¼

@2 log ZðxÞ
@x2

""""
x¼0

; ð10Þ
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as can be verified by comparing with Eq. (6). More generally all the moments of the
distribution of the number of motifs can be calculated from the derivatives of the
partition function in x ¼ 0.

2.4 Constrained Model, Maximum Entropy Approach,
Legendre Transform and Selective Force

In this section the analogy with statistical physics is further developed, and we
show that the partition function introduced above can be considered for arguments
x 6¼ 0. Parameter x will play the role of a (selective) force, constraining the dis-
tribution of the codons in the RCM to have a given average number of occurrence
of the motif under consideration. Following the maximal entropy principle intro-
duced by Jaynes (1957) the least constrained, or maximal entropy distribution
PðCjxÞ capable of reproducing the average number NmðCÞ of occurrence of a motifs
has an exponential form of the type

PðCjxÞ ¼ 1
ZðxÞ

YL

i¼1

piðCijaiÞ $ exp xNmðCÞð Þ; ð11Þ

where, for simplicity, we have assumed that the codon biases are not much affected
by the constraint. For x ¼ 0 one recovers the unconstrained case of Eq. (3). Our aim
is to find, for any given genomic sequence !C, the value of x for which the average
number of the number of occurrences of a motif with the distribution PðCjxÞ
corresponds to the number of motifs !Nm present in the sequence. Parameter x
therefore satisfies the equation:

X

C

PðCjxÞ
X3L%Kþ 1

j¼1

YK%1

k¼0

dcjþ k ;mk ¼ !Nm ð12Þ

which is the generalization of Eq. (5) to the biased case, x 6¼ 0:
In statistical physics a Legendre transform allows one to change the description

of a system containing a fixed number of particles (Canonical Ensemble) to a
system in which the number of particle can fluctuate around an average value
determined by the choice of the chemical potential (Grand Canonical Ensemble).
Using the same description, here, we can describe the RCM by the free energy
potential, i.e. minus the logarithm of the partition function, at fixed number of
occurrence of a motifs Nm, or by the entropy at fixed value of the parameter x. x is
an intensive parameter, similar to the chemical potential, which we call selective
pressure. In the following we show how the Legendre transform relates the two
potentials and how they are equivalent in the limit of long sequences. One can
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rewrite the partition function in Eq. (7) by summing together all sequences having
the same number of occurrences of a motif:

ZðxÞ ¼
X

Nm ' 0

XðNmÞ exp ðx NmÞ: ð13Þ

where XðNmÞ is the weighted number of nucleotide sequences (at fixed amino acid
content) having Nm motifs, as each sequence is weighted by the product of the
codon biases of its codons. We consider the logarithm of XðNmÞ, denoted by
rðNmÞ ¼ log XðNmÞ. In the case of very long sequences the sum over Nm in (13) is
dominated by its maximal contribution, obtained for the value of Nm such that

@rðNmðxÞÞ
@Nm

¼ %x: ð14Þ

We therefore obtain

log ZðxÞ ( x NmðxÞþ rðNmðxÞÞ: ð15Þ

or equivalently

rðNmðxÞÞ ¼ log ZðxÞ % xNmðxÞ: ð16Þ

which expresses the Legendre relation between the function rðNmÞ and minus the
free energy, log ZðxÞ.

What is the interpretation of rðNmÞ defined above? If the sequences were not
weighted by the product of their codon biases, X would a number of sequences, and
r would be an entropy. Due to the presence of the multiplicative weights, r defined
above is a relative entropy with respect to the unbiased distribution. Indeed, it is
easy to check from Eq. (16) that r vanishes for x ¼ 0. We therefore introduce the
absolute entropy of the unconstrained RCM,

r0 ¼ %
XL

i¼1

X

Ci

piðCiÞ log piðCiÞ ¼
X20

a¼1

Na %
X

Ca

pðCajaÞ log pðCajaÞ

 !

ð17Þ

where Ca are all the codons coding for the amino acid a, a ¼ 1. . . degðaÞ; where
degðaÞ is the degeneracy of the amino acid. A simple upper bound of r0 is obtained
by considering all amino acids as having the maximal degeneracy of 6 and all the
corresponding codons as equiprobable; in this case pðCajaÞ ¼ 1=6 and
r0 ) L log 6: A more precise upper bound is to take into account the degeneracy of
each amino acid degðaÞ but still considering each codon coding for the same amino
acid as equiprobable; we then obtain the upper bound r0 ¼

P
a Na log degðaÞ:

The absolute entropy of sequences, defined as the logarithm of the typical
number of sequences available under pressure x, is then given by
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rtotðxÞ ¼ r0 þ rðNmðxÞÞ : ð18Þ

A sketch of the absolute entropy curve is plotted as a function of Nm in Fig. 1.
The selective pressure x associated to a specific number of occurrence of motifs !Nm

is minus the derivative of the curve rðNmÞ in !Nm, see Eq. (14). As shown in Fig. 1
the maximal value of the curve corresponds to the unconstrained case x ¼ 0 and is
the unconstrained entropy r0. Negative values of x constrain the distribution to a
smaller number of occurrence of the motif with respect to the unconstrained case,
while positive values of it constrain the distribution to a larger number of occur-
rences of the motif.

In the following section we show how to derive the curve sketched in Fig. 1 by
computing, using the transfer matrix technique, the partition function and its
derivative, the number of motifs, as a function of x and use Eqs. (16, 18) to obtain
the entropy curve. The selective force !x for a given genome is then obtained from
minus the derivative of the entropy curve in !Nm:

2.5 Practical Implementation with the Transfer
Matrix Approach

We calculate the normalization constant ZðxÞ, Eq. (7), using the transfer matrix
formalism. We denote by C½n : nþK % 1+ the subsequence of K nucleotides in C,
starting at position n and ending up at position nþK % 1. The number of occur-
rences of the motif m ¼ ðm1;m2; . . .;mKÞ in a random sequence C, see Eq. (5), can
be written as

Fig. 1 Sketch of the entropy r in the random codon model as a function of the number of
occurrences of the motif, Nm. The selective pressure x associated to a given genomic sequence C
with a number of motifs !Nm is the derivative of the entropy r in Nm ¼ !Nm. Three cases are shown:
a typical value !Nm corresponding to the unconstrained case x ¼ 0 (black, top of entropy curve); !Nm

atypically small, corresponding to a selective pressure x\0; atypically large !Nm, corresponding to
a selective pressure x[ 0
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NmðCÞ ¼
X3L%Kþ 1

n¼1

dC½n : nþK%1+;m ð19Þ

The subsequence C½n : nþK % 1+ spreads over at most Kc ¼
IntððK þ 1Þ=3Þþ 1 contiguous codons Ci in C, where Int denotes the integer
part. Consider for instance the case of dinucleotide motifs m, for which K ¼ 2 and
Kc ¼ 2 according to the formula above. The two nucleotides of such a motif can
indeed be found

• at the positions 1, 2 of a single codon, say, Ci; then we have m1 ¼ ci;1, m2 ¼ ci;2.
• at the positions 2, 3 of codon Ci; then we have m1 ¼ ci;2, m2 ¼ ci;3.
• at the position 3 of codon Ci, and position 1 of codon Ciþ 1; then we have

m1 ¼ ci;3, m2 ¼ ciþ 1;1.

For the sake of simplicity we assume that K ¼ 2; the case of longer motifs can
be treated similarly. According to the discussion above we can write

NmðCÞ ¼
XL%1

i¼1

Fðm;Ci;Ciþ 1Þ ; ð20Þ

where

Fðm;Ci;Ciþ 1Þ ¼ dm1;ci;1dm2;ci;2 þ dm1;ci;2dm2;ci;3 þ dm1;ci;3dm2;ciþ 1;1 ð21Þ

for all i ¼ 1; . . .; L% 2 and

Fðm;CL%1;CLÞ ¼ dm1;cL%1;1dm2;cL%1;2 þ dm1;cL%1;2dm2;cL%1;3 þ dm1;cL%1;3dm2;cL;1

þ dm1;cL;1dm2;cL;2 þ dm1;cL;2dm2;cL;3 :
ð22Þ

The expression for F in the bulk of the sequence (i) L% 1) avoids double
counting of the motif occurrences.

We now rewrite ZðxÞ as a sum over the possible codons corresponding to the
same amino acids as in the viral sequence C0:

ZðxÞ ¼
X

C

YL

i¼1

piðCijaiÞ

 !

exp½x
XL%1

i¼1

Fðm;Ci;Ciþ 1Þ+ ð23Þ

¼
X

C

YL%1

i¼1

ðpiðCijaiÞ exp½x Fðm;Ci;Ciþ 1Þ+Þ pLðCLjaLÞ; ð24Þ
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where piðCijaiÞ is the codon bias for codon Ci (coding for the ith amino acid ai). Let
us now define L ‘transfer’ matrices Mi, i ¼ 1; . . .; L. The dimension of matrix Mi is
deg(Ci)$ deg(Ciþ 1), where deg(C) is the degeneracy of codon C. The entries of Mi

are given by, for all i ¼ 1; . . .; L% 2,

MiðCi;Ciþ 1Þ ¼ piðCijaiÞ exp½x Fðm;Ci;Ciþ 1Þ+ ; ð25Þ

and

ML%1ðCL%1;CLÞ ¼ pL%1ðCL%1jaL%1Þ exp½x Fðm;CL%1;CLÞ+pLðCLjaLÞ : ð26Þ

Then, we observe that

ZðxÞ ¼
X

C1;C2;...;CL%2;CL%1

M1ðC1;C2ÞM2ðC2;C3Þ. . .ML%2ðCL%2;CL%1ÞML%1ðCL%1;CLÞ

¼
X

C1;CL

ðM1 $M2 $ . . .$ML%2 $ML%1ÞðC1;CLÞ ;

ð27Þ

where $ denotes the matrix product in the formula above. This formula shows that
Z can be computed in a time growing linearly with L only. This is a huge gain
compared to the original expression of Z, Eq. (7) in main text, which sums up an
exponentially large–in–L number of codon configurations.

In practice we define the deg(CL)-dimensional vector vL, with entries vLðCLÞ ¼ 1
for all codons CL coding for amino-acid aL. Then we compute the vector

vL%1ðCL%1Þ ¼
X

CL

ML%1ðCL%1;CLÞvLðCLÞ : ð28Þ

Then, we sum over all possible values for the ðL% 1Þth codon, CL%1:

vL%2ðCL%2Þ ¼
X

CL%1

ML%2ðCL%2;CL%1Þ vL%1ðCL%1Þ: ð29Þ

The process is iterated until the first codon:

v1ðC1Þ ¼
X

C2

M1ðC1;C2Þ v2ðC2Þ: ð30Þ

Finally, we obtain the value of the normalization constant through

ZðxÞ ¼
X

C1

v1ðC1Þ: ð31Þ
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When the motif is of longer length, and overlap with Kc contiguous codons,
Eq. (20) has to be modified. In general one can write

NmðCÞ ¼
XL%Kc þ 1

i¼1

Fðm;Ci;Ciþ 1; . . .;CiþKc%1Þ ; ð32Þ

where the function F is an obvious extension of Eqs. (21) and (22). The transfer
matrix method, shown above can still be used, but at a price of introducing larger
transfer matrices Mi.

2.5.1 Example on Two Very Short Sequences

We will first apply the above framework on two simple examples: the derivation of
the entropy associated to the number of motifs CpU (the letter p indicates that the
nucleotide C and U are consecutive on the phosphate backbone) for the sequences
L ¼ 2 or L ¼ 3 amino acid of type proline, which we will indicate as C1 ¼
Pro% Pro and C2 ¼ Pro% Pro% Pro. The proline is a a ¼ 1. . . degðProÞ ¼ 4
time degenerate amino acid coded by the following codons: C1 ¼ CCU,
C2 ¼ CCC, C3 ¼ CCA, C4 ¼ CCG. Considering an uniform codon bias pðCaÞ ¼
1=4 the average numbers of occurrence of the motif CpU in the unconstrained case
is Nmh i ¼ 0:5 for C1 and Nmh i ¼ 0:75 for C2.

In Fig. 2 we plot the total entropy rtotðNmÞ versus the number Nm of occurrences
of CpU for C1 and C2. The maximum of the entropy always corresponds to the
unconstrained case x ¼ 0, and we obtain r0 ¼ L log ð4Þ giving 2.77 and 4.16 for
the two sequences. In Fig. 2 (left) we plot the entropy for C1. The two extreme
points of the entropy curve corresponds to Nmh i ¼ 0; r ¼ 2:197: there are e2:197 ¼
9 sequences compatible with ProPro without CpU, and for Nmh i ¼ 2; r ¼ 0: there
is a single sequence compatible with ProPro and including 2 CpU. For Nmh i ¼ 1 we
obtain r ¼ 2:472 and er is larger than 6 (the number of sequences compatible with
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Fig. 2 Entropy rtot of sequences C1 ¼ Pro% Pro (left) and C2 ¼ Pro% Pro% Pro (right) as
functions of the average number of occurrences of the motif CpU
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ProPro with one CpU). This is because Nmh i does not coincide with Nm. As
illustrated above we calculate the entropy of sequences that contain in average Nmh i
repetitions of the motif, and not exactly Nm repetitions of the motif. Only for large
values of N we expect that Nm will coincide with Nmh i up to negligible relative
fluctuations. The entropy of sequences containing exactly 0 times the motif or two
times the motif coincides with what we calculate because there is only one way to
obtain zero time the motif (neither in the first nor in the second codons) or two
times the motif (both in the first and in the second codons). In Fig. 2 (right) we plot
the entropy curve for C2. The total entropy of sequences with zero occurrence of the
motifs is r’ 3:3 and the number of sequences with zero occurrence of the motif is
e3:3 ¼ 27. The number of sequences with 3 times the motif is exp ðrÞ, with r’ 0.

2.5.2 Illustration on a Influenza B Sequence

In Fig. 3 we show the entropy curve obtained for an influenza B sequence with
respect to the dinucleotide motifs CpG (left) and ApC (right) and with the segment
codon bias. Influenza B is a virus for which humans have been a natural host for
many centuries. As expected the number of CpG dinucleotides varies little over
time. The green line correspond to the maximal unconstrained entropy
r0 ’

P
a Na degðaÞ which is the same in the two cases. The red value correspond to

the occurrence of number of CpG and ApC motifs in a typical sequence for
Influenza B. For ApC the curve is quite flat (weak pressure x), hence the number of
occurrences of ApC dinucleotides may largely and randomly vary. On the contrary
for the CpG motif the selective force corresponding to the influenza B genomic
sequence is large and negative, indicating that there is an important selective
pressure to reduce the number of CpG in the sequence. The entropy of random
sequences with the same number of CpG motifs and the same selective pressure is
largely reduced with respect to the maximal, unconstrained value.
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Fig. 3 Left Entropy r of a influenza B isolate with its own codon bias for the dinucleotide CpG.
Right Entropy r of an influenza B isolate with its own codon bias for the dinucleotide ApC
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2.5.3 Finding Quickly the Right Value for x

An important problem is to find the values of the entropy and of x, hereafter called
!x, corresponding to the number !Nm of occurrences of the motif in the real virus
sequence. One way to do this is to compute the entropy, rðxÞ, and the average
number of occurrences, NmðxÞ, for many values of x on a grid and try to be as close
as possible to the data, i.e. choose !x such that NmðxÞ’ !Nm. A much faster procedure
is the following. Consider the function

GðxÞ ¼ log ZðxÞ % x!Nm: ð33Þ

Two important facts about G are:

• G is a convex function of x, as its second derivative is positive:

d2

dx2
GðxÞ ¼ N2

mðxÞ % NmðxÞ2 ' 0: ð34Þ

• the first derivative of G vanishes when x takes the value we are looking for,
since

d
dx

Gð!xÞ ¼ Nmð!xÞ % !Nm ¼ 0 : ð35Þ

Hence, G has a unique minimum in x ¼ !x, and we can find it very quickly with
standard optimization techniques, e.g. the Newton-Raphson algorithm. Here is the
procedure:

1. Start with x ¼ 0
2. Compute the first and second derivatives of G in x, that is, D1 ¼ NmðxÞ % !Nm

and D2 ¼ N2
mðxÞ % NmðxÞ2.

3. compute the new value of x (which would be exact if G were a parabolic
function)

x ! x% D1

D2
: ð36Þ

4. Iterate step 2 until convergence is achieved.

As the parabolic approximation is generally good, we can expect that the pro-
cedure will converge very fast, in a few iterations.
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2.6 Results on Selective Pressures on Viral Sequences

In Greenbaum et al. (2014) we have applied the above approach to influenza and
HIV viral sequences. Here we recall some of the main results.

2.6.1 Influenza

We have first computed the selective force on all 16 possible dinucleotide motifs for
the eight longest open reading frames from the lineage of H1N1 viruses that des-
cend from the 1918 pandemic influenza. In Fig. 4 we show the results focusing on
four dinucleotides most frequently found to be anomalous motifs and only on the
PB2 gene influenza, which is the longest gene. We observe that

• The motif with the largest negative selective pressure is dinucleotide CpG; for
this motif there is a clear evolution of the selective pressure from year 1918
when H1N1 entered the human population to much lower values, corresponding
to influenza B, which has been in the human population since hundreds of years.
The selective pressure has become more and more negative and the number of
CpG dinucleotides has been lowered in the course of the viral evolution to adapt
the viral sequence to the human host and avoid recognition by the immune
system, which would recognize large numbers of CpG motifs.

• The vast majority of motifs, not represented in Fig. 4, see Fig. 2a of Greenbaum
et al. (2014), have x ¼ 0 when using the segment codon bias and x going from
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Fig. 4 A comparison of the selective pressures when calculated using the segment and human
codon biases for the four dinucleotides CpA, CpG, UpA and UpA for the PB2 gene in influenza.
These quantities are calculated for the 1918 H1N1, the H1N1 segments from 2007 and for
Influenza B. In the later two cases the median values are shown. The arrows follow the evolution
of the flu from the H1N1 1918 influenza through 2007 to influenza B (present in humans for a very
long time)
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x ¼ %1 to x ¼ 1 when using the human codon bias. This result shows that even
if the virus codon bias is very similar to the one of the host it is not yet
completely equivalent.

• The dependence of the selective force on the segment similarity is not very
large, as shown here for PB2, it is only noticeable for CpG dinucleotides.

2.6.2 HIV

For HIV we show in Fig. 5 the selective force on six dinucleotide motifs for the Pol
gene. Points of interest include:

• As for influenza sequences the motif with largest and negative pressure is CpG.
• Likewise, the vast majority of motifs have x ¼ 0 when using the human codon

bias and x going from x ¼ %1 to x ¼ 1 when using the human codon bias.
• There is some dependence on the type of protein and on the region of the

sequence (not shown here, see Fig. 4d and Supplementary material in
Greenbaum et al. (2014)), likely reflecting that HIVs genome codes for multiple
proteins and, as a retrovirus, is targeting by many innate defense mechanisms
(Vabret et al. 2016).

• There is not much dependence on the HIV subtype, showing that there is not a
large evolutionary trend between different types of HIV virus which therefore
seems to be already in equilibrium with respect to the small dinucleotide motif
usage. This likely reflects that whereas influenza entered humans from avian and
swine hosts, HIV came from primates, which are closer evolutionary species.
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Fig. 5 A comparison of the selective pressures when calculated using the segment and human
codon biases for six dinucleotides for the for the Pol genes in HIV. These quantities are calculated
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2.6.3 Comparison of Different Viruses: Relationship Between
the Selective Pressure and the Virulence of the Virus

The advantage of the approach presented here is that the forces associated with a
given genomic sequence is an intensive variable; it is then independent of the length
of the sequence and therefore different viral sequences can be compared. In Fig. 6
we compare the selective forces on CpG motifs for the 1918 H1N1 influenza
sequence, for the median sequence from 2007 H1N1, and for the median sequence
of recent Ebola virus and for the HIV1 and HIV2 median Pol sequences.
Interestingly Ebola, 1918 H1N1 and 2007 H1N1 cluster together at values of the
selective force which are weakly negative, while for influenza B and HIV they are
much larger and negative. There is therefore a large correlation between a value of
the selective pressure larger than the ‘stationary’ equilibrium value for influenza B
and the degree to which these sequences have evolved in humans or closely related
species, which may also be associated with an aberrant innate response.

3 Further Applications of the Statistical Physics Approach
to Detect Anomalous Motif Usage

3.1 Monte Carlo Simulations of the Evolutionary Dynamics
of Sequences

In Greenbaum et al. (2014) we have investigated a simple general dynamical model
which describes the evolution of the selective pressure in the H1N1 flu virus to
reach the equilibrium value:
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s
dN
dt

¼ %xðNmðtÞÞþ xeq ð37Þ

where NðtÞ is the number of occurrences of motif m at time t. The underlying idea
was directly inspired from the so-called Langevin relaxation equation of statistical
physics: the dynamical variable (here, the number of motifs) relaxed to an equi-
librium value where the forces acting on this variable (here, the selective and
entropic pressures) balance each other. We assumed that influenza B is at equi-
librium, given that the number of CpG motifs in that virus did not change much
over the same time scales under which a substantial change was observed in H1N1.
We therefore estimated the equilibrium pressure xeq as the mean value of the
pressures computed for the set of influenza B sequences. We chose for initial
condition the H1N1 sequence from 1918, which had a well defined number of
motifs, N0, and the corresponding pressure, x0.

We have solved Eq. (37) and obtained the instantaneous selective pressure
xðtÞ , xðNðtÞÞ, where t is the years of evolution from 1918. The time scale s was
tuned to make xðtÞ fit best with H1N1 data over the available time range. As the
pressures were (in absolute value) of the order of the unity, s could be interpreted as
the typical times it takes for the virus to decrease or increase its number of motifs by
unity (see Fig. 3 in Greenbaum et al. (2014) and the values of xB, x0, and s given in
Table 1 of this reference).

Here we report new Monte Carlo (MC) simulations of a microscopic mutational
model for the sequence of codons (with fixed amino-acid content) under constant
selective pressure, denoted by xs and supposed to be negative. The MC algorithm
works in discrete time T ¼ Dt; 2Dt; 3Dt; . . . as follows, from an initial sequence
C ¼ ðc1; c2; . . .; cLÞ of codons at time T ¼ 0:

1. at each time step T ! T þDt a site i is chosen uniformly at random between 1
and L;

2. a codon C0 corresponding to the ith amino acid ai is chosen at random with
probability piðC0jaiÞ. If C0 ¼ Ci the algorithm loops to step 1.

3. if C0 6¼ Ci we compute the change in the number of motif occurrences DNm. The
move Ci ! C0 is always accepted if DN) 0, and is accepted with probability
expðxsDNmÞ if DNm [ 0. The algorithm then loops to step 1.

This microscopic dynamics obeys detailed balance (i.e. corresponds to a general
time-reversible process) and is guaranteed to converge to equilibrium at large
enough times. We show in Fig. 7 typical runs of the MC algorithm for various
values of the pressure (see caption). We compare the behaviour of NmðTÞ with the
solution of (37), and observe a very good agreement of the two curves provided the
elementary time-step is chosen to be Dt’ s=250.

The Monte Carlo algorithm can be used to artificially evolve sequences, starting
from an initial sequence, say, the 1918 H1N1. As time goes on, the content in
amino acids remains fixed, but the nucleotidic sequence changes. When the MC
dynamics is stopped the resulting codon sequence may have very different
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properties (compared to the initial sequence) in term of stimulation of the immune
response, and can in particular be much less immuno-stimulatory, if the number of
CpG motifs has been reduced under the action of the selective pressure.

3.2 Entropy of Multiple Motifs

To calculate the entropy associated with the number of occurrences of several
motifs, one can extend the formalism of Sect. 2. As an example, for two dinu-
cleotides the partition function will vary over two parameters ðx1; x2Þ corresponding
to dinucleotide motifs m1 ¼ ðm11;m12Þ and m2 ¼ ðm21;m22Þ. The partition function
naturally becomes

Zðx1; x2Þ ¼
X

C

pðCÞ exp x1
XL%1

i¼1

M1i Ci;Ciþ 1ð Þþ x2
XL%1

i¼1

M2i Ci;Ciþ 1ð Þ

" #

; ð38Þ

where M1iðCi;Ciþ 1Þ is the previously defined matrix MiðCi;Ciþ 1Þ for the motif
m1., and M2i its counterpart for motif m2. The Legendre transformation will become

rðx1; x2Þ ¼ log Zðx1; x2Þ % x1Nm1ðx1; x2Þ % x2Nm2ðx1; x2Þ; ð39Þ

Fig. 7 Monte Carlo dynamics compared to average number of CpG motifs for three constant
selective pressure values: 0, −0.119, and −1.19. These pressure values are shown in green, blue,
and red respectively. In the last case the selective pressure was roughly the same as the one of the
1918 H1N1, which is the initial condition for all three trajectories
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where

Nm1ðx1; x2Þ ¼
@

@x1
log Zðx1; x2Þ ð40Þ

and likewise for Nm2ðx1; x2Þ. Then the average number of occurrences of motif m1
can be computed from the partial derivative of Z with respect to x1,

Nm1h i ¼
@

@x1
log Zðx1; x2Þ

""""
x1¼x2¼0

: ð41Þ

Similarly, the joint moments of the numbers of occurrences of m1 and m2 can be
obtained from higher derivatives with respect to x1 and x2.

An application of the di-motif formalism is shown in Fig. 8, where we plot the
entropy surface as a function of NUpA and NCpG. The value of the entropy con-
strained to the measured number of occurrence NUpA and NCpG in a particular
sequence is smaller than the unconstrained, maximal value. The pressures xApCþCpG

and xCpGþApC are the derivative of the entropy curve along the two axes.
An interesting question is if the selective pressures for multiple motifs are

coupled, i.e. are different from the values obtained by considering one motif at a
time. In Fig. 9 we compare the uncoupled (red dots) and coupled (blue) pressures
for four motifs in PB1 segment. Results show that the UpA motif is essentially
independent from the CpG one, as the values of the pressure for the uncoupled
RCM are very similar to the one found for the coupled UpA + CpG RCM. On the
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contrary the selective pressures on CpA and UpG are not independent from the one
of CpG. This coupling presumably originates from the fact that CpA and UpG are
the mutational partners of CpG: diminishing the number of CpG motifs naturally
increases the number of its mutational partners.

3.3 Geometrical Nature of the Sequence Space

So far, we have computed the entropy, that is, the log of the effective number of
sequences (under some pressure). However, we do not have any information about
the way those sequences are arranged in the configuration space. Are they spread
over the whole configuration space or are they clustered in one tiny region? Our
statistical physics formalism can however help us gain some intuition about the
spatial organization of sequences as shown below.

3.3.1 Two-Sequence Formalism

Consider the following partition function, for a two-sequence system (instead of
one-sequence system we have focused on so far):

Z2ðx; x0; yÞ ¼
X

C;C0f g

YL

i¼1

piðCijaiÞpiðC0
i jaiÞ exp x

XL%1

i¼1

MiðCi;Ciþ 1Þþ x0
XL%1

i¼1

MiðC0
i ;C

0
iþ 1Þþ y

XL

i¼1

dCi;C0
i

" #

ð42Þ
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When y ¼ 0, we simply have two independent sequences, one under pressure x
and one under pressure x0:

Z2ðx; x0; yÞ ¼ ZðxÞ $ Zðx0Þ ; ð43Þ

where Zð:Þ is the partition function we have considered so far.
When y is not equal to zero, the two sequences are coupled according to their

similarity. The weight associated to a set of two sequences is proportional to
exp ðyn2Þ; here n2 is the number of codons equal on both sequences, it is also equal
to L% D where D is the Hamming distance between the two sequences (measured
at the codon level, not at the base level).

We now define the average values of the number of motifs in each sequence, the
average value of common codons, n2, and a new entropy, r2:

Nmðx; x0; yÞ ¼
@ log Z2

@x
ðx; x0; yÞ; N 0

mðx; x
0; yÞ ¼ @ log Z2

@x0
ðx; x0; yÞ;

n2ðx; x0; yÞ ¼
@ log Z2

@y
ðx; x0; yÞ;

r2ðx; x0; yÞ ¼ log Z2ðx; x0; yÞ % xNmðx; x0; yÞ % x0N 0
mðx; x

0; yÞ % yn2ðx; x0; yÞ :
ð44Þ

If we choose the two pressures x and x0, and we let y vary, then we can plot in a
parametric way the entropy r2 as a function of n2. This way, we will know how
many pairs of sequences are located at a distance d ¼ L% n2. In the next paragraph
we will see how this distance-dependent entropy changes as the pressures change.
In general, we can choose x ¼ x0 as both sequences are under the same pressure.

From a practical point of view, the calculation of Z2 can be done along the same
lines as the one of Z. The only difference is that the vectors v to be iterated are not
functions of Ci only, but are now functions of both Ci;C0

i . So the maximal number
of components of v is 36 instead of 6, making the computation only slightly slower.

3.3.2 Practical Implementation: Entropy as Function of Distance
Between Sequences

We consider the following problem. We choose the codon bias, say, the human one,
and one virus sequence, say, 1918 H1N1, and one motif, say, CpG. Let !Nm be the
number of motifs in the viral sequence, which defines the amino-acid set and the
allowed codons, i.e. the probabilities piðCijaiÞ for all i. We want to know how many
sequences (weighted by the codon bias) there are a that share n2 codons. We
consider the function
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Gðx; y; n2Þ ¼ log Z2ðx; x; yÞ % 2x!Nm % yn2: ð45Þ

Note that we have chosen x ¼ x0 here and note also the presence of the factor 2.
The variable n2 is a positive parameter, smaller than the sequence length (measured
in codons). Now, for any n2, we can optimize G over x and y using Newton’s
method. The result is

r2ðn2Þ ¼ min
x;y

Gðx; y; n2Þ : ð46Þ

The interpretation is that r2ðn2Þ is the entropy of sequences with similarity
(number of equal codons) n2 (we neglect here the contributions coming from the
fact that the average number of motifs depends on y). The maximum of the curve
will be reached in n-2, corresponding to y ¼ 0 and to the same value of x and the
same entropy found in the standard one-sequence calculation. If n2 6¼ n-2, x will take
a different value.

As an example of how one can interpret our results in terms of the geometry of a
space of sequences, we calculate the sequence similarity for the genes of HIV and
influenza. This measure shows the typical number of shared codons for two
sequences drawn randomly from the distribution of possible sequences. In this case,
the quantity is computed for each individual sequence when these sequences are
under the derived entropic force. The average similarity (number of identical
codons) between two random sequences drawn from the same codon distribution is
defined as

n2ðxÞ ¼
X

C;C0

PðCjxÞ PðC0jxÞ
XL

i¼1

dCi;C0
i

ð47Þ

where dCi;C0
i
equals one if the two codons at the i-th position are equal and is zero

otherwise. Sequences with a large degree of similarity are close together in the
space of possible sequences. In our case, for individual sequences, this would
measure how close together sequences are with the same amino-acid distribution
once a pressure is applied to a motif, or a set of motifs.

We plot the sequence similarity as a function of the entropy for the PB2 segment
of the H1N1 virus in Fig. 10 and in Fig. 11 for the Pol gene in HIV. In much the
same way as what was previously observed for the selective pressures, the simi-
larity between sequences calculated with the RCM using the human codon bias are
different to the ones obtained using the virus codon bias. The similarity is generally
lower when the human codon bias is used for the background distribution rather
than the bias for that segment. Overall while there is more similarity between
random sequences when the segment bias is used, the difference in similarity
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between motifs is much larger when the human bias is used. In influenza B, with
respect to the segment codon bias, the difference in similarity between CpG and
other dinucleotides is much lower than the difference for the human bias.

As a general trend, for a fixed codon bias, large selective pressures lead to
greater degree of similarity between sequences. The pressures, by making
sequences less random, make the resulting distribution of sequences more con-
centrated. As expected, this effect is strong for CpG.
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4 Out-of-Frame Stop Codons and the Ambush Hypothesis

4.1 The Ambush Hypothesis: Brief Review of Literature

Considering the deleterious effects of ribosome frame-shifts during translation
Seligmann and Pollock (2004) introduced the Ambush Hypothesis according to
which such deleterious effects can be avoided owing to the existence of off-frame
STOP codons (OSC). This hypothesis was initially tested by Seligmann and
Pollock in vertebrate mitochondrial genes (Seligmann 2010; Seligmann and Pollock
2004) and later extended to the case of prokaryotic genomes (Morgens et al. 2013;
Tse et al. 2010; Wong et al. 2008). The latest study of the abundance of OSCs in
prokaryotic genomes (Morgens et al. 2013) led to the conclusion that there was no
statistical evidence for the existence of a correlation between a codon’s usage and
its propensity to form OSCs which would have been a strong evidence for the
validity of the Ambush Hypothesis. Indeed, in all previous studies, the occurence of
OSCs was largely dominated by the AT content of the studied genomes, and
clear-cut conclusions were difficult to extract.

Here, we re-address this question along two different lines. First, we adopt a
different approach in comparison with previous statistical studies. Our starting point
is that apparition of an OSC involves 2 adjacent codons and thus measurement of
their abundance should involve the use of the statistics of apparition of dicodons
instead of mere single codons. We therefore introduce the notion of dicodon bias
analogous to the well-known codon bias and refer this dicodon bias to a null model
in which successive codons appear in a non-correlated way (Coleman et al. 2008;
Long et al. 1998). We will adopt conventional notations for the frameshift of an
OSC: within a dicodon an OSC is of type

þ 1; if the OSC0S first nucleotide is the second nucleotide of the dicodon;
%1; if the OSC0S first nucleotide is the third nucleotide of the dicodon:

#

The study presented here is based on the use of the bacteria RefSeq database of
NCBI, from which 1852 genomes of single chromosome bacterial species have
been analyzed (the reduction in number of the RefSeq database was performed in
order to avoid over-representation of specific bacterial species since for instance
Escherichia coli species is represented by 173 strains in the initial database).

Secondly, since the outcome of the statistical analysis does not show any sig-
nificant bias supporting the Ambush Hypothesis across all genomes, we ask whe-
ther modifying the statistics of nucleotides is actually necessary to have many OSC.
To do so, we consider the random codon model of Sect. 4.2, and compute ana-
lytically within this model the distribution of distances to the first OSC after a
frameshift equal to þ 1 or %1. We show that the distribution of distances decay
very quickly as the distance increases, with an average distance of less than ten
codons for both frameshifts. Note that this value is robust against the choice of the
initial condition, i.e. also corresponds to the average distance to an OSC even if the
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frameshift takes place at any location in the coding sequence (not necessarily at the
beginning). Our theoretical result is corroborated by the statistical analysis of
genomic sequences, and thus strongly suggests that the Ambush Hypothesis is not
required to have many OSC.

4.2 Statistical Analysis of Dicodons Biases

4.2.1 Definitions and Notations

In order to quantitatively assess the occurrence of OSC within a genome we
introduce the general notion of an average dicodon bias hDCBai for dicodons
belonging to a particular class a; this average dicodon bias is defined as:

hDCBai ¼
X

a;a0
pða; a0Þ

X

c;c0
ðdcbðc; c0Þ % cbðcÞcbðc0ÞÞIaðc; c0Þ ð48Þ

Here c (resp. c0) stands for a codon and cbðcÞ (resp. cbðc0Þ) stands for the
corresponding codon bias according to its usual definition, i.e. for a given amino
acid a, if c codes for a, cbðcÞ is the probability of c being chosen over all possible
codons coding for a; ðc; c0Þ stands for the dicodon formed by c followed by c0 and
dcbðc; c0Þ stands for the dicodon bias of ðc; c0Þ. The notation a (resp. a0) stands for
the amino acid coded by c (resp. c0); pða; a0Þ stands for the probability of occurence
of the diamino acid (a,a0). Iaðc; c0Þ is an indicator of the membership of dicodon
ðc; c0Þ to a specific class a (to be specified below), and takes values 0 and 1
according to whether or not dicodon ðc; c0Þ belongs to class a. At fixed (a,a0) the
sum is performed over all codons c and c0 coding respectively for a and a0. The
definition of a dicodon bias is entirely analogous to the definition of a codon bias,
i.e. for a given diamino acid (a,a0) coded by ðc; c0Þ the dicodon bias for ðc; c0Þ is the
probability for ðc; c0Þ to be chosen over all possible dicodons coding for (a ,a0).

It should be pointed out that definition (48) of an average dicodon bias for
dicodons belonging to a specific class a is a direct measure of the excess of
appearance of dicodons belonging to class a with respect to the hypothesis of
uncorrelated appearance of codons forming the dicodons. In addition, this estimator
does not make any assumption about the statistics of di-amino acids, likely to be
correlated in real coding sequences. hDCBai can be conveniently rewritten as the
dot product of 2 vectors ~Y and ~Ca:

hDCBai ¼ ~Y . ~Ca ð49Þ
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where the components of ~Y and ~Ca are given by:

Yðc; c0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðc; c0Þ

p
Xðc; c0Þ; Caðc; c0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðc; c0Þ

p
Iaðc; c0Þ; ð50Þ

with:

Xðc; c0Þ ¼ dcbðc; c0Þ
cbðcÞcbðc0Þ % 1; xðc; c0Þ ¼ pða; a0ÞcbðcÞcbðc0Þ: ð51Þ

~Y and ~Ca are vectors of size 63$ 63 = 3969 corresponding to the formation of all
possible dicodons once excluded the codon TAG which codes for non standard
pyrrolysine amino acid only found in methanogenic archaea.

In order to calculate this average dicodon bias for each genome in the collection
of the 1852 genomes selected from the RefSeq database, we have extracted the
codon content of each CDS as well as its dicodon content; from those contents it is
then easy to deduce the quantities of interest in our analysis: codon bias, dicodon
bias and probability of appearance of (a,a0). In analyzing the CDS sequences the
initial START codon and the sense STOP codon were excluded.

4.2.2 Statistical Significance of Calculated Values of hDCBai

Due to the limited number of codons belonging to a specific class a, it is of interest
to be able to test the statistical significance of the calculated value of hDCBai. In
order to perform such a test we adopt the following procedure. If na is the number
of dicodons belonging to class a we perform N random permutations amongst the
na non-zero values of the indicator Iaðc; c0Þ and calculate the N obtained values of
hDCBa;testi; from this distribution of values of hDCBa;testi we then calculate a
standard deviation and normalize the value of hDCBai for the considered class with
respect to this standard deviation (z-score). Following this normalization procedure
a value of hDCBai is considered as statistically significant if it is greater than 2 (in
absolute value), which means away from the mean by more than twice the standard
deviation of the distribution of na randomly chosen dicodons.

In the following we will introduce 4 classes of dicodons:

1. Class þ 1 for which ðc; c0Þ contains an OSC in the frame þ 1 associated to
hDCBþ 1i;

2. Class %1 for which ðc; c0Þ contains an OSC in the frame %1 associated to
hDCB%1i;

3. Class /1 for which ðc; c0Þ contains an OSC in any frame (þ 1 or %1) associated
to hDCB/1i;

4. Class identical for which c ¼ c0 associated to hDCBidi.

The first (resp. second) class refers to all dicodons containing an OSC in the
frame þ 1 (resp. in the frame %1); the third class refers to all dicodons containing
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an OSC in whichever frame. The fourth class refers to all dicodons constituted of 2
identical codons. As a matter of example we give below the values of Iidðc; c0Þ for
the fourth class:

Iidðc; c0Þ ¼
1; if c¼ c0;
0; otherwise:

#

This fourth class is not related to the Ambush Hypothesis but will be used to
validate our statistical analysis below.

In order to illustrate the statistical test explained above we present in Fig. 12 the
probability density function of the N ( = 10; 000Þ random permutations amongst the
na non-zero values of the indicator Iaðc; c0Þ (nid ¼ 63, nþ 1 ¼ n%1 ¼ 192 for,
respectively, classes identical, þ 1 and %1) in the case of 2 specific genomes
(E. coli and Lysteria monocyogenes).

4.2.3 Results

In a first step we report in Fig. 13 the normalized average dicodon biases for Class
þ 1, Class %1, Class /1 and Class identical across all bacterial genomes. As
explained above all values of hDCBai for each genome are normalized by the
standard deviation of similar distributions obtained for each studied genome and
will be denoted by hDCBainorm. The bottom panel of Fig. 13 refers to Class
identical; for this class of dicodons the average bias is overall positive meaning that
for the coding of 2 successive identical amino acids there is a bias towards choosing
2 identical codons. One should point out that this effect is rather weak and at the
limit of being statistically significant.

The 2 upper panels refer to Class þ 1 and Class %1; quite obviously for a vast
majority of genomes the Class þ 1 dicodons exhibit a bias that can be considered as
showing no statistically significant deviation from 0. More interestingly the situa-
tion is quite different for Class %1 dicodons, which exhibit a statistically significant
overall negative value. Grouping these 2 classes gives the third class Class /1, for
which the overall tendency of dicodon bias values is negative (as shown on third
panel from top on Fig. 13).

Before further discussing these first results we still have to test our estimator of
the dicodon biases against any strong bias with respect to AT content of the
considered sequences. We present in Fig. 14 the same quantities as above plotted
against AT contents of the genomes used for our analysis. Quite obviously for the 4
classes of dicodons tested here there is no evidence of a strong bias of our estimator
with respect to the AT content of the investigated genomes; this seems to justify our
claim that our estimator for dicodon bias is a better estimator as compared to
previously used estimators, see Sect. 4.1.
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Fig. 12 Distributions of dicodon biases hDCBai for the 3 classes Identical, þ 1, and %1 for two
bacterial genomes, obtained by randomly reshuffling the components of vectors ~Ca, see text.
Vertical colored bars give the values of hDCBai for each class computed from the data. Clearly the
measured value of hDCBidi for Lysteria monocyogenes is statistically not meaningful (see position
of the vertical blue line in the bottom panel), whereas for the same genome the value of hDCB%1i
is statistically meaningful (see vertical green line in the same bottom panel)
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We may sum up our results in the following way:

1. We have introduced an unbiased (with respect to genomic AT content) statistical
indicator in which the deviations in the probability of having a stop codon out of
frame are calculated with respect to the probability based on the dicodon fre-
quencies at fixed codon bias and fixed diamino acids frequencies;

2. From this estimator we evidence a slight positive bias (at the limit of being
statistically significant) for the presence of dicodons formed by identical codons

Fig. 13 Values of hDCBainorm for the 4 classes mentioned in the text. The abscissa refers to
indexes of bacterial genomes in databases and red horizontal lines are given by hDCBainorm ¼ /2;
the continuous blue lines serve as guides to the eye. As explained in the text values of hDCBainorm
above or below those red lines are statistically significant
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for the coding of 2 successive identical amino acids. As the presence of cor-
relations favoring identical successive codons was expected from literature
(Shao et al. 2012), see Sect. 5, this finding shows that our approach is able to
detect relevant statistical signals;

3. We also evidence an overall negative bias for the presence of dicodons con-
taining an OSC (estimator hDCB/1i associated to Class /1). This result
strongly suggest that the Ambush Hypothesis does not hold, at least for the
bacterial genomes studied here;

Fig. 14 Values of hDCBainorm for the 4 classes mentioned in the text versus AT content of
genomes. Each point represents one bacterial genome. Again red horizontal lines are given by
hDCBainorm ¼ /2
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4. This overall trend can be attributed mainly to Class %1 dicodons which present
an overall negative bias, whereas Class þ 1 dicodons present an overall null
bias.

4.3 Distribution of Distances to Off-Frame Stop Codons
in the Random Codon Model

We analyze here whether the Ambush Hypothesis is actually necessary to prevent
translation of long abnormal protein chains resulting from frameshift. In this regard,
we compute the distance to the first encountered off-frame STOP after a frameshift
to þ 1 or %1, starting from definiteness from the start AUG codon in the random
codon model (RCM). In practice, we compute the codon usage from the genome of
a given species, and draw random codons from this distribution, omitting any
correlation between codons. This model therefore generates sequences of random
codons. We then estimate the probabilities Qð‘Þ that this sequence, in frames þ 1
and %1, produces a STOP codon. To compute the distributions Qþ 1ð‘Þ and Q%1ð‘Þ,
we have to sum over sequences with ‘ off-frame codons ending up in one of the 3
possible STOPS. The summation over the exponential–in–‘ number of compatible
sequences can be easily carried out with the transfer-matrix formalism shown in
Sect. 2.5. We do not report details here; note however that, as STOP codons are
defined from 3 nucleotides only, the effective interaction between codons is
short-range: only nearest neighbor codons interact along the sequence.

We show in Fig. 15 the outcome of this calculation for one specific bacterial
species, Thermodesulfobium-narugense. Apart from differences at small ‘ reflecting
the influence of the start codon (after the frameshift), both distribution apparently
decay exponentially with ‘. Actually the decay is not a pure exponential, as the
transfer matrix is of dimension 4$ 4, and the number of exponentials is generically
given by the size of the transfer matrix, minus one. We obtain that the average
distance to the first OSC is about 8–9 in both frames. Hence, even without any
optimization over the correlations between successive codons along the CDS, OSCs
are very quickly found after a frameshift. This result raises doubts about the
necessity of selecting codons to make the distance even smaller, as postulated by
the Ambush Hypothesis.

5 Discussion and Perspectives

5.1 Nucleotide Motif Usage and Selective Pressures

Viruses have a rapid evolutionary rate, relatively small genomes, and, in many
cases, databases of both genomic and phenotypic data that one can use to test
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theoretical approaches. In this work we introduce a mathematical framework,
inspired by an analogy with statistical physics, for a class of problems related to the
evolution of viruses. The notions of entropy and pressure (or force) evoke the
classical concepts of mutation-selection balance in population genetics. A major
advantage of our approach is that these notions can be made quantitatively precise,
with a very limited computational effort (scaling linearly with the sequence length).
This approach is quite versatile, and could be extended to other evolutionary
problems. Note that, while we have concentrated here on short nucleotidic motifs,
our formalism can be extended to deal with longer motifs. If the motif contains from
2 to 4 nucleotides the transfer matrix M is given by Eqs. (25, 26). There are
63$ 63 possible matrices, which can be calculated once for all prior to the cal-
culation of ZðxÞ for several values of x. If the motif contains from 5 to 7 nucleotides
the matrix M is MðC1;C2;C3Þ is “tridimensional”, and there are 633 possible
matrices. The vectors vi are now functions of two codons. The calculation is slightly
more complicated but can be done anyway.

Fig. 15 Distributions of distances to first out-of-frame STOP codon after the start AUG codon
and a frameshift equal to þ 1 (top panel) and %1 (bottom panel), measured in codons. Blue
impulses and squares show the experimental distributions computed from all CDS of
Thermodesulfobium-narugense-DSM-14796. Red full circles show the predictions from the
random codon model (RCM), obtained with the transfer-matrix formalism, with codon usage
estimated from the CDS of the same species (in frame). The average distances are: ‘þ 1 ’ 7:9 and
‘%1 ’ 9:0 codons
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While we have shown applications mainly to Influenza and HIV, many other
viruses could be studied. An example is provided by Dengue virus, which goes
back and forth between humans and insects. The time scales involved its evolution
and the possible presence of mixed pressures acting on different motifs would be
worth being studied.

A potentially interesting issue is whether the presence of pressures limits the
accessibility of sequences through random mutations in the sequence space. In the
absence of pressure codons are independent in our model, and may rapidly evolve
under single nucleotide mutations. Hence, any possible sequence can be easily
reached from another sequence. When a pressure acting on one motif is considered
neighboring codons along the chain start to interact, as the motif may cover two or
more contiguous codons, depending on its length. The resulting model is therefore a
particular case of the short-range one-dimensional Potts model (Wu 1982), which is
known in statistical physics to quickly thermalize. Therefore, as in the independent
codon case, the sequence space is sampled efficiently by local moves (such as point
mutations). We have checked this statement by running Monte Carlo simulations,
and have verified that the relaxation times to the average values of various quan-
tities, such as similarity between sequences and number of motifs, are independent
of the value of the pressure. It is however possible that multiple pressures may lead
to more complex sequence space structures, less efficiently sampled by local moves.
Further studies of this point would be interesting to characterize how much pres-
sures dynamically constrain the evolution of the virus sequence.

Another important application of our formalism is the case of non-coding
sequences. In a related work (Tanne et al. 2015) we have extended our approach to
non coding RNA, overexpressed in cancer cells compared to healthy tissues. Our
analysis has allowed us to show that those overexpressed sequences, such as GSAT
and HSATII, correspond to abnormal values of the forces acting on CpG and UpA
motifs, and are likely to trigger a large auto-immune response. This prediction was
confirmed experimentally, both in human and murine cells (Tanne et al. 2015).

5.2 Ambush Hypothesis

In the present work, we have analyzed Coding DNA Sequence (CDS) regions in all
bacterial genomes to better investigate the validity of the so-called Ambush
Hypothesis. We have introduced a statistical indicator in which the deviations in the
probability of having a stop codon one or two nucleotides (1nt or 2nt shift) out of
frame are calculated with respect to the probability based on the dicodon fre-
quencies at fixed codon bias and fixed di-amino acids frequencies. With this
unbiased indicator we found no systematic deviation across bacterial genomes
favoring out of frame stop codons. On the contrary some significant statistical
deviations are found for 2nt shifts, in which the probability of out frame stop is
smaller than what expected in random sequences.
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Our study has focused on four specific classes of di-codons. We will first discuss
our result concerning Class identical, consisting of pairs of identical codons.
Though the effect may seem weak, there is little doubt that there is a slight positive
bias hDCBidinorm which means that translation of a pair of successive identical
amino acids slightly favors the use of identical successive codons. This observation
can be related to previously reported importance of synonymous codon ordering in
yeast (Cannarozzi et al. 2010) and in bacteria (Shao et al. 2012); furthermore a
recent study of archaeal aminoacyl-tRNA synthetases (aaRS) has shown that there
was evidence for interactions between aaRS and the ribosome thus allowing to
recycle tRNAs (Godinic-Mikulcic et al. 2014). Altogether these observations
support a mechanism in which, due to colocalization of some aminoacyl-tRNA
synthetases and ribosomes, in case of translation of 2 identical successive codons
the ribosome, once the first codon translated, may use the same aaRS to translate the
next codon.

Concerning our results for the 3 other classes (Class þ 1, Class %1, Class /1)
one may first observe that the net result for Class /1 is at odds with previous results
which may have seemed to support the Ambush Hypothesis, though this support
was already questioned (Morgens et al. 2013). Indeed the overall negative values of
hDCB/1inorm show that presence of dicodons containing an OSC is rather disad-
vantaged; furthermore comparison of hDCBþ 1inorm and hDCB%1inorm shows
that these overall negative values can be mainly attributed to Class %1 dicodons,
Class þ 1 dicodons exhibiting no specific trend in term of signed bias.

One may get further insight into our results examining Figs. 16 and 17.
Figure 16 clearly shows the overall negative trend for hDCB%1inorm and also shows
that there is no obvious grouping of the genomes as characterized by their values of
hDCBþ 1inorm and hDCB%1inorm. Such an observation prompts to examine our
results taking into account the phylogeny of our database which has been performed

Fig. 16 Two-dimensional
plot of values of
hDCBþ 1inorm and
hDCB%1inorm for the 1852
studied genomes. Again red
horizontal and vertical lines
are given by hDCBainorm ¼
/2 and define regions of
statistical significance as
explained in the text
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in Fig. 17. Indeed, Fig. 17 clearly shows that most phyla exhibit a negative value of
hDCB%1inorm with the notable exception of the phyla Actinobacteria, Firmicutes,
Proteobacteria and Tenericutes.

Fig. 17 Two-dimensional plot of values of hDCBþ 1inorm and hDCB%1inorm for the 1852 studied
genomes grouped by phylum. Red boxes define regions of statistical significance as explained in
the text
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Quite obviously our results deserve further future analysis. Indeed, at this stage
we can reject the Ambush Hypothesis as a general rule for prokaryotic genomes;
nevertheless, refining the analysis as shown in Fig. 17, one reaches the conclusion
that the situation is somehow more complex and specific phyla would deserve more
detailed analysis (see the data in Fig. 17 concerning Firmicutes which show that
within the same phylus one observes classes of opposite signs for hDCB%1inorm).
Furthermore, at the present level of analysis, we did not take into account the status
of each OSC (TAA, TAG and TGA) which would also deserve more detailed
analysis as previously suggested (Morgens et al. 2013); indeed such analysis is
probably needed if, as in the case of the observed positive values of hDCBidinorm,
one wishes to give a meaningful interpretation in terms of biological processes to
the measured values of the various hDCBainorm.
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