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1. Introduction

Proteins are essential in almost all cellular processes. In the 
course of evolution, genomic mutations cause changes in their 
primary amino-acid sequences. However, these changes are 
not completely random: only substitutions conserving the 
biological functionality of a protein are accepted by natural 
selection. Since the function of a protein relies strongly on 
its three-dimensional (3D) structure, also the latter has to be 
evo lutionary conserved. Following energy landscape theory  

[1, 2], amino-acid sequences are selected such that their folded 
state corresponds to a deep free-energy minimum, which can 
be efficiently reached via a funneled free-energy landscape. 
We find ourselves in an apparently paradoxical situation: on 
the one hand, two proteins of common evolutionary ances-
try (so-called homologs) may differ in more than 70 or 80% 
of their amino acids, but they still have highly similar three-
dimensional structure and biological functions. On the other 
hand, even very few random mutations may destabilize a pro-
tein’s fold or disrupt its biological function.
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In the course of evolution, proteins undergo important changes in their amino acid sequences, 
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Using sequence data as the basis for the inference of Boltzmann distributions from samples 
of microscopic configurations or observables, it is possible to extract information about 
evolutionary constraints and thus protein function and structure. Here we give an overview 
over some biologically important questions, and how statistical-mechanics inspired modeling 
approaches can help to answer them. Finally, we discuss some open questions, which we 
expect to be addressed over the next years.
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Over the last decades, it has been a central issue of bio-
logical physics to relate the amino-acid sequence and its 
three-dimensional (3D) structure: in one direction, this means 
to solve the protein-folding problem, i.e. to determine the 
native 3D structure of a given sequence [1–3] . In the opposite 
direction, it has been asked what sequences fold into a given 
3D structure, i.e. to solve the protein-design problem [4, 5]. 
Very precise models including the physicochemical proper-
ties of amino acids and their detailled interactions have been 
designed and simulated [6]. While enormous progress has 
been made in this direction (as witnessed by the 2013 Nobel 
price to Karplus, Levitt and Warshel), the computational cost 
of realistic molecular modeling limits the length of treatable 
amino-acid sequences and time scales significantly.

Much more recently, an important alternative based on 
the progress in sequencing technology and the increasing 
availability of protein sequences has emerged. To date, about 
70 000 complete genomes have been sequenced [7]. Instead 
of considering single amino-acid sequences within a detailled 
biophysical model, we can therefore consider entire families 
of homologous proteins, i.e. ensembles of diverse sequences 
believed to have common structure and function in different 
species (or different pathways inside the same species). In 
current databases many of these families contain more than 
103 different sequences and in some cases more than 105 
sequences [8]. The aim of the inverse statistical physics of 
proteins is to capture the sequence variability in ensembles of 
homologous sequences, to unveil statistical constraints act-
ing on this variability, and to relate them to the conserved 
biological structure and function of the proteins in this fam-
ily. In this sense, the inverse statistical physics of protein 
sequences tries to benefit from the apparent paradox between 
sequence variability and structural and functional conserva-
tion mentioned in the first paragraph, thereby offering ideas 
to resolve it.

We start from a multiple-sequence alignment (MSA) 
of an entire protein family [9]. Note that the construc-
tion of large MSA is a hard and not completely solved 
problem on its own, but here we assume it to be given for 
the sake of simplicity. An MSA is a rectangular matrix 
A = {aµi |i = 1, ..., L,µ = 1, ..., M}, containing M sequences, 
which are aligned over L positions. Each entry aµ

i  of the matrix 
is either one of the 20 natural amino acids, or the alignment 
gap ‘−’ introduced to treat amino-acid insertions or deletions 
in some sequences. For simplicity, we will consider the gap 
as a 21st amino acid throughout this article, and speak about 
q = 21 amino acids. Each row of the MSA A is thus a single 
protein sequence and each column a specific position in the 
proteins (identifiable, e.g. via a specific location in the con-
served three-dimensional protein fold).

The basic assumption of modeling this MSA using inverse 
methods from statistical physics [10–19] is that it constitutes 
a (not necessarily identically and independently distributed) 
sample of a Boltzmann distribution (inverse temperature 
β = 1 without loss of generality)

P(a1, ..., aL) =
1
Z exp{−βH(a1, ..., aL)} (1)

associating a probability to each full-length amino-acid 
sequence a = (a1, ..., aL). While this assumption is a simpli-
fication of the biological reality, it will provide a useful and 
mathematically well-defined way to to extract information 
from data.

The main task of inverse statistical physics is to reconstruct 
the Boltzmann distribution P using a sample A drawn from P. 
However, in the specific situation of protein sequences this 
task is complicated by two opposing facts: on one side, we 
do not know the correct analytical form of the Hamiltonian 
H (e.g. in terms of local fields, two-spin or higher-order 
couplings etc), i.e. a priori qL − 1 free parameters are to be 
inferred. On the other side, even the largest MSA cover only a 
tiny fraction of all possible qL sequences. Parameter-reduced 
models have to be used in order to avoid overfitting.

We can solve these problems at least partially by assuming 
a specific analytical form of H and inferring the numerical val-
ues of its defining parameters (e.g. local fields, pairwise cou-
plings), for example by maximum likelihood. Alternatively, we 
can decide on a number of observables (e.g. frequencies, pair-
wise correlations) whose data-derived empirical values should 
coincide with the thermodynamic averages in our model given 
by H, and use the maximum-entropy principle [20] to fix the 
analytical form of H. Both cases contain an important subjec-
tive element: the decision on a specific model is largely driven 
by data availability (more data allow for more parameters) and 
the biological question under study. To illustrate this point, we 
will list a series of more and more involved questions, together 
with an idea about the adequate level of statistical modeling.

1.1. Homology detection and sequence annotation

Belong to the classical bioinformatic questions and are usu-
ally answered using statistical models of aligned sequences 
[9]. Given a new natural sequence of unknown biological 
function, can we assign it to a known family of homologous 
proteins, i.e. to a given MSA? As discussed before, these fam-
ilies tend to conserve important parts of the biological struc-
ture and function, so the assignment of the new sequence to 
a previously known protein family automatically provides a 
prediction of its potential role in biology. Classically homol-
ogy detection is done using so-called profile models, which 
are equivalent to independent-site Potts models in a heteroge-
neous external field,

H(a1, ..., aL) = −
L∑

i=1

hi(ai) . (2)

The local fields are able to capture site-specific patterns of 
amino-acid conservation. This may pertain to a single pos-
sible amino acid in the active site of a protein (corre sponding 
to a column in the MSA), or to conserved physical amino-
acid properties (e.g. hydrophilic amino acids in an exposed 
position at the protein’s surface, or hydrophobic amino acids 
buried inside its core). A more sophisticated version of these 
models, called profile Hidden Markov model [21], is able 
to analyze unaligned sequences and detect insertions and 
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deletions while maintaining the independence of amino acids 
at different aligned positions.

1.2. Protein-structure prediction and the topology of coevo-
lutionary networks

The assumption of independence in profile models limits the 
amount of information that can be extracted from an MSA 
since, in practice, amino acids at different positions do not 
evolve independently. Most single-site mutations are deleteri-
ous and often perturb the physical compatibility with the sur-
rounding residues in the folded protein. One may imagine that 
compensatory mutations in neighboring sites may repair the 
damage done by the first mutation; we say that residues in 
contact coevolve [22].

Coevolution becomes visible in correlated occurrences 
of amino acids in different sites, i.e. via covariation between 
different columns of the underlying multiple-sequence align-
ment (see figure 1) [23, 24]. It is tempting to use such correla-
tions to reconstruct the contact map of a protein, which could 
then be used to predict the protein fold as a three-dimensional 
embedding of this contact map. This idea, present in the lit-
erature for more than 20 years [23, 24], did unfortunately not 
work out easily. A major reason is that correlation (as detected 
in the MSA) is not coupling (as resulting from amino acids 
in contact): if, e.g. position i is in contact with position j, and 
position j in contact with position k, we might expect an indi-
rect correlation also between i and k. The aim of the direct-
coupling analysis [25, 26], and of closely related approaches 
[27–29], is to explain correlations via a network of direct 
coevolutionary couplings, or more precisely, via a generalized 
Potts model

H(a1, ..., aL) = −
∑

1!i<j!L

Jij(ai, aj)−
L∑

i=1

hi(ai) (3)

containing both local fields hi and pairwise couplings Jij.
As will be shown below, the strongest pairwise couplings 

provide accurate predictions of contacts between residues. 
This enables protein-structure prediction without the detailed 
biophysical modeling mentioned before [30–35]. The infer-
ence of the couplings is, however, a computationally hard task, 
since the exact calculation of thermodynamic averages (which 
have to coincide with empirical ones) requires a sum over the 
exponentially large sequence space (in a disordered model 
lacking a priori any symmetry). However, any method repro-
ducing the topology of the coevolutionary network underlying 
equation (3), i.e. identifying the strongly pairs, is equally valid 
for predicting the contact map. Interestingly, pairwise Potts 
Hamiltonians were also considered years ago in the context 
of protein design, to characterize the distribution of sequences 
folding into a known structure [4, 36].

1.3. Inference of mutational landscapes and quantitative 
sequence models

Quantifying the effect of mutations is a task of outstanding 
biomedical importance and can be used as a technique for 

identifying causative mutations in genetic disease or cancer, 
or adaptive mutations leading to therapeutic drug resistance. 
In a general mathematical setting, mutational effects can be 
described by a mutational landscape, or genotype-pheno-
type mapping, which associates a quantitative phenotype 
Φ(a1, ..., aL) to each amino-acid sequence (a1, ..., aL) [37]. 
Multiple-protein alignments (of patient derived sequences or 
of homologous protein families) have been used to infer such 
landscapes from the empirically observed sequence variability 
[38–42], using in particular the analytical form of the Potts 
model equation  (3). In this context, the couplings Jij(ai, aj) 
represent so-called epistatic couplings between mutations.

To quantify the effect of the mutation from amino acid ai to 
b in position i, we can calculate the energy difference

∆E(ai → b) = H(a1, ..., ai−1, b, ai+1, ..., aL)

−H(a1, ..., ai−1, ai, ai+1, ..., aL)
 (4)

between the mutated and the unmutated sequences. Decreasing 
energies can be interpreted as potentially beneficial muta-
tions, increasing energies as potentially deleterious mutations. 
Contrary to residue-residue contact predictions inferring the 
topology of the coevo lutionary network is not sufficient any 
more. We need a quantitative inference of the local fields and 
couplings, and expect a—possibly non-linear—correlation 
between energy differences and mutational effects.

1.4. Protein design and generative sequence models

In a seminal work, Ranganathan and coworkers [43, 44] 
suggested that the pattern of pairwise residue covariation is 
actually sufficient to generate artificial but fully functional 
protein sequences. The basic idea was to shuffle an MSA via 
a Monte Carlo procedure such that the statistics of single col-
umns (residue conservation) and column pairs (coevolution) 
remains close to unchanged. In exper imental tests, the authors 
found a substantial fraction of functional non-natural proteins, 
whereas imposing only the single-column statistics resulted in 
non-functional amino-acid sequences.

In the context of the modeling proposed here, we speculate 
therefore that the generalized Potts model equation (3) is suf-
ficient to design artificial proteins by Monte Carlo sampling, 

Figure 1. Evolutionary constraints shaping the variability between 
homologous sequences: while constraints on individual residues 
(e.g. active sites) lead to variable levels of amino-acid conservation, 
the conservation of contacts leads to the coevolution of structurally 
neighboring residues and therefore to correlations between columns 
in a multiple-sequence alignment of homologous proteins (here an 
artificial alignment is shown for illustration).
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while the profile model equation (2) is not. For this to be true, 
the inferred model needs to be generative. This means that 
the model must not only reproduce perfectly the empirical 
single- and pair-column statistics (within the possibilities of 
the fitting algorithm), but should generate sequences that are 
indistinguishable from the natural sequences also in higher-
order characteristics, which are not explicitly fitted using 
equation  (3). The above mentioned results [43, 44] suggest 
that this can be actually achieved using models including only 
local fields and pairwise couplings, while fields on their own 
are insufficient. Analogous ideas have been presented in [45] 
in the context of rewiring protein–protein interactions.

2. Statistical physics of the inverse Potts problem

We start from data given as a multiple-sequence align-
ment A = {aµi |i = 1, ..., L,µ = 1, ..., M}, which contains M 
sequences of aligned length L. We model the statistical vari-
ability in these data using generalized Potts models defined 
in equations (2) or (3). In this section we will provide some 
background on the underlying inference methodology that 
connects data and model, in particular on how to infer the 
model parameters (local fields hi(a) and couplings Jij(a, b)). 
A more exhaustive methodological review was recently pro-
vided in [19].

This methodology will allow us to infer a specific model 
for each family of homologous proteins. The corre sponding 
MSA are freely available in public data bases, such as Pfam 
[8].

2.1. From data to empirical amino-acid frequencies

The statistical modeling of protein sequences relies on the fit-
ting of the empirical low-order statistics of the MSA A, where 
each row is a protein sequence, and each column a specific 
aligned residue position in the proteins. In particular we esti-
mate the frequencies of the occurrence of single amino acids a 
in the MSA column i, and of the co-occurrence of amino acids 
a and b in columns i and j inside the same protein:

fi(a) =
1

Meff

M∑

m=1

wm δa,am
i
,

fi,j(a, b) =
1

Meff

M∑

m=1

wm δa,am
i
δb,am

j
,

 (5)

with δa,b = 1 being the Kronecker symbol, which equals one if 
amino acids a and b are equal, and zero otherwise.

Note that in the sum we have introduced a sequence-
specific weight wm, as well as the effective sequence number 
Meff =

∑
m wm [26]. The reason is that sequences in an MSA 

cannot be considered as independent configurations drawn 
from the statistical model P. The MSA collects homologous 
sequences that have a common ancestry. This ancestry is 
often relatively recent, and as a consequence sequences can 
be atypically similar to each other because there was no time 
for them to evolve further apart. While this similarity can be 

used to reconstruct the evolutionary history (i.e. the phyloge-
netic tree) of these sequences [46], in terms of probabilistic 
modeling it is a sampling bias introducing correlations not 
related to the structure and function of the proteins. A further 
bias results from the uneven selection of sequenced species—
species close to model species or important pathogens tend to 
be more frequently sequenced than species without any direct 
scientific or biomedical interest.

While a proper removal of this bias remains an important 
open question, it can be counterbalanced by reducing the 
weight wm of similar sequences in the empirical frequency 
counts in equation (5). In a commonly used definition of the 
weights in the context of residue-contact prediction, wm equals 
to the inverse of the number of sequences aℓ of Hamming dis-
tance dH(aℓ, am) (number of positions with distinct amino 
acids) smaller than xL. It has been shown that x ≃ 0.2− 0.3 
leads to accurate and robust results. Note that ℓ = m has to be 
counted, too, so the weight for an isolated sequence is wm = 1, 
while it is smaller for any close-to-repeated sequence [26].

The empirical frequencies of equations (5) allow for quanti-
fying the level of correlation between the amino-acid occu-
pancies of any pair of positions (i, j). The mutual information

MIij =
∑

a,b

fij(a, b) log
fij(a, b)

fi(a) fj(b)
. (6)

is zero if and only if sites i and j are statistically independent, 
and positive else. It might be tempting to use the mutual infor-
mation as a simple proxy for pairwise couplings. However, in 
the context of proteins this leads to inaccurate results since 
correlations emerge from networks of couplings. Inverse 
methods are needed to disentangle direct couplings from indi-
rect correlations.

2.2. From amino-acid frequencies to Potts models

After extracting the empirical statistics from the MSA we 
can use it to estimate the parameters of the Potts model. This 
means enforcing the model to reproduce the relevant empiri-
cal statistics, which can be only the first-order statistics given 
by the fi(a) in the independent-site case or the second-order 
statistics given by the fij(a, b) in the case of a pairwise Potts 
model. The latter constraints lead to a model with pairwise 
couplings Jij(a, b). This is expected to be more realistic, but 
comes at a high computational cost since exact inference 
requires the calculation of thermodynamic averages and thus 
the partition function Z  as a sum over an exponential number 
qL of amino-acid sequences a = (a1, ..., aL). In this subsection 
we will ignore this technical difficulty, discussing the general 
setting of inverse Potts models. We leave the question of effi-
cient approximations to the next subsection.

2.2.1. The independent-site case (IND). In the profile case of 
equation (2), all positions in the model distribution P are inde-
pendent from each other and the joint probability is factorized 
over positions. We can therefore easily fit the fields hi(a) to 
satisfy

Rep. Prog. Phys. 81 (2018) 032601



Key Issues Review

5

fi(a) =
ehi(a)

∑
b ehi(b) (7)

for all positions i = 1, ..., L and all amino acids a. This 
equation  can be, up to a constant, easily inverted through 
hi(a) = ln fi(a) + const. To avoid fields to become (minus) 
infinite in the case of unobserved amino acids, a regular-
ization or a pseudocount can be introduced, see below. This 
model will not reproduce the second-order statistics fij(a, b) 
and the probability of co-occurrence of amino acids a and 
b in the positions i and j is equal to fi(a) fj(b) in the model 
distribution.

2.2.2. Inference of pairwise Potts models. The parameters 
of the pairwise model equation (3), the local fields hi(a) and 
the couplings {Ji,j(a, b)}, have to be inferred in such a way 
that first and second moments of the Boltzmann distribution P 
correspond to the empirical frequencies. The following equa-
tions have to be satisfied,

fi(a) = ⟨δa,ai⟩P
fi,j(a, b) = ⟨δai,aδaj,b⟩P (8)

for all i, j, a, b. This ensures that the marginal single- and two-
site frequencies of the Potts model are equal to the empirical 
frequency counts derived from the original data set. In this 
equation, ⟨·⟩P denotes the average over the Boltzmann distri-
bution P in equation (1):

⟨O(a)⟩P ≡
∑

a
P(a)O(a) (9)

for any observable O(a) depending on the amino-acid sequence 
a = (a1, ..., aL). The Np = Lq + L(L−1)

2 q2  equations  in equa-
tions (8) are coupled and have to be solved simultaneously.

2.2.3. Overparametrization and gauge invariance. Note 
that equations  (8) are not independent. As each site i car-
ries one amino acid a, the frequencies fi(a) sum up to one. 
Hence there are only L(q− 1) independent one-point fre-
quencies. Similarly, for each one of the L(L−1)

2  pairs i, j, only 
(q− 1)2 pairwise frequencies fij(a, b) are independent, 
as marginalizing over b allows us to recover the single-site 
frequencies: 

∑
b fij(a, b) = fi(a). The number of indepen-

dent constraints coming from equation  (8) is therefore only 
Nc = L(q− 1) + L(L−1)

2 (q− 1)2.
The number of parameters, hi(a) and Jij(a, b), defin-

ing Hamiltonian H in equation (3) equals Np and, therefore, 
exceeds the number of independent equations in equation (8). 
This overparametrization gives rise to the following gauge 
invariance: the probability P(a) remains unchanged under the 
(gauge) transformation

Jij(a, b)← Jij(a, b) + Kij(a) + Kji(b),

hi(a)← hi(a) + gi −
∑

j( ̸=i)

(
Kij(a) + Kji(a)

)
.

 

(10)

Here, Kij(a) and gi are arbitrary quantities. Note that Kij(a) and 
Kji(b) are not independent since any (ij)-dependent quanti ty 

added to the first and subtracted from the second leaves the 
transformation invariant. The total number of independent 
parameters defining the above transformation equals therefore 
Nq = L + L(L−1)

2 × (2q− 1).
Since each gauge transformation leaves the Boltzmann dis-

tribution P unchanged, the number of parameters to be fitted 
to the empirical data actually reduces to Np − Nq. This equals 
the number Nc of independent equations in equations (8), and 
the inference problem is well defined once the gauge is fixed. 
Two widely used gauges are:

 • The lattice-gas gauge, in which hi(q) = Jij(a, q) =
Jij(q, a) = 0 for all i, j, a, measures all energies with 
respect to the ‘empty’ configuration (q, ..., q), and con-
siders q− 1 different ‘particle’ types a = 1, ..., q− 1.

 • The zero-sum gauge (or Ising gauge) assumes that ∑
a hi(a) =

∑
a Jij(a, b) = 0 for all i, j, b. This gauge 

generalizes the well-known case of Ising models 
(Jij(si, sj) = Jijsisj, hi(si) = hisi, si,j = ±1) to q-state 
Potts spins. Contrary to the lattice-gas gauge above, this 
gauge does not arbitrarily break the symmetry between 
the q states of the Potts variables.

As is the case with standard Ising and lattice-gas models, the 
two formulations are related through a simple (gauge) trans-
formation of the underlying local variables, and are therefore 
equivalent.

2.2.4. Cross-entropy minimization and Bayesian interpreta-
tion. In this section we rewrite the inverse problem in equa-
tions (8) in a simpler and more interpretable way. We introduce 
the cross entropy

Sc({h, J}) = − 1
Meff

∑

m

wm logP(am
1 , am

2 , ..., am
L )

= logZ −
∑

i,a

hi(a) fi(a)

−
∑

i<j,a,b

Jij(a, b) fij(a, b) .

 

(11)

This quantity gives—up to an additive P-independent con-
stant equal to the entropy of the empirical distribution 
f (a1, ..., aL) =

∑
m wm

∏
i δai,am

i
 of the sequences in the 

MSA—the Kullback–Leibler (KL) divergence

DKL( f∥P) =
∑

a
f (a) log f (a)

P(a) (12)

between the empirical distribution f (of which fi(a) and 
fij(a, b) are marginals) and the Boltzmann distribution P. 
Within the class of pairwise Potts models defined by equa-
tion  (3), a possible parameter choice is the one minimizing 
DKL and, hence, the cross entropy Sc. It is easy to check that 
the minimization with respect to fields hi(a) and couplings 
Jij(a, b) leads back to equations  (8). Note that the Hessian 
matrix of Sc is nonnegative. Zero eigenvalues correspond 
to directions in which the cross entropy has a minimum for 
parameters going to (minus) infinity; they make regularization 
necessary as explained in the next section.
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After minimization, the cross entropy Sc becomes a func-
tion of the empirical one- and two-point amino-acid fre-
quencies; more precisely it is the Legendre transform of the 
negative free energy logZ . The Potts parameters (fields, 
couplings) act as conjugated parameters to observables (one- 
and two-point frequencies), in the same way as pressure or 
chemical potential are conjugated to volume and number of 
particles in thermodynamical statistical ensembles. One of the 
basic properties of Legendre transforms is that the derivative 
of the potential with respect to its control parameters leads to 
the conjugate parameters.

Minimizing of the cross entropy is equivalent to maximiz-
ing the log-likelihood in a Bayesian framework. Bayes’ theo-
rem in fact allows one to express the posterior probability of the 
model parameters given the data, P({h, J}|{am}), starting from 
the probability of the data given the model, P({am}|{h, J}):

P({h, J}|{am}) = P({am}|{h, J}) P0 ({h, J})
P({am}) , (13)

where P0 is a prior distribution over the Potts model param-
eters. When the prior is uniform and the sequences are inde-
pendently drawn from P, maximizing the posterior distribution 
over all couplings and fields is equivalent to minimizing the 
cross entropy Sc with uniform weights wm = 1

M. In the pres-
ence of a non-uniform prior a term − logP0({h, J}) is added 
to the cross entropy, which plays the role of a regularization 
for the Potts parameters. In the example of a Gaussian prior 
P0, this penalty term is equivalent to a L2 regularization, see 
next subsection.

2.2.5. Regularization. Typical proteins (or protein 
domains, which constitute the alignable modules mak-
ing a protein) have a length of L ≃ 50− 500. This leads to 
Nc ≃ 5 · 105 − 5 · 107 parameters to be inferred. Combined 
with limited sampling (M ≃ 102 − 105 for typical MSA), 
this large number of parameters makes regularization to 
avoid overfitting necessary.

Consider as an illustration the case of two amino acids, a 
and b, that are rarely encountered on their respective sites i and 
j. Assuming their frequencies to be fi(a) = fj(b) = 0.01 (note 
that the average frequency of amino acids is 1/q ≃ 0.048) 
and that they evolve independently from each other, the prob-
ability of finding both amino acids in a sequence is equal to 
0.0001. For MSAs with less than 10 000 sequences, such a 
sequence is typically not encountered. This results in an 
apparent anticorrelation, and ultimately, an infinitely nega-
tive coupling between the two sites and amino acids. On the 
contrary, if the combination is found in a single out of much 
less than 10 000 sequences, it will lead to a large positive but 
statistically unsupported coupling.

To avoid such sampling effects, various regularization 
schemes can be used. In practice, a penalty ∆Sc({h, J}) is 
added to the cross entropy (11) during the minimization of 
the parameters {h, J}. Standard examples are the L1 norm, 
where

∆SL1
c ({h, J}) = γ1

∑

i,a

|hi(a)|+ γ2
∑

i<j,a,b

|Jij(a, b)| . (14)

The non-analyticity in zero penalizes small fields and cou-
plings, forcing them to become exactly zero in value and thus 
favors sparse networks to be inferred. The L2 norm,

∆SL2
c ({h, J}) = γ1

∑

i,a

hi(a)2 + γ2
∑

i<j,a,b

Jij(a, b)2, (15)

penalizes large absolute values of parameters. This is found to be 
efficient in the context of protein MSA since it removes the spu-
riously large parameter values based on insufficient sampling.

Another frequently used procedure to limit undersampling 
effects consists of adding a pseudocount to the empirical one- 
and two-point frequencies (justifiable via a Dirichlet prior on 
frequency counts):

fi(a)← (1− α) fi(a) +
α

q
,

fij(a, b)← (1− α) fij(a, b) +
α

q2 .

 

(16)

The introduction of a pseudocount is—up to finite-sample 
effects—equivalent to assuming that the MSA is extended 
with a fraction α/(1− α) of sequences with amino acids 
sampled uniformly. Regularization parameters γ1, γ2 and α 
should in principal vanish as the number of data increases; 
values for these parameters used in practice will be discussed 
later on. An alternative way to regularize the inference prob-
lem is to reduce the number of Potts states and keep well sam-
pled amino acids only, for example with frequencies larger 
than some threshold values. The number of Potts states then 
depends on the site. This can drastically reduce the number 
of parameters to infer, and a weaker regularization on the 
remaining parameters can be used.

2.3. Methods of approximate inference

The convexity of the properly regularized cross entropy guar-
antees the uniqueness of the minimum and the optimal param-
eter values h, J . This minimum can be found by local convex 
optimization techniques. A problem is that calculating the 
averages in equations  (8) exactly requires the calculation of 
the partition function Z . This is in practice intractable for pro-
teins with hundreds of residues since it includes a sum over all 
qN sequences. We therefore resort to approximation schemes 
to solve the inference problem [10–18]. Their relative advan-
tages and disadvantages in the context of protein sequences 
will be discussed in the Results section.

2.3.1. Boltzmann machine learning (BM). The most straight-
forward approximation to solve equations  (8) is called 
Boltzmann machine learning [47]. Starting from an initial 
guess for the values of the couplings and fields (e.g. the solu-
tion of the independent-site model described above), the one- 
and two-point marginals of P are estimated by Monte Carlo 
Markov Chain (MCMC) sampling. They are then compared 
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with the empirical one- and two-point frequencies, and the 
fields and couplings are modified according to

hi(a)← hi(a) + ϵ
(

fi(a)− ⟨δai,a⟩P
)
,

Jij(a, b)← Jij(a, b) + ϵ
(

fij(a, b)− ⟨δai,a δaj,b⟩P
)
,

 
(17)

where ε is a small parameter. The direction of the update fol-
lows the gradient of the cross entropy Sc. In the case of suf-
ficiently precise MCMC sampling and a sufficiently small ε, 
this iterative procedure is guaranteed to converge towards the 
solution of the fixed-point equations (8).

This procedure cannot be used directly due to its high com-
putational cost. Efficient implementation going beyond simple 
gradient descent makes Boltzmann machine learning applica-
ble to protein families smaller than about L = 200 [48–50]. 
Large-scale studies for hundreds or even thousands of protein 
families remains therefore out of reach.

2.3.2. Gaussian approximation. Using the lattice-gas gauge 
mentioned before, we can represent each Potts variable a 
by a (q− 1)-dimensional vector (s1, ..., sq−1) with entries 
sb(a) = δb,a. Amino acids a = 1, ..., q− 1 are thus represented 
by unit vectors in direction a, while the reference amino acid 
(or the gap) is represented by the zero vector (0, ..., 0). The 
MSA becomes a matrix of M rows and (q− 1)L columns 
with binary entries {0, 1}. The average of the column corre-
sponding to position i, amino acid a equals the empiri-
cal frequency fi(a), the (q− 1)L-dimensional covariance 
matrix Cij(a, b) = fij(a, b)− fi(a) fj(b), i, j = 1, ..., L, a, b = 1, 
..., (q− 1).

The Gaussian approximation ignores the binary nature of 
the s-variables and treats them as continuous variables having 
the same means and covariances [29, 51]. The pairwise Potts 
model is transferred into a multivariate Gaussian model with 
parameters Jij(a, b). The cross-entropy can be calculated ana-
lytically (up to a coupling-independent normalization),

SG
c = −1

2
log Det (−J)−

∑

i<j,a,b

Jij(a, b) Cij(a, b) . (18)

Equation (18) can be easily minimized over J, giving

Jij(a, b) = −
(
C−1)

ij (a, b) . (19)

The original exponential-time inference problem (time qL) 
is replaced by a simple inversion of the empirical covariance 
matrix, a task requiring  ∼L3 operations. It can be achieved 
on a standard desktop computer even for long proteins of 
L ≃ 1000 amino acids.

2.3.3. Mean-field approximation (MF). The standard MF 
approximation allows one to estimate one-point marginals 
self-consistently. Plugging in equations  (8), which equate 
empirical and model derived frequencies, we find

fi(a)
fi(q)

= exp

⎧
⎨

⎩hi(a) +
∑

j,b

Jij(a, b) fj(b)

⎫
⎬

⎭ (20)

within the lattice-gas gauge. Covariances can be calculated 
using linear response, i.e. ∂Pi(a)/∂hj(b) = Cij(a, b). This 

again leads to equation (19) and the couplings can be obtained 
by inverting the covariance matrix [10, 26]. The fields can then 
be obtained by resolving equations (20) with given single-site 
frequencies and couplings.

Together with the Gaussian approximation, MF is cur-
rently the computationally most efficient approximative infer-
ence scheme for the inverse Potts problem. However, it will 
not converge to the exact solution even with infinite data, and 
no rigorous bounds on inference errors are known. One can 
also formulate refined mean-field approximations, based on 
e.g. the Thouless–Anderson–Palmer or Bethe–Peierls approx-
imations, but they have not found to be of advantage when 
applied to protein MSAs.

2.3.4. Pseudolikelihood maximization (PLM). In the PLM 
technique [15, 52, 53], the log probability of the data given 
the parameters in equation (11) is replaced by a sum of site-
dependent terms:

M∑

m=1

wm logP(am
1 , ..., am

L )→
L∑

i=1

M∑

m=1

wm logP(am
i |am

−i).
 (21)

Here, i denotes a site and a−i  denotes the sequence a with-
out the ith site. Note that the sum contains one term for each i 
and these terms contain probability distributions over a single 
amino acid (given the others). This means that for normal-
izing these terms we need to calculate L individual sums over 
q amino acids instead of one sum over qL sequences. Setting

SPLM
c (i) = −

M∑

m=1

wm logP(am
i |am

−i), (22)

the cross entropy is the sum

SPLM
c =

L∑

i=1

SPLM
c (i) (23)

over the site-dependent terms. In terms of couplings and fields 
these terms can be written as

SPLM
c (i) =

M∑

m=1

wm

[
log

{
∑

a

ehi(a)+
∑

j( ̸=i) Jij(a,am
j )

}

− hi(am
i )−

∑

j( ̸=i)

Jij(am
i , am

j )

⎤

⎦ .

 

(24)

While SPLM
c  is not an approximation for the cross-entropy 

Sc, the method of minimizing SPLM
c  can be shown to be statisti-

cally consistent [52]: the true couplings and fields are recov-
ered in the limit of infinite data if the data are indeed sampled 
from a pairwise Boltzmann distribution.

Interestingly, this statistical consistency remains valid if 
the SPLM

c (i) are minimized independently. While this allows 
for a parallel and efficient implementation, it leads for finite 
data to asymmetric couplings Jij(a, b) ̸= Jji(b, a). In practice, 
we infer each coupling as the mean of the asymmetric esti-
mates [Jij(a, b) + Jji(b, a)]/2.

The key advantage of PLM is that the cross entropy is cal-
culated from the sampled sequences, and there is therefore 
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no need for an exponential-time calculation of the partition 
function. However, SPLM

c  does not depend only on the empiri-
cal single- and two-site frequencies, but on the complete set 
of sampled configurations. PLM becomes therefore slower for 
larger samples and the running time grows linearly with the 
number M of sequences.

2.3.5. Adaptive cluster expansion (ACE). The minimal cross 
entropy Sc can be formally written as a sum of 2L − 1 cluster 
contributions [14], each depending only on the empirical fre-
quencies fi and fij of the sites inside the cluster:

SACE
c =

∑

i

∆Si( fi) +
∑

i<j

∆Sij( fi, fj, fij)

+
∑

i<j<k

∆Sijk( fi, fj, fk, fij, fjk, fik) + . . . .
 (25)

Here, ∆S denotes the contribution to the cross entropy from 
a cluster that cannot be deduced from the contributions of all 
its subclusters [54]. Expansion (25) is, however, of limited 
use if not truncated to a small number (compared to 2L) of 
terms. A convenient truncation scheme is obtained by sum-
ming only contributions ∆S exceeding (in absolute value) an 
arbitrary threshold θ, as large cluster contributions automati-
cally identify groups of strongly interacting variables. In prac-
tice, clusters are recursively constructed, starting from small 
size ones (2 sites) through progressive inclusion of sites. The 
process is iterated until all newly created clusters have |∆S| 
smaller than θ. The derivatives of SACE

c  with respect to the 
frequencies { fi(a), fij(a, b)} give access to the Potts param-
eters {hi(a), Jij(a, b)}. The threshold θ is tuned such that the 
inferred model reproduces the data statistics, as can be verified 
through Monte Carlo sampling, up to finite-sampling errors.

ACE, similarly to Boltzmann-machine learning and dif-
ferently from the Gaussian, mean-field and pseudolikelihood 
approximations, accurately reproduces the sampled frequen-
cies and correlations by construction [54, 55]. Due to the prop-
erties of the inverse susceptibility (Fisher information) matrix, 
the convergence of the expansion depends on the structure of 
the interaction graph rather than on the magnitude of data cor-
relation. The threshold θ acts as a regularizer: the complexity 
of the network is adapted to the level of sampling, in particular 
it will be sparse for bad sampling. The disadvantage of ACE is 
that it is computationally more involved than any of the other 
approximative methods: it requires the exact calculation of 
the partition function for each cluster. The computational bur-
den is largely decreased by the compression of the number of 
Potts states to restrict the inferred model to only well observed 
amino acids, as described above, and by the possibility to run 
it in combination with Boltzmann-machine learning [55].

2.3.6. Other approaches. There are several other interest-
ing methods, e.g. minimal probability flow [56] or Bayesian 
networks [27], which have been applied to protein sequence 
modelling.

3. Modeling families of protein sequences

After having adressed inverse models in statistical physics 
from the methodological point of view, we will give a few 
exemplary results from using these methodologies with real 
protein sequence data.

3.1. Homologous protein families and profile models

State-of-the-art techniques for homology detection and 
sequence alignments are based on the patterns of amino-acid 
conservation in individual positions [9]. A class of statistical 
models are independent-site profile models, which assume all 
positions (or columns in an alignment) to be statistically inde-
pendent. In the case of unaligned sequences, profile models 
can be generalized to profile hidden Markov models. These 
combine residue conservation patterns with the possibility 
of identifying insertions and deletions in a sequence and are 
among the most successful statistical models in bioinformati-
cal sequence analysis. They are at the basis of databases of 
homologous protein families such as Pfam. The Pfam data-
base (release 28.0 in 2015) contains 16 230 protein domain 
families, out of which 6783 contain more than 1000 sequences 
[8]. This number of sequences is empirically known to be a 
lower bound to the size of an input MSA providing accurate 
and robust predictions by pairwise statistical modeling. Only 
10 years ago, there were about 600 families (release 20.0 in 
2006) in Pfam, and the number of accessible families contin-
ues to grow quickly. Approaches from inverse statistical phys-
ics that go beyond profile models can now be applied to the 
majority of protein families.

3.2. Potts models: accurate fitting versus topological  
inference

The inference of the couplings and fields of a pairwise Potts 
model (3) from aligned amino-acid sequences is a computa-
tionally hard task. It is expected that the approximate inference 
methods vary in quality of the resulting predictions. Since a 
‘true’ model does not exist—evolution is not a Monte Carlo 
simulation of a Boltzmann distribution—it is not clear how to 
assess the accuracy of the inferred model. A straight forward 
benchmark would be to check if equation (8), which equate 
empirical and model statistics, are well fitted. Using the pro-
tein family PF00014 (Trypsin inhibitor: L = 53, M = 4915) 
as an example, we apply the different approaches discussed 
in the last section for parameter inference. Subsequently we 
sample artificial sequences from the inferred statistical model 
P(a1, ..., aL) using MCMC, in order to estimate the model sta-
tistics. In figure 2 we show the results: while mean-field infer-
ence [26] and pseudo-likelihood maximisation [53] reproduce 
the empirical statistics badly (mean-field actually leads to 
serious problems in equilibration MCMC simulations), BM 
[57] and ACE [55] are much more precise.

Rep. Prog. Phys. 81 (2018) 032601



Key Issues Review

9

Does this mean that MF and PLM are of no use for analys-
ing large MSA? As argued in the introduction, the answer is 
not so easy. When predicting residue contacts in the three-
dimensional fold of a protein, we do not need the fine sta-
tistics of the empirical data to be reproduced. We need to 
correctly capture the topology of the network of coevolution-
ary couplings.

To assess the topology, we need to map the q× q coupling 
matrix Jij(a, b) for each pair (i, j) onto a scalar quantity meas-
uring the coupling strength between the two sites i and j. A 
quantity often used [53] is the Frobenius norm of the coupling 
matrices for each (i, j),

Fij =

√∑

a,b

Jij(a, b)2 . (26)

Since the Frobenius Norm is gauge dependent, we have to 
specify in which gauge we calculate it. A sensible choice is the 
zero-sum gauge discussed above. It minimises the Frobenius 
norm and explains thereby ‘as much as possible’ by fields, and 
‘as little as necessary’ by pairwise couplings. Contact predic-
tions improve furthermore when using the average-product 
correction (APC) [58]:

FAPC
ij = Fij −

∑
k Fik

∑
k Fkj∑

k,ℓ Fkℓ
. (27)

This correction is identical to the measure of modularity com-
monly used for describing networks [59], and amounts to sub-
stracting from the Frobenius norm a null-model contribution 
for the pair i, j due to the single-site properties of i and j [60].

The resulting FAPC-values are highly correlated for differ-
ent methods. In particular the largest values, which character-
ize the sub-network of the strongest coevolutionary couplings, 
are found to strongly overlap. As an example, out of the top 50 
coupled pairs found by BM, 80% (resp. 70% / 62%) are also 
within the first 50 pairs identified by PLM (resp. MF / ACE); 
these fractions rise to 100% (resp. 88% / 76%) if we look for 
these 50 top-scoring BM predictions within the first 100 PLM 
(resp. MF / ACE) pairings. The lower overlap between ACE 
and the other methods results from the weaker regulariza-
tion used, which allows for a better fitting but at the cost of 
introducing a number of strong couplings between rare amino 
acids. A random selection of 50 pairs for each method would 
result in an mean overlap of less than 4%, illustrating the high 
significance of the reported overlaps.

We conclude that if the aim of the inference is the identifi-
cation of pairs with substantial coevolution, then even simple 
and computationally efficient methods like MF and PLM can 
provide accurate results. If, on the contrary, model energies or 
probabilities have to be accurate, then more precise methods 
such as ACE or BM are required. This is for example the case 
if one wants to sample from the inferred distribution.

Figure 2. Comparison of different methods: covariances (main panels) and single-point frequencies of the model P as commpared to 
the empirical values resulting from the original MSA. While the Boltzmann machine (BM) is guaranteed to accurately fit the empirical 
values after e sufficient number of iterations of equation (17), all others are based on approximations. MF does not reproduce the empirical 
statistics (it actually has important ergodicity problems when sampling by MCMC), while PLM shows a clear improvement. ACE 
accurately fits the single-sire frequencies and large enough covariances, deviations for small covariances result from lumping together all 
symbols a with probabilities fi(a) < 0.05, such covariances have therefore low statistical support and large relative error, see [55]).
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Another interesting observation is reported in figure  3, 
which shows histograms of Hamming distances of sequences 
to the consensus sequence (a⋆1 , ..., a⋆

L) given by the most 
frequent amino acids a⋆

i = arg maxafi(a) in each column 
i, comparing natural sequences from the original MSA to 
sequences sampled from different inferred models. While the 
independent model IND reproduces the average distance (by 
definition of IND and the linearity of the Hamming distance), 
the histogram is visibly more concentrated than for natural 
sequences. PLM shows systematic deviations due to the lack 
of fitting accuracy, while ACE and BM accurately reproduce 
the empirical histograms. This is astonishing since the histo-
gram measures quantities which are not fitted via the Potts 
model, and illustrates the capacity of statistical models with 
pairwise couplings to well capture the sequence variability 
even beyond pairwise observables.

3.3. Residue-residue contact prediction and tertiary structure

The original motivation underlying the use of Potts models for 
describing the sequence variability across evolutionary related 
proteins is the prediction of residue-residue contacts [25]. 
This task is considered hard but important in bioinformatics: 
experimental determination of protein structures (x-ray crys-
tallography, NMR, cryo-electron microscopy) is expensive, 
time consuming, and frequently of uncertain outcome. On the 

other hand, freely accessible sequence databases are growing 
fast. If it were possible to use such sequence data for predict-
ing contacts between residues, this information could in turn 
help to predict protein structures (intra-protein contacts) or 
to assemble multi-protein complexes (inter-protein contacts). 
Since protein function typically relies on protein structure 
(e.g. via binding of other molecules to well defined interfaces 
on the protein surface), this would provide crucial informa-
tion about the operation of the proteins and the biological pro-
cesses they participate in. The validity of contact predictions 
is assessed by comparison with known structures of proteins 
belonging to the family under consideration. This structural 
information is complementary to the sequence data and only 
available for a fraction of protein families.

Within DCA, residue position pairs (i, j) are sorted accord-
ing to their interaction strengths as measured by FAPC

ij . We 
expect the most coupled pairs to be in contact. High scores are 
thought to indicate compensatory mutations in neighbouring 
residues in a protein structure (see Introduction).

Pairs of residues i, j with short separation |i− j| along the 
backbone frequently possess large FAPC

ij -values. These large 
scores often come from the presence of stretches of gaps, and 
are not very much relevant as far as structural predictions are 
concerned. For this reasons and since long-range (along the 
protein backbone) contacts are more informative about the 
tertiary structure most predictors do not include pairs with 

Figure 3. Comparison of different methods: the panels show histograms of Hamming distances of natural and model-generated sequences 
from the consensus sequence. The blue curves show the histograms for natural sequences (sampled from the initial MSA with frequencies 
proportional to the sequence weights), the orange ones for the different models (IND, PLM, ACE, BM). While IND and PLM show 
significant deviations, ACE and BM accurately reproduce the empirical histograms. Note that the measured distance is not fitted by the 
Potts model and therefore not automatically reproduced even by an accurately inferred Potts model.
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|i− j| ! 4 into the evaluation, a distance corresponding to one 
turn in an α-helix.

Figure 4 shows an example for this procedure. Results 
obtained for 4915 sequences of length 53 amino acids, all 
belonging to the Pfam protein family PF00014 (trypsin 
inhibitor), are mapped onto the corresponding x-ray crys-
tal structure (PDB ID 5PTI [61]). The left panel shows that 
the prediction by the strongest correlations (as measured by 
mutual information (6)) includes a large fraction of false pos-
itives (green lines). Predictions based on the strongest cou-
plings, shown in the right panel, lead to a significantly better 
prediction (red lines).

While here we present only one example, the predictive 
performance has been tested for thousands of protein families 
[26, 35]. A consistent improvement of DCA over correlations 
has been shown. Interestingly, the quality of the inference has 
only a small impact on the contact prediction. The reason is 
that in order to obtain a good performance in contact predic-
tion, it is sufficient to infer the topological aspects of the net-
work reasonably well. While approximate methods like MF 
or PLM may have a larger error in the inference of the exact 
parameter values than more exact methods like BM or ACE, 
they robustly predict network topology, see the last section. 
In fact, PLM is currently the best stand-alone method for effi-
cient contact prediction.

The observation that the strongest coevolutionary cou-
plings—i.e. the strongest pairwise evolutionary constraints—
correspond to residue-residue contacts can be interpreted as 
a sequence-data driven support for so-called structure-based 
models (SBM) [62, 63], which themselves are motivated by the 
energy landscape theory [1, 2] mentioned in the Introduction: 
SBM assume that the folding process is mainly guided by 
native residue contacts. In turn, the central use for the residue 
contacts extracted from MSAs with DCA is in the prediction 
of protein structures. While the structure of a protein is usually 

defined by its amino-acid sequence (Anfinsen’s principle 
[64]), the general process of protein folding in vivo is not fully 
understood. Setting this question aside for the moment, one 
can also ask the easier questions on how to computationally 
infer the folded structure of a protein from its sequence. In the 
last decades, this was a central question in computational biol-
ogy and many methods have been devised. Even though the 
performance of these methods has made impressive advances, 
the problem is still considered as unsolved in general [3].

In this context, DCA has been shown to provide valuable 
information. The predicted residue contacts can be used as 
prior information on the structures. Such information restricts 
the number of possible structures and makes the task thus eas-
ier. The importance of predicted contacts in the field can be 
illustrated by the fact that many of the top-performing groups 
in the last CASP challenge (http://predictioncenter.org/) have 
made use of them. Hundreds of novel protein structures have 
been predicted using coevolutionary contact predictions [32, 
35]: to this aim, global pairwise contact predictions guide the 
assembly of local but higher-order structural elements like 
secondary structures (see [31, 34]) or protein fragments (see 
[35]).

As a last point, we note that the best performing methods 
for predicting residue contacts are meta-methods. These meth-
ods use other methods like DCA as input and combine them 
using machine-learning techniques for an improved predic-
tion [65–67]. Since they use supervised learning techniques 
to model the input-output relation between MSA and contact 
map, it is not surprising that they outperform any unsuper-
vised method in this task.

3.4. Predicting interaction partners and inter-protein residue 
contacts in protein–protein interaction

The formalism of Potts models and DCA can be used to extract 
biological information on different scales. While we focused 
above on how to infer contacts between residues within a pro-
tein, we now describe how to use the same formalism to infer 
interactions between proteins [68, 69]. When extended to all 
proteins in a genome, this can then be used to infer an organ-
ism-wide protein–protein interaction network.

The model in equation  (3) defines a probability P(a) for 
finding sequence a for a specific protein belonging to pro-
tein family A in an organism. We now define a probability 
P(a, b) for finding sequence a for a protein belonging to fam-
ily A and sequence b for a protein belonging to family B in 
the same organism. The general idea is that if the members of 
the two protein families interact in all or most organisms, they 
have to be mutually compatible. Therefore, one would expect 
P(a, b) ̸= P(a)P(b) in such cases.

An intuitive extension of equation  (3) for two protein 
sequences a and b is

H(a, b) = HA(a) +HB(b) +HAB(a, b),

where HA(a) and HB(b) are of the form of equation (3) and 
model the coevolution between residues within the proteins A 
and B. The additional interaction term

Figure 4. Residue-residue contact prediction based on ranking 
of correlations (left) and Potts couplings (right) for the PF00014 
protein family (trypsin inhibitor). Top 30 values of the mutual 
information (i.e. correlations) and FAPC (i.e. couplings) scores 
are mapped onto the protein structure (PDB ID: 5PTI), excluding 
trivial predictions with separation |i− j| ! 4 along the amino-acid 
sequence. Red bars correspond to residue pairs in contact (distance 
below 8Å, true positives), green bars to distant residue pairs (false 
positives). Inference was done using the mean-field approximation.
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HAB(a, b) = −
La∑

i=1

Lb∑

j=1

Jij(ai, bj)

contains LaLbq2 coupling parameters, with La and Lb being the 
length of the sequences a and b. These parameters describe 
the coevolution between residue pairs in different proteins.

The model including the interaction term defines a prob-
ability for a pair of sequences in the same organism. As data 
for the inference process we therefore need two MSAs, one 
for protein family A and one for protein family B. We then 
search for pairs of sequences (one from A and one from B) that 
come from the same organism and treat their concatenation as 
a single configuration of the composed Potts model.

A problem can arise when there are several sequences 
belonging to the same protein family inside a single organ-
ism (such sequences are called paralogs). The problem which 
sequences to pair in such cases is called matching and can be 
solved either by biological prior information [68, 69] or by 
another layer of probabilistic modeling [70, 71].

As an interaction score for residue pairs between two pro-
teins the FAPC scores of equation  (27) can be used. A pos-
sible interaction score for two proteins is then the average of 
the n largest FAPC scores between the proteins. It has been 
shown that n = 4 gives a good performance, since it takes into 
account the strongest signals, but averages over a few pairs to 
be less susceptible to noise.

In figure  5 we represent as an example the inference 
results for the two ribosomal subunits. The units consists of 
49 proteins and within the experimentally determined struc-
ture (PDB: 2Z4K, 2Z4L [72]) 50 pairs are interacting, i.e. 
only 8.4% out of the 596 intra-unit protein pairs. We use the 
approach outlined above to fit a Potts model to each of the 
corresponding 596 protein-family pairs and calculated inter-
action scores with n = 4. Of the ten pairs with the largest 
interaction scores in each unit, 16 are interacting in the struc-
ture, covering most pairs with large interaction interfaces (i.e. 
fat lines in the figure). This predictive precision of 80% has 
to be compared with the 8.4% to be expected on average in a 
random prediction, i.e. only 1.68 interacting pairs would have 
been found on average when extracting 20 random pairs, with 
no preference for large interfaces.

Since one Potts model has to be inferred per protein pair, 
the method is computationally expensive for large sets of pro-
teins. It has nonetheless been applied to large-scale datasets, 
such as all protein pairs within an operon (a set of co-localized 
genes expressed together) in a genome [68].

The same method can also be used to infer residue-residue 
contacts between proteins. Such predictions are useful when 
searching for the structure of a protein complex when the 
structures of the single proteins are known [30, 68, 73–75]. 
It has been seen that large protein–protein interfaces, which 
are widely conserved across species, show reliable coevo-
lutionary signals, while smaller interfaces or those being only 
conserved in part of a protein family cannot be easily detected 
by a global statistical modeling of a protein family [75].

3.5. Potts model for scoring: from single mutations to entire 
sequences

The Potts model inferred from the MSA of a protein family 
defines a distribution over all sequences, assigning higher 
probabilities to sequences likely to belong to this family. It 
can thus be used to quantitatively predict whether a sequence 
is similar in structure and function to the sequences the model 
has been trained on. In this way the model becomes a tool for 
assessing the effect of mutations in protein sequences, for pre-
dicting whether synthetic sequences fold into a known struc-
ture or for generating new synthetic sequences by sampling 
from the model.

Figure 5. Protein–protein interaction network of the small ribosomal 
subunit (SRU, top) and the large ribosomal subunit (LRU, bottom). 
Circles represent proteins, grey and green lines represent interactions 
found in the experimental structure (PDBs: 2Z4K/2Z4L). The 10 
colored lines represent the 10 strongest interaction scores according 
to DCA. Green indicates a true positive, red a false positive. The 
width of the lines is proportional to the number of residue contacts 
between the proteins. Reproduced from [69]. CC BY 4.0.

Rep. Prog. Phys. 81 (2018) 032601

https://creativecommons.org/licenses/by/4.0/


Key Issues Review

13

A natural quantity to score sequences in these applications 
is their energy. By definition, equation (3) is minus the log-
probability of the sequence (up to an additive constant coming 
from normalization). We now show that this score leads to 
very promising results when tested on experimental data.

A local test checks if energy differences (i.e. differences in 
log-probability of the Potts model) actually can quantify the 
fitness effect of mutations. This has been done successfully 
in a number of situations, ranging from viral over bacterial 
to human proteins [38–42, 76]. Such predictions are of great 
biomedical interest, since they help to find mutations related 
to virulence or drug resistance of pathogens to the identifica-
tion of disease-causing mutations in between the multitude of 
neutral polymorphisms observable in human.

On a more global level, the energy of the Potts model 
can be seen as a measure in how far a new (e.g. artificially 
designed) amino-acid sequence is compatible with the natural 
sequence variability extracted via our Potts model from known 
sequences (i.e. the MSA used to infer the model parameters). 
This was first done in [28] using PLM-based inference and 
experimental data from [43, 44]. The latter works are based 
on a method called statistical couplings analysis (SCA), 
which was used for generating computationally non-natural 
members of the WW protein domain family (PFAM family 
PF00397, with an MSA of currently M = 12 742 sequences).

The SCA sampling process is based only on the statisti-
cal properties of an MSA of natural members of the family; 
the resulting non-natural sequences were expressed and tested 
experimentally. The properties determined were thermody-
namic stability in [44], and the peptide binding specificity for 
a subset of stable proteins in [43].

The starting point for the generation of artifical sequences 
was a small and curated alignment of 120 natural sequences 
of the WW domain family (length 35 residues), 42 of which 
were included in the experiments (called NAT—natural). To 
generate artificial sequences, the alignment was shuffled in 
three different ways:

 • (R—random): a random permutation was applied to all 
entries in the matrix, thereby destroying any pattern of site-
specific conservation (i.e. ‘magnetization’) or covariation 
between sites. 19 sequences were tested experimentally.

 • (IC—independent conservation): sequences were 
obtained by shuffling each column of the original MSA. 
Statistical features of individual positions are therefore 
unchanged, while covariation patterns are destroyed. The 
IC shuffling procedure corresponds to a sampling from 
the independent-site model equation  (2). 43 sequences 
were tested experimentally.

 • (CC—coupled conservation): starting from the IC data 
set, a Monte-Carlo annealing was used to to approxi-
mately reproduce the pairwise amino acid frequencies 
fij(a, b) of the original MSA of natural sequences. The 
CC dataset is closely related to a sampling from the Potts 
model in equation (3), see [77]. 43 sequences were tested 
experimentally.

Denaturation experiments showed that none of the R or IC 
sequences folded into the correct structure. On the contrary, 
31% of the CC sequences and 67% of the NAT sequences 
folded correctly in the experimental conditions used. These 
results are a strong indication that limited sequence infor-
mation might be sufficient for defining the structural con-
straints acting on the evolution of the WW domain family. 
Considering the complexity of interactions between amino 
acids, illustrated by the notorious difficulty of solving the pro-
tein folding problem [3], this may come as a surprise. More 
exactly, reproducing the pairwise correlations in the amino-
acid distribution, in addition to the single-site frequencies, 
seems to be necessary and (almost) sufficient to specify the 
native fold.

However, the SCA algorithm was not able to score single 
sequences, but only the entire shuffled alignement. On the 
contrary, single sequences can be assessed by the Potts-model 
energies described before. It was first noted in [28], that these 
energies are effectively an excellent predictor which of the 
sequences fold, and which not.

Using the couplings Jij(a, b) and fields hi(a) inferred with 
a recent Pfam release, sequence energies for the different sets 
were calculated. We compare them to energies of sequences 
sampled from the same Potts model and the independent 
model in figure  6. In the top panel, the energy distribution 
of sequences generated from a Monte Carlo sampling of 
the inferred Potts model (blue) is compared to the distribu-
tion of energies of sequences generated by the independent 
model (green) and from random sequences (red). In the bot-
tom panel, the sequences tested experimentally in [44] are 
shown—by red bars if they were folding in the experiments, 
by grey bars if not.

As a first observation, we see that also the IC sequences 
(as well as the sequences sampled from the independent 
model) have significantly smaller energies than the random 
sequences, even if these are evaluated with the pairwise Potts 
model. The energy spectra of the sample from the Potts and 
the independent model are partially overlapping, resulting also 
in overlapping energy values of the CC and IC sequences. The 
most striking observation is, however, that most folding CC 
and N sequences have energies smaller than those achieved 
by IC and independent-model sequences, while the CC and N 
sequences with higher energies, in the range of IC energies, 
are mostly non folding. The energy turns out to be an excel-
lent discriminator between folding and not folding sequences 
across the NAT, CC, IC and R data sets.

Figure 6 shows the results obtained using ACE for model 
inference. While the other inference techniques (MF, PLM, 
BM) show some quantitative differences, their performance 
in discriminating folding from non folding sequences is very 
comparable: the performance of Potts models in such clas-
sification tasks does not depend much on the inference tech-
nique used. This is probably due to the fact that the inferred 
parameters have to be only good enough to rank the sequences 
correctly, such that a more precise inference does not lead to a 
better performance in sequence ranking.
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3.6. Generative aspects and entropy: from lattice proteins  
to HIV

An ambitious goal is to generate new and functional protein 
sequences, e.g. by Monte Carlo sampling from the inferred 
model, along the lines of the study of the WW domain by 
Ranganathan and collaborators [43, 44], see figure 6.

Important intuition can be gained from the highly idealized 
case of lattice proteins, a model of 27 amino-acid long chains 
folding on discrete 3× 3× 3 cubic structures [78]. In this set-
ting, protein families are defined as the set of sequences fold-
ing into one of the  ∼105 structures on the cube. Jacquin et al 
[79] found that new sequences generated by MCMC from the 
ACE-inferred Potts model describing a structural family have 
high probability to fold into the same structure (but not for 
less precise Potts models based on MF and PLM inference). 
On the contrary, sequences sampled from the independent 
model rarely fold. These results confirm—in the simple case 
of lattice proteins—the claim of [43, 44] that keeping 2-point 
statistical information is necessary and sufficient for generat-
ing structurally valid proteins.

In addition the study of [79] shows that couplings Jij(a, b) 
are, to lowest order approximation, proportional to the prod-
uct of a site-dependent structural matrix, cij − cij, and of the 
knowledge-based Miyazawa-Jernigan interaction matrix, 
E(a, b), expressing the physico-chemical interactions between 
neighbouring amino acids [80]. Here, cij is simply the contact 
map of the native fold, while cij is the average contact map of 
the competing folds. This result is in remarkable agreement 
with the prescriptions followed in [4] for protein design. Note 
that the similarity between the Miyazawa-Jernigan matrix and 
the (a, b) dependence of statistical couplings also holds for 
real proteins, as shown in [81].

However, while lattice proteins are valuable as non-trivial but 
still fully controlled benchmark models for novel algorithmic 

ideas, the transfer of results to real proteins has to be taken with 
care. An example is given by the negative design observable in 
lattice proteins [79]: residues not in contact in a given structure 
frequently show a coevolutionary coupling Jij, which is anti-
correlated to biophysical interactions between residues. The 
formation of contacts between these residues is therefore phy-
cially disfavored, and consequenctly also the risk to fold into a 
competing structure. An easily understandable example is given 
by the preference for charged residues of same sign leading to 
electrostatic repulsion. While this finding is very intuitive, neg-
ative design has not yet been observed in the coevolutionary 
couplings inferred from MSA of real proteins.

As discussed above, the cross-entropy is an estimate of 
the Gibbs-Shannon entropy of the sequence distribution of 
proteins belonging to the same family, based on the limited 
sample of known functional sequences. Roughly speaking, 
the entropy can be thought of as the logarithm of the num-
ber of sequences in the family. This definition is approximate, 
as some sequences may express the biological function with 
varying degrees. Computing the value of the entropy is of 
interest, since it allows us to quantify the diversity of possible 
proteins sharing a common biological function. The size of a 
protein family is expected to be much larger than the size of 
the available MSA. Considering again lattice proteins on the 
3× 3× 3 cube allows one to obtain a quantitative understand-
ing of thses concepts in an idealized case [79]. Calculations 
show that the  ∼105 families defined by the possible structures 
contain each a variable number of protein sequences. The 
numbers range between 1020 and 1025 [82] and depend on the 
designability of the native fold [83, 84]. The total number of 
sequences in any of the structures represents thus a tiny frac-
tion of the total number of sequences, 2027 ≃ 1035.

Unfortunately, estimating the entropy of real protein 
families is a daunting, not well-defined task. However, 

Figure 6. WW sequences: Potts energies and folding qualities. Top: distribution of Potts energies (couplings and fields inferred by the 
ACE algorithm) of sequences, which are sampled by MCMC from the coupled Potts (blue) and the independent-site (green) models. 
The red histogram corresponds to random sequences, which display much higher energies.  Bottom: first row: energies of the 43 CC 
sequences, among which 12 well folded (red) and 31 (gray) not well folded according to denaturation tests. Second row: energy of the 43 
IC sequences; none of them folds. Third row: energies of 19 random R sequences; none folds. Last row: the 42 natural sequences, among 
which 28 are well folded (red) and 14 (gray) not. Note the coherence between energy values in the top and the bottom plots.
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approximate results can be obtained from the cross-entropy 
when using ACE to infer Potts models [82]. For the case of the 
WW domain discussed before, this amounts to approximately 
1.2 nats per residue position, i.e. to about e1.2 ≃ 3.3 different 
amino acids per site. As the Potts model takes into account 
only the one- and two-point statistics, we expect the true 
entropy, which reflects higher order statistical constraints, to 
be smaller (note that the independent-site model, which does 
not take into account pairwise correlations, gives a higher 
entropy density of about ln 5.5 ≃ 1.7 nats). All these esti-
mates are obviously much smaller than the value ln 20 ≃ 2.99 
nats, which would be obtained for purely random amino-acid 
sequences. They are closer to the value of 1.9 nats obtained by 
Shakhnovich an collaborators from purely thermodynamical 
considerations [36].

The concept of entropy was also recently used in the study 
of HIV viral sequence variability. HIV is characterized by 
a large sequence mutability: the viral population constantly 
escapes from the immune system by mutating amino acids in 
the epitope, a subsequence of about 10 amino acids, which is 
recognized by antibodies. Understanding the mutational land-
scape of HIV sequences is therefore of fundamental impor-
tance in the hope to design drugs or vaccines that block as 
many escape mutations as possible. As compensatory muta-
tions (i.e. epistasis couplings between amino acids, as included 
in the Potts models of protein sequences) play a central role in 
the escape mutations, it is important to use predictive models 
that take into account couplings between amino acids. In the 
following we illustrate a few studies, allowing to more accu-
rately characterize the mutational landscape.

In figure 7, we plot the cross entropies of all the 14 proteins 
encoded in the HIV virus genome. These quantities allow us 
to identify the viral proteins that are more conserved and 
therefore less inclined to mutations [82]. Interestingly, among 
the three more conserved proteins, the reverse transcriptase 
and integrase are not frequently targeted by the immune sys-
tem, and therefore not under its selective pressure. On the con-
trary, protein p24, which forms the viral capsid, is frequently 
targeted by the host immune system. Its large conservation 
despite this immune pressure suggests that this protein is 
tightly constrained. Epitopes in this region have been shown 
to be frequently targeted by individuals that efficiently control 
the viral infection [85]. In addition one can predict to what 
extent variations in amino acids at individual sites contrib-
ute to the total entropy of the protein. Neglecting couplings 
between sites, this can be easily obtained from data [86] using 
the single site entropy as estimated from the empirical frequen-
cies of amino acids on the sites, Ssite(i) = −

∑
a fi(a) log fi(a). 

Corrections to these estimates can be done once the Potts cou-
plings are inferred, as shown in [82].

More results were obtained by applying the Potts approach 
to HIV sequence data. In [38], the energy cost of sequence 
mutations with respect to the wild type sequence has been 
estimated by the inferred Potts model and compared to in 
vitro measures of the viral replicative power, which is a direct 
measure of this fitness. A correlation coefficient of −0.76 
was observed. In [87], data consisting of samples of the viral 
sequences and antibody populations in the same patients 
over time have been analyzed and compared to Potts model 

prediction. It has been shown that two patients, in which the 
same epitope is targeted in the same protein, have escaping 
times that are very different. Such observations are explained 
by the fact that the overall viral sequence is different in the 
two patients and therefore the cost of the escaping mutations, 
according to the energy cost estimated by the Potts model, is 
different due to the coupling terms. The energy cost is there-
fore a good estimator for the time for the escaping mutations.

4. Conclusion and outlook

In this review, we have illustrated how methods borrowed 
from (inverse) statistical physics are gaining influence in the 
analysis of massive sequence data. Such data become avail-
able at an unprecedented pace thanks to next-generation 
sequencing. The large amounts of data pose both a challenge 
and an opportunity for sophisticated methods of data analysis 
and modeling:

 • From the point of view of bioinformatics, computational 
methods are needed to analyse data and gain insight into 
specific systems of biological and biomedical interest. An 
example is the use of sequence data to predict the three-
dimensional structure of a folded protein.

 • From the point of view of statistical biological physics, 
such large amounts of data help to gain deep insight into 
general principles governing biological systems and 
their evolution. As an example, analysing the sequence 
variability between evolutionary related proteins provides 
information about how and which structural and func-
tional characteristics of proteins constrain its evolution 
over millions of years.

Within the statistical modeling of large biological data sets, 
both viewpoints meet and reinforce each other, placing the 
area of research at the interface between statistical physics, 
bioinformatics and biology.

Despite the success of modeling protein sequences via 
Potts models, there are important limitations, which require 
substantial theoretical and applied work in the years to come:

 • The success of pairwise models is astonishing—there is 
no fundamental reason why higher-order statistical fea-

Figure 7. Entropies of the 14 protein families of the HIV virus, as 
estimated by the ACE algorithm extracted from the alignments (Los 
Alamos data base), versus length of the protein. Results are shown 
for Clade B of the HIV virus, and are similar to what is found for 
Clade C, see [82].
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tures (and thus higher-order statistical couplings) should 
not play a role. It is interesting to unveil the reasons of 
this success, as well as its limitations. This question is 
particularly important in the context of the discussed gen-
erative models—a true generative model should produce 
sequences which, by no statistical means, are distinguish-
able from natural sequences.

 • Current modeling schemes assume amino-acid sequences 
to be configurations of abstract symbols, which have no 
meaning on their own. Obviously, there is much prior 
knowledge about amino-acids, there are many methods to 
predict, e.g. the secondary structure of a protein based on 
its sequence, the solvent accessibilty of a residue, or the 
propensity of two residues to form a contact based on their 
physicochemical properties. So far, such complementary 
knowledge is not taken into account. As is illustrated by 
metapredictors using machine-learning techniques for 
combining coevolutionary scores with prior knowledge, 
the integration of different data sources is of the utmost 
importance. Systematic approaches combining heterog-
enous sources of information in a principled way have to 
be developped within the statistical-physics community.

 • Up to empirical statistical corrections (reweighting), cur-
rent models assume sequences to be an independently and 
identically distributed sample drawn from some unknown 
probability distribution. For sequence data, this assump-
tion is wrong—biological sequences have a non-trivial 
phylogenetic distribution, and the independent evolution 
between two recently divided species is typically not ‘at 
equilibrium’, i.e. the sequences cary memory about the 
common ancestor. What is the correct treatment of such 
sampling biases? 

 • Last but not least, the methods have been tested in gen-
eral on sample cases with known answer. Large-scale 
predictions of, e.g. unknown protein structure, are still 
comparatively rare.

In the meanwhile, databases are growing and more and more 
biological systems become amenable to statistical-physics 
inspired approaches. Similar approaches have been applied 
to systems as different as gene-regulatory networks [88–90], 
retinal and hippocampal neural spiking data [91–94] and the 
collective behavior of animal groups [95, 96]. We are certain 
that more systems will be added to this list.
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