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Abstract Hippocampus stores spatial representations, or
maps, which are recalled each time a subject is placed
in the corresponding environment. Across different envi-
ronments of similar geometry, these representations show
strong orthogonality in CA3 of hippocampus, whereas in
the CA1 subfield a considerable overlap between the maps
can be seen. The lower orthogonality decreases reliability of
various decoders developed in an attempt to identify which
of the stored maps is active at the moment. Especially, the
problem with decoding emerges with a need to analyze data
at high temporal resolution. Here, we introduce a functional-
connectivity-based decoder, which accounts for the pairwise
correlations between the spiking activities of neurons in
each map and does not require any positional informa-
tion, i.e. any knowledge about place fields. We first show,
on recordings of hippocampal activity in constant environ-
mental conditions, that our decoder outperforms existing
decoding methods in CA1. Our decoder is then applied to

Action Editor: Alessandro Treves

� Lorenzo Posani
lorenzo.posani@gmail.com

1 Laboratoire de Physique Statistique, Ecole Normale Supérieure
and CNRS UMR 8550, PSL Research, Paris Sorbonne UPMC,
24 rue Lhomond, 75005 Paris, France

2 Laboratory of Experimental Neurophysiology, Biomedical
Center, Faculty of Medicine in Pilsen, Charles University
in Prague, alej Svobody 1655/76, 32300 Pilsen,
Czech Republic

3 Laboratoire de Physique Théorique, Ecole Normale
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data from teleportation experiments, in which an instanta-
neous switch between the environment identity triggers a
recall of the corresponding spatial representation . We test
the sensitivity of our approach on the transition dynamics
between the respective memory states (maps). We find that
the rate of spontaneous state shifts (flickering) after a tele-
portation event is increased not only within the first few
seconds as already reported, but this instability is sustained
across much longer (> 1 min.) periods.
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1 Introduction

Over the recent decades, multi-cell recording techniques
have provided insights into the nature of brain represen-
tations and their internal dynamics. While many works
have focused on the input-output transfer functions in pri-
mary sensory systems (visual, olfactory, etc.), understand-
ing functions corresponding to complex representations in
higher cortical circuits is very hard as they are often based
on mixed selectivities (Rigotti et al. 2013). In relatively
rare cases, such as in the entorhino-hippocampal system, a
highly processed neural activity can be reliably correlated
with behavior. The so-called ’place cells’ in the CA1 and
CA3 of hippocampus exhibit sharp spatially tuned and envi-
ronment specific activity (O’Keefe and Dostrovsky 1971),
see Fig. 1. Collective activity of the place–cell population
coding for the environment defines its neural representation,
or map. Simultaneous recording of multiple place-cell activ-
ity thus allows one to identify a general memory state of the
network (specific map), as well as to decode the accurate
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Fig. 1 Hippocampal representations are less orthogonal in CA1 (a)
than in CA3 (b). Each panel shows six firing fields from CA1 (a)
and CA3 (b) corresponding to three place cells (rows) in the recorded
neuronal population, computed from 10 min recordings of the activ-
ity during free exploration of environments A and B (same 60 × 60
cm square shapes; spatial bins : 3 × 3 cm). Whereas CA3 cod-
ing is highly sparse and representations are largely orthogonal, CA1

population shows higher amount of cells active in corresponding loca-
tions across the two rooms, with peak rates (color scale) changing from
one environment to the other. The non-orthogonality of environment
representations in CA1 makes identification of the represented map
from neural activity difficult compared to the situation in CA3. CA3
data were taken from Jezek et al. (2011). Colorbars show average firing
rate in Hz

position of the rodent in the corresponding environment
(Zhang et al. 1998).

Recently, Jezek et al. (2011) have studied the dynam-
ics of transient change between the spatial maps encoding
two different environments in CA3 at high temporal reso-
lution (ca 120 ms time windows). The two environments
differed by light cues that could be switched instantaneously
(’teleportation procedure’), while the animal hippocampal
neural activity was recorded to monitor the course of activa-
tion of the proper spatial map. An unstable state generally
emerged for some seconds after the light switch, as both
maps started to flicker back and forth. This phenomenon,
called flickering, was identified through measure of the sim-
ilarity between the place-cell population activity and its
averaged patterns across both environments, recorded ear-
lier in respective reference sessions. Typically, a given 120
ms time window activity of the test data strongly correlated
with the average reference activity in one map, and had

essentially no correlation with the reference activity in the
other map.

Success of such comparison-based decoding methods
reflects the strong orthogonality of spatial maps in CA3:
across two environments, activity of place cells broadly
differ in their mean frequencies and receptive field loca-
tions, see Fig. 1b. Hence, simple map decoders, essentially
assuming that cells fire independently of each other, are suf-
ficient to reliably identify the representation expressed by
the animal. In contrast, remapping between environments
(especially of similar geometry) is less orthogonal in CA1
as it shows higher number of cells firing at corresponding
places across rooms, see Fig. 1a. The population activity
vector often correlates well with both concurrent refer-
ence templates, which hinders the use of comparison-based
methods for map decoding.

Here we address the challenging goal of map decoding in
CA1 by introducing a probabilistic graphical model for the
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neural activity configurations in each map. Graphical mod-
els, in which a functional connectivity network accounts
for the pairwise correlation structure between neuronal fir-
ing events in the recorded population (MacKay 2003), have
been applied to various areas so far (Stevenson et al. 2008;
Cocco et al. 2017), e.g. to estimate the information conveyed
by Tkačik et al. (2010) or the activity of (Pillow et al. 2006;
Schneidman et al. 2008) retinal ganglion cells in the pres-
ence of visual stimuli, to detect learning-related changes in
functional connectivity in the prefrontal cortex (Tavoni et al.
2015, 2016).

We apply our graphical-model decoder to already pub-
lished (Jezek et al. 2011) and some new recordings of the
hippocampal activity in CA1, performed within the tele-
portation setup of Jezek et al. (2011). Our decoder shows
very good performances in terms of precision and statisti-
cal properties in CA1. It allows us, in particular, to identify
transitions between spatial representations in CA1 in a
statistically robust way. Remarkably, we find that the fre-
quency of these flickering events is increased even minutes
after a teleportation switch.

It is important to stress that, in contradistinction with pre-
viously used map decoders, ours does not use any position
information. It can therefore be applied to decode and study
the dynamics of general brain states with unknown input
correlates, the only working hypothesis being that we dis-
pose of reference sessions to build statistical models of the
corresponding internal states.

2 Materials and methods

2.1 Experimental methods

Electrode preparation and surgery Single unit neuronal
activity was recorded in three adult Long Evans male rats
in hippocampal subfields CA1. Rats were implanted with
a “hyperdrive” allowing for an independent positioning of
16 tetrodes organized into an ellipsoid bundle. Tetrodes
were twisted from 17 um insulated platinum-iridium wire
(90% and 10%, respectively, California Fine Wire Com-
pany). Impedance of electrode tips was adjusted by platinum
plating to 120 – 250 kOhm (at 1 kHz). Anesthesia was
introduced by placing the rat into a plexiglas chamber
with seal top filled with isoflurane vapour. Then the ani-
mal was shaved and placed into the stereotaxic frame and
continued the isoflurane delivery with a face mask. Breath-
ing, heart action and reflexes were monitored continuously.
Hyperdrive was then implanted above the right dorsal hip-
pocampus at coordinates AP 3.8 mm and ML 3.2 mm
relative to bregma. Stainless steel screws and dental acrylic
were used to stabilize the implant on the skull. Two of the
screws served as the hyperdrive ground.

Tetrode position The tetrodes were slowly approached
towards CA1 or to CA3 within 2-3 weeks after the surgery
while the rat was resting in a comfortable pot on a pedestal.
To maintain stable recordings, electrodes were not moved
at all before and during the experiment on a given day. The
recording reference electrode was positioned in corpus cal-
losum. Additional reference for EEG was placed in stratum
lacunosum moleculare.

Recording procedures Neural activity was recorded while
the rat was behaving in an apparatus described by Jezek
et al. (2011). Signal was recorded differentially against
the reference tetrode. Hyperdrive was connected to a mul-
tichannel, impedance matching, unity gain headstage and
its output conducted through a 82-channel commutator to
a Neuralynx digital 64 channel data acquisition system.
Signal was band-pass filtered at 600 Hz–6 kHz. Unit wave-
forms above individually set thresholds (45-70 μV) were
time-stamped and digitized at 32 kHz. Position of the light
emitting diodes on the headstage was tracked at 50 Hz to
assess the animal’s position. For the purpose of this study
only data from intervals when the rat’s movement speed
exceeded 5 cm/sec were used. Broadband EEG from each
tetrode was recorded continuously at 2000 Hz.

Spike sorting and cell classification Spikes were sorted
manually using 3D graphical cluster-cutting software (Spike-
Sort, Neuralynx) The feature space consisted of three-dimen-
sional projections of multidimensional waveform amplitudes
and energies. Autocorrelation and crosscorrelation functions
were used as additional separation tools. Putative pyrami-
dal cells were distinguished from putative interneurons by
average rate, spike width and occasional complex spikes.

Histology After the experiment was finished, the rat was
overdosed with a barbiturate and was perfused intracardially
with saline followed by 4 % formaldehyde. Brain coronal
sections (30 μm) were stained with cresyl violet. Traces of
all 14 tetrode locations were identified. Each tip location
was considered as the place in the section before the tissue
damage became negligible. Only recordings from tetrodes
with their tips in CA1 were used in this study.

Behavioral procedure Animals were first pre-trained
according to the procedure described in Jezek et al. (2011).
Briefly speaking, the apparatus consisted of two identical
black plastic boxes (60 × 60 cm, 50 cm in height). The
two environments differed only by sets of light cues, one
placed on the upper rim of the box, the second was posi-
tioned under the semi-transparent floor with an additional
cue on one wall, respectively. There were no other visual
cues present as the experiment was otherwise carried in
darkness provided by surrounding light-proof curtains. The
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training consisted of four phases. Initially, the two boxes
were connected with an alley so the rat could freely explore
both of them within three 20 min. sessions for 3 days. In the
second phase, after the first 20 min. session, the alley was
removed and the animal was placed into box A or B, respec-
tively, in a quasi-random manner so that it received two 10
min. sessions in each of them, respectively. The next day the
rat received two 10 min. sessions in each environment as the
day before. Then we removed the double maze and replaced
it with a single box equipped with both sets of lights that
was presented at the original locations with just one cue set
switched on at the given session. The rat was given another
two 10 min. sessions in each environment that day. Finally,
the next day, after two sessions in the original locations, the
box was presented in a central location. Again, the animal
was presented another two 10 min sessions in each environ-
ment, respectively, in a quasi-random order. In all stages,
the running sessions were separated by a 20 min. break in
the resting pot. On the test day, both environments were pre-
sented in two “reference” recording sessions (10 min each).
After a 20 minutes break, the test session begun. The ani-
mal was inserted to the box with one set of lights on, and
the lights were switched between the both sets after couple
of minutes of recording.

2.2 Data structure

Cross validation of environment decoding methods
For the validation of environment decoding methods
(Section 3.2) a total amount of four recording sessions were
used. Two of them, one in the environment A and one in
the environment B, called reference sessions, were used to
infer activity models and reference statistics. The other two
(again one in environment A and one in environment B)
have then been used as test sessions, i.e. to assess the per-
formance of our method for decoding which environment is
internally-represented by the rodent.

Teleportation sessions In the post-teleportation analysis
shown in Section 3.3 we used recordings from three experi-
ments performed in three different animals (one of them was
already used in the original (Jezek et al. 2011) study). Each
data set included two reference sessions for both environ-
ments and one or two teleportation sessions, each containing
one single light switch. The switch between light cues was
in total performed four times (direction balanced, A to B or
vice versa), and the activity was recorded for some minutes
before and after the teleportation.

2.3 Map decoding methods

We consider two classes of decoders: Rate-map based
decoders, which expressly use the knowledge of place fields

and the rat trajectory as an input, and Activity-only decoders
that do not rely on any information about the correspon-
dence between position and neural firing. Throughout this
section neural activities are binned with time resolution Δt ;
we define the number of spikes of neuron i in time bin t ,
ni,t , and the binary activity, si,t = min(ni,t , 1). Little infor-
mation is lost when considering s instead of n as long as Δt

is smaller than the typical inter-spike interval of the cells.

2.3.1 Activity-only decoders

Bayesian approach to map decoding We introduce prob-
abilistic models for the distribution of activities {si}i=1...N

in a time bin, P({si}, Θ). Those models are parametrized by
a set of variables, Θ , which are fitted to maximize the like-
lihood of the data in reference sessions. Two sets of param-
eters Θ(m) are fitted, one for each reference session m =
A, B. We then define the difference in log–probabilities

E({si}) = log

[
P({si}|Θ(A))

P ({si}|Θ(B))

]
. (1)

The sign of the quantity E({si,t }) may be used to decode
the map in time bin t . Significance levels, based on the per-
centiles of the distribution of E can be imposed, see Results,
Section 3.3.

Independent-cell model The simplest way to model the
firing properties of the neural population is to assume that
the neural activities si are independent from cell to cell. For
each map m, the probability distribution P is parametrized

by a set Θ(m) =
{
h

(m)
i

}
of N ‘inputs’ h

(m)
i :

P (m)({si}|Θ(m)) =
∏
i

eh
(m)
i si

1 + eh
(m)
i

. (2)

Each input parameter is fitted in order to match the average
value of si with P (m) and the mean value μ

(m)
i of si,t across

the time bins t in reference session relative to map m. This

procedure yields h
(m)
i = log

[
μ

(m)
i /

(
1 − μ

(m)
i

)]
.

Graphical Ising model A more accurate probabilistic
model for the activity of the cell population is obtained
when pairwise correlations between neural activities si in
a time bin are taken into account. For each map m, we
introduce couplings J

(m)
ij to express the conditional proba-

bility that cell i is active given the activity of cell j . The
probability distribution P (m) is now parametrized by the set
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Θ(m) =
{
h

(m)
i , J

(m)
ij

}
of N inputs h

(m)
i and 1

2N(N − 1)

couplings J
(m)
ij :

P (m)({si}|Θ(m)) =
exp

(∑
i h

(m)
i si + ∑

i<j J
(m)
ij si sj

)
Z(m)

[{
h

(m)
i , J

(m)
ij

}] (3)

where Z(m) is a normalization constant. Parameters h
(m)
i

and J
(m)
ij are computed to match the average values of si and

sisj with P and, respectively, the mean values of si,t and
si,t sj,t across the time bins t in reference session relative to
map m. This hard computational problem can be approxi-
mately solved with the Adaptive Cluster Expansion (ACE)
algorithm (Cocco and Monasson 2012; Barton and Cocco
2013; Barton et al. 2016; Cocco et al. 2017), which pro-

vides estimates of the parameters
{
h

(m)
i , J

(m)
ij

}
and Z(m) in

Eq. (3).

Adaptive Cluster Expansion (ACE) The log-likelihood of
the model parameters given the neural activities, log P , is
regularized, i.e. added a term penalizing large couplings.
It is expanded as a sum of contributions corresponding to
clusters (subsets) of variables (Cocco and Monasson 2012;
Barton et al. 2016). Clusters of increasing sizes are recur-
sively built from smaller clusters and added to the expansion
if their contributions to the log-likelihood exceed some
threshold value. The value of the threshold is iteratively
decreased, until the 1- and 2-point statistics of the data are
reproduced (within the expected sampling accuracy). This
iterative procedure builds the simplest network (smallest
number and sizes of selected clusters) able to reproduce
the low order statistics of the data and avoids overfitting.
Statistical error bars on the inferred inputs and coupling
parameters are estimated (Barton et al. 2016). The threshold
value, the number, and maximal size of selected clusters at
convergence are given in Appendix A.

2.3.2 Rate-map based decoders

Computation of rate maps The squared box is partitioned
into a 20 × 20 grid of 3 × 3cm2 bins, and the rat position
during the two reference sessions is discretized with respect
to this grid. The coordinates (xt , yt ) associated to time bin
t correspond to the first spatial bin visited by the rat in the
time interval [t − Δt; t]. We define the average firing rate
r
(m)
i (x, y) as the total number of spikes emitted by neuron i

in the reference session m when the rat is at position (x, y),
divided by the total time T (m)(x, y) spent by the animal
in this spatial bin. These rate maps are then smoothed to
fill missing bins through discrete cosine transform (Garcia
2010).

Pearson decoder The observed firing pattern at time t ,
{ni,t }i=1...N , is compared to the average firing rates in map
m,

{
r
(m)
i (xt , yt )

}
i=1...N

, in the position (xt , yt ) occupied
by the animal at the same time (Jezek et al. 2011). This
comparison is made through the Pearson correlation

C(m)({ni,t }) =
〈n r(m)(xt , yt )〉t − 〈n〉t 〈r(m)(xt , yt )〉t√(〈n2〉t − 〈n〉2

t

) (〈r(m)(xt , yt )2〉t − 〈r(m)(xt , yt )〉2
t

)
)

(4)

where the notation 〈f 〉t := 1
N

∑N
i=1 fi,t denotes the average

of the quantity fi,t over the N neurons i in time bin t . The
decoding of the map in time bin t is done according to the
sign of

E({ni,t }) = C(A)({ni,t }) − C(B)({ni,t }) . (5)

Dot-product decoder The second method used in (Jezek
et al. 2011) compares directly the activity to the firing rates
at the rat position. The decoding of the map m is done
according to the sign of

E({ni,t }) = 〈n r(A)(xt , yt )〉t − 〈n r(B)(xt , yt )〉t . (6)

Bayesian poisson rate model This model assumes that
each neuron fires independently according to a Poisson
statistics, with a position-dependent firing rate r

(m)
i (x, y) in

map m. The probability of the number of spikes {ni} emitted
by the neural cells in a time bin when the rat is at position
(x, y) reads

P (m) ({ni}| (x, y))

=
∏
i

(
r
(m)
i (x, y)Δt

)ni

ni ! e−r
(m)
i (x,y)Δt (7)

The prior probability over positions is

P (m)(x, y) = T (m)(x, y)/T (m) , (8)

where T (m) is the total recording time in reference session
m. Assuming that both maps m are a priori equally likely,
we obtain the probability of the activity conditioned to map
m by marginalizing over positions

P({ni}|m) =
∑
x,y

P
({ni}|(x, y)

) × P (m)(x, y) . (9)

We then define the log-ratio

E({ni,t }) = log

[
P({ni,t }|A)

P ({ni,t }|B)

]
, (10)

whose sign will be used to decode the map in time bin t .
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2.4 Performance measure of a binary decoder

To quantitatively assess decoding performance of map-
decoding methods we refer to binary classifier theory (Hanley
and McNeil 1982; Metz 1978; Bradley 1997; Pencina et al.
2008).

Receiver Operating Characteristic (ROC) diagrams A
standard framework to assess the performance of binary
decoders is the so-called ROC diagram (Hanley and McNeil
1982). For each time bin t the decoder outputs either map
A or map B. To match the vocables used in the ROC frame-
work we will arbitrarily say that the output is positive if the
map is decoded to be A, and negative if the map is pre-
dicted to be B. If the output of the decoder matches the
environment defined by the light cues at the same time t ,
the prediction is said to be True, otherwise it is said to be
False. For instance, a time bin such that the decoder predicts
A, in agreement with the cues, corresponds to a True Posi-
tive event. The 2 × 2 possible events are shown in Table 1.
Two important quantities are: the True Positive Rate (TPR,
also called Recall), that is, the number of true positive pre-
dictions divided by the total number of positive events, and
the False Positive Rate (FPR), that is, the number of false
positive predictions, divided by the total number of nega-
tive events. In other words, the TPR measures the fraction
of time bins with A–cues that are correctly decoded as A,
while the FPR is the fraction of time bins with B–cues that
are incorrectly predicted to be A.

Our binary decoders are all based on thresholding the
estimator variable E . Within the Bayesian framework, for
instance, we compute E as the difference between the loga-
rithms of the posterior probabilities of A and B, and output
Positive if the difference is larger than θ = 0, Negative
otherwise. The value of the significance threshold θ can
be arbitrarily changed, with the consequence of modifying
the TPR and FPR values. A ROC curve shows the para-
metric plot of TPR vs. FPR as the threshold varies, and
describes a curve in the unit square, see Results, Section 3.2.
The two extreme points of the ROC curves have coordi-
nates (0,0), and (1,1); (0,0) is obtained for a very large
significance threshold θ , the decoder never outputs Posi-
tive and both TPR and FPR vanish; (1,1) is obtained when
the significance threshold is very low, the decoder always
outputs Positive and both TPR and FPR are equal to unity.
Very good decoders are such that the TPR is close to unity,

while maintaining a very low value for the FPR. A random-
guessing decoder would give equal values for the TPR and
FPR, and the ROC curve would coincide with the diagonal
of the unit square.

A complementary measure of decoding performances is
the Precision versus Recall (or TPR) curve, obtained by
scanning the values of the significance threshold θ , see
Results, Section 3.2. The Precision is defined as the num-
ber of true positive events, divided by the total number of
positive predictions. When lowering the significance thresh-
old the Precision decreases from 1 to 0, while the Recall
increases from 0 to 1.

Area Under the Curve (AUC) A quantitative measure of
the decoding performances is the Area Under the (ROC)
Curve (Hanley and McNeil 1982). According to this mea-
sure, the ideal decoder has AUC = 1, while random
guessing would give AUC = 0.5. Note that this measure
is invariant with respect to the arbitrary choice of assign-
ing positive value to environment A: if we assign positive
to B and negative to A instead of the previous choice,
ROC curves will undergo a symmetry transformation with
respect to the top-left/bottom-right diagonal, resulting in
an identical area under the curve. This is granted by the
fact that positive and negative values are mutually exclusive
and complementarily cover the whole data set: for each θ

value the fraction of False Positive (B decoded as A) equals
one minus the fraction of True Negative (B decoded as B)
events.

2.5 Continuity prior for map decoding

A continuity prior can be included in map inference in
order to reduce noise in the decoding and highlight clus-
ters of contiguous transited time bins. To do so, we consider
the output {Et } of the map decoder (see Section 2.3); for
Bayesian decoders Et is the difference between the log-
likelihoods of the two maps mt = +1 and −1 in time bin t .
We then introduce a prior, controlled by a strength param-
eter K , which favors persistence between decoded maps in
nearby time bins. Informally speaking, K is the cost (in log-
likelihood) we are willing to pay for flipping the map index
in time bin t predicted by the sign of Et to its opposite value,
if it then matches the map indices of the neighboring time
bins, t −1 or t +1. The prior may thus be effective in chang-
ing the map prediction mt if the differences between Et−1 ,

Table 1 Denominations used
for the four possible events,
depending on the output of the
decoder and on the
environment-defining cue

Decoder output A B A B

Cue A A B B

Denomination True positive False negative False positive True negative

The cue is not changed throughout the reference session
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Et , Et+1, ... are of the order of K (in absolute value). Two
situations are encountered: (1) for some decoders, e.g. Pear-
son, Et takes value in [−2; 2], and the variations of E over
successive time bins is bounded; (2) for other decoders, e.g.
Independent-Cell, Poisson and Ising, the difference between
Et and Et+1 can take arbitrarily large values and show wide
fluctuations as t varies across the recording. In the latter
case, a uniform prior K is unadequate in large portions of
the recording. To circumvent this difficulty we introduce a
scale factor β < 1, and multiply all outcomes Et by this fac-
tor. As a result we get a smoother time course of Et over the
time index t , on which a uniform prior can now be applied.

The joint probability of the time sequence of map predic-
tions {mt } reads

P(m1, m2, . . . , mT )

= 1

Z exp

(
β

2

T∑
t=1

Et mt + K

T −1∑
t=1

mt mt+1

)
(11)

where Z is a normalization coefficient. To decode the
map in time bin t we compute the marginal probability
Pt over mt from the joint distribution P . Exploiting the
analogy with the one-dimensional Ising model of statisti-
cal physics, this computation can be done with the transfer
matrix method, also called dynamic programming, in a time
scaling linearly with the total number of time bins. Then the
outcome of our combined decoder+prior is

Edecoder+prior
t = 1

β
log

[
Pt(mt = +1)

Pt (mt = −1)

]
. (12)

The presence of the 1
2 and 1

β
factors in, respectively, Eq. (11)

and Eq. (12) ensure that, for K = 0, Edecoder+prior
t and Et

coincide. In practice we choose β = 1
|E0| , where E0 :=

maxt {|Et |}.

Induced correlation as a function of K The transfer
matrix technique allows us to compute also the correlation
between the maps decoded τ bins apart, defined as

C(τ) = 1

T − τ

T −τ∑
t=1

( 〈mtmt+τ 〉 − 〈mt 〉 〈mt+τ 〉
)

(13)

where the angular-bracket notation denotes the average over
the probability distribution in Eq. (11). C(τ) decays expo-
nentially with τ , over a characteristic ‘time’ monotically
growing with K in Eq. (11), see Results, Section 3.2.

3 Results

3.1 Decoding methods and number of parameters used

We start by presenting map-decoding methods and their
performances. For each environment, A and B, we have

two recorded sessions with constant light cues: the first
one, called reference session, is used to infer the decoder
parameters. The second one, called test session, is used
for cross-validation, i.e. to assess the performances of the
decoder. We compare the performances of five different
decoders, described in Methods, Section 2.3. Our decoders
mainly differ by the fact that they may use or not knowl-
edge of the rat positions and of the spatial rate maps (place
fields). They are also based on simple comparison methods
or on more sophisticated probabilistic frameworks.

Rate-map based decoders require the computation of the
rate maps during the reference session. Knowledge of the
position �x(t) of the rats and of the neural firing rates ri(t) as
a function of time t allows one to build the rate maps, that is,
the average firing rate of each cell i as a function of the rat
position �x, r(m)

i (�x) for environment m = A, B. The similar-
ities between those reference population activities and the
activity measured during the test sessions may then be used
as a simple estimator of the map retrieved by the rodent. We
consider two such comparison-based approaches, called Dot
Product and Pearson (Jezek et al. 2011). A more sophis-
ticated decoder, called Poisson, consists in assuming that
each place cell i fires with a Poisson process, with aver-
age rate r

(m)
i (�x) when the rodent is at position �x, and in

estimating the likelihood of the test spiking activity with
this multiple Poisson process and for maps m = A and B.
The posterior distribution for the (binary) map variable m

can then be computed, and we decode the map as the one
with larger posterior probability. Poisson is based on a more
solid probabilistic framework than Dot Product and Pear-
son, while making use of the same rate maps estimated from
the reference sessions.

Activity-only decoders do not need any information about
rat position and place fields. Those models provide approx-
imate expressions for the probability distribution of pop-
ulation neural activity over short time bins, i.e. of binary
(silent or active neuron in the time bin) strings of length
N (the number of recorded neurons). The independent-
cell model is the simplest maximum-entropy model (Jaynes
1957); it reproduces the N average activities of the neuron
only. The second model, called Ising in statistical physics,
is a graphical model that, in addition, reproduces the pair-
wise correlations between the neural activities in a time
bin (Jaynes 1957; Schneidman et al. 2006; Cocco and
Monasson 2011). The Ising model requires the inference of
pairwise effective couplings between every two cells, which
we have performed with the Adaptive Cluster Expansion
method (Cocco and Monasson 2011; Barton et al. 2016).
Similarly to Poisson, the independent-cell and Ising models
provide estimates of the likelihood of the population activity
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in a time bin, and can be used to compute the posterior dis-
tribution for the map variable, m, and to decode the retrieved
map through maximization over m.

As a consequence the numbers of parameters to be
learned from the reference sessions vary a lot with the
decoders. For N recorded neurons (38 in one of the data
sets studied here, see Materials) and a discretization of the
environment into S (=20 × 20 in the present analysis) spa-
tial bins, the numbers of parameters to be extracted from the
reference sessions are, respectively N = 38 for the indepen-
dent-cell decoder, 1

2N(N + 1) = 741 for the Ising decoder,
and N × S = 15, 200 for the Poisson, Pearson, and Dot
Product decoders.

3.2 Cross validation of map-decoding methods

3.2.1 Inferred Ising couplings are fingerprints
of environment representation in CA1

As a result of rate remapping taking place in CA1 (Fig. 1)
the populations of active cells in the two environments are
similar. This property can be seen from the comparison of
the inputs {hi} in the Ising models inferred in the reference
sessions of the two environments, see Fig. 2. The input hi

to place cell i takes similar values across the environments;
its value is indicative of the average firing rate of the cell
(Methods, Section 2.3.1).

Distinction between the neural representations of the
environments in CA1 can, however, be drawn from the
correlational structure of firing events in the place-cell pop-
ulation. Place cells with overlapping firing fields in one
environment are indeed more likely to be simultaneously
active during the animal’s exploration, and their activities
are thus correlated. Due to remapping the amplitudes of
these correlations are specific to each environment. The
inferred Ising couplings {Jij }, which capture the direct cor-
relation between cells i, j not mediated by other recorded
cells (Methods, Section 2.3), are different from one environ-
ment to the other, as shown in Fig. 2.

The set of effective couplings {Jij } is therefore a fin-
gerprint of the environment (Okatan et al. 2005), which
we can exploit to distinguish between maps, i.e. to decode
the neural representation. Note that these effective, func-
tional couplings are not directly related to the physiological
synaptic interactions, which are not accessible from the
data.

Pairwise correlations are also environment specific, see
Appendix B, Fig. 9. However, inferring effective couplings
allows us to score any configuration of the population activ-
ity, that is, to quantitatively assess its similarity with typical
activities in each environment, as shown below. This score
is, in practice, given by the Ising probability, see Methods,
Eq. (3), and heavily relies on the inferred couplings and
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Fig. 2 Comparison of inferred Ising parameters across the two maps.
Top: Inputs hi of the Ising models inferred from reference sessions.
Only values greater than −5, corresponding to a firing rate of c.a. 0.05
Hz in the independent-cell model, are shown. Bottom: Couplings Jij

of the Ising models inferred from reference sessions. Dots are colored
with reference to their relative statistical error (due to finite sampling)
|J |
ΔJ

: Unreliable couplings, i.e. such that |J |
ΔJ

< 3 in both maps, are
shown in grey (note the presence of many zero couplings produced
by ACE). Couplings that are reliable only in one map are shown with
purple (environment A) and blue (environment B) dots. Couplings
reliable in both maps are shown in black. Analysis performed with
discretization time bin Δt = 120 ms

inputs. Scoring is not possible from the knowledge of the
mean activity and pairwise correlations.

3.2.2 Comparison of performances of map-decoding
methods

We present a systematic study of the performances of map-
decoding methods in CA1 within the framework of binary-
decoder theory, see Methods, Section 2.4 for a detailed
description. Results are reported in Fig. 3.

We plot in Fig. 3a the Receiver Operating Characteris-
tic (ROC) curve for the Ising and Pearson decoders. Briefly
speaking, ROC curve shows the value of the True Posi-
tive Rate (fractions of time bins in reference session for
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Fig. 3 Performances of spatial representation decoders. ROC (a) and
Precision-Recall (b) curves computed at fixed time scale Δt = 120
ms for a combination of two test sessions in environments A and B,
recorded in CA1. Maps A and B correspond, respectively, to posi-
tive and negative predictions, see Table 1. The True Positive Rate, also
called Recall, is the number of true positive predictions divided by the
total number of positive events. The False Positive rate is the number
of false positive predictions, divided by the total number of negative

events. Precision is defined as the fraction of identified positive events
that are true positives. c performances of Ising, Independent-cell, Pois-
son, Pearson, and Dot Product decoders (with and without the addition
of a continuity prior) as functions of the discretization time scale Δt ,
applied to CA1 neural recordings. Full and dashed curves correspond
to predictions, respectively, without and with continuity prior; in the
latter case the correlation C in Eq. (13) decays over τ0 = 2 time bins
(Methods, Section 2.5 and Fig. 5a)

environment A for which the decoder rightly decodes map
A) as a function of the False Positive Rate (fractions of time
bins in reference session for environment B for which the
decoder erroneously recognizes map A). A random decoder
would have equal values for TPR and FPR, and lies on the
diagonal line of the unit square in Fig. 3a. A perfect decoder
would always recognize map A in environment A and never
in environment B, and would thus correspond to TPR = 1,
FPR = 0. Varying the threshold for significance of the
decoder changes both the values of TPR and FPR, with the
resulting ROC shown in Fig. 3a. We observe that the Ising
decoder shows much better performances than the Pearson
decoder. An alternative representation of the decoder per-
formances is given by the Precision-Recall curve, shown in
Fig. 3b, see Methods, Section 2.4 for definition.

A measure of the accuracy of the decoder is given by
the integral of the ROC curve, called Area Under the Curve
(AUC), which ranges from 0.5 for a random decoder to 1
for a perfect decoder. To compare the five decoders we plot
in Fig. 3 (c) their AUC values as a function of the elemen-
tary time bin Δt , ranging from 10 ms to 1 s. The Ising
model, which takes into account the correlational structure
of the population activity, has higher decoding precision and
retrieval capacity than other decoders in CA1 recordings
(Fig. 3a,b). As a consequence, in terms of AUC (Fig. 3c),
Ising is generally the most performant model, followed
by Poisson and lastly by equally-performant Pearson and

independent-cell decoders. Dot Product method is the best
performant on very short time scales (¡ 20 ms), but its per-
formance increases very slowly with the time bin width, and
as a consequence it has the worst performance for Δt >

100 ms.
This behavior has an explanation in terms of sensitivity

of the different models to the average number of active neu-
rons per time bin. Bayesian models, whose predictions do
not depend on the specific position of the rat at each time,
rely on information conveyed by activity alone. As a conse-
quence, when the number of simultaneously active neurons
for each time bin is very small, Bayesian models may be
less accurate than decoders that take into account spatial
information, like Dot Product.

As a general feature we observe that the performances
of all decoders improve for larger discretization time scales
(Fig. 3c). This result does not come from better inference
of the Ising parameters, as couplings remain remarkably
unchanged as Δt varies, see Appendix C. The increase in
performance may be simply understood as follows. Decod-
ing performances were evaluated from the fraction of time
bins in which the decoded map matched the one of the
external environment evoked by the light conditions. In test
sessions with stable external environment for several min-
utes, it is natural that merging larger portion of data results
in more stable decoded maps, and, hence, in a larger frac-
tion of correctly decoded maps. Similarly, improvement in
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decoding stability is obtained through the introduction of a
continuity prior, which prevents switching back and forth
between spatial maps in nearby time bins, see below for
further discussion.

3.2.3 Performance of Ising decoder with number
of recorded cells and duration of recording

We further analysed the behavior of the Ising decoder (as the
most performant amongst presented methods) upon vary-
ing the number of recorded cells and the duration of the
recording through subsampling the reference session data.
As expected, the performance of the Ising decoder improves
with the number of neurons and the duration of the refer-
ence data sets, see Fig. 4. We observe that fluctuations from
subsample to subsample shrinks as the number of retained
neurons increases, an effect that mirrors the heterogeneity
of spatial and environment-related firing properties of sin-
gle neurons. A relatively small subsample of the reference
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Fig. 4 Performance of Ising decoder in subsampled conditions. Top:
Performance of Ising decoder for Δt = 120 ms time bins vs. number
n of cells employed in the inference and decoding routines. For each
value of n results are averaged over 10 randomly-chosen subsamples
of cells (among the N = 36 recorded neurons). Bottom: Performance
of the decoder as a function of the fraction of the reference session
recording (subsampled from the total recordings of duration T = 509
and T = 551 seconds). For each duration considered results were
averaged over 3 random subsamples of reference data

session, e.g. of duration ∼ 1 min, suffices to compute a
good estimate of the average firing rates, yielding perfor-
mances similar to the independent model (Fig. 3, red curve,
Δt = 120 ms).

3.2.4 Map decoding with continuity prior

Map decoding can be combined with a continuity prior that
enhances persistence in the decoded maps over consecu-
tive time bins, see Methods, Section 2.5. The motivation for
the continuity prior is two-fold. First, in situations where
the latency between a delivery of external stimulus and the
network state change is the main parameter to be mea-
sured (e.g. after pharmacology treatment, etc.), one needs to
search for a single time point of the state transition. This can
be achieved by imposing a strong continuity prior, allowing
for the presence of a single transition between maps along
the whole recording session.

Secondly, with moderate continuity prior, dynamical
events (such as state transitions) can be detected with more
precision, at the price of discarding events that happen on
time scales shorter than the temporal resolution set by the
prior strength. To estimate this temporal resolution, we com-
pute, for a fixed prior strength K , the correlation C(τ)

between decoded maps in two time bins that are τ bins
apart, see Methods, Eq. (13). This correlation decays expo-
nentially with τ , see Fig. 5 a. A persistence ‘time’ τ0 can be
computed through an exponential fit of the correlation: τ0 is
the characteristic number of bins over which decoded maps
are persistent. Its value can be chosen at our convenience
by tuning the prior strength parameter K , see Fig. 5b and
Methods, Section 2.5. Hence, we can choose a temporal res-
olution τ0 and exploit the noise-cancelling property of the
continuity prior over larger time scales.

Unless otherwise specified we set in the following the
characteristic persistence time to the small value τ0 = 2
time bins. As shown in Fig. 3, use of this weak continu-
ity prior enhances decoding performances with the Ising
method. The AUC increases by about 10%, see Fig. 3c.
For direct comparison, if one instead increases the time-bin
resolution Δt by a factor 2, the increase in AUC is much
lower (Fig. 3c): for instance, Ising AUC is equal to 0.90 for
Δt = 120 ms and to 0.92 for Δt = 240 ms, while it reaches
0.98 for Δt = 120 ms with a continuity prior such that
τ0 = 2 time bins. This result shows that imposing a continu-
ity prior is a more efficient way to reduce statistical errors
in the decoding than considering larger time bins.

The observed increase in performance due to the applica-
tion of the continuity prior can be explained from different
perspectives. First, as explained in the Methods section
and observed in Fig. 5a, the overall procedure introduces
short-range correlations (decaying over a tunable time scale)
between time bins. The resulting effect is a smoothing
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Fig. 5 Continuity prior for map
decoding. a Correlation
(Methods, Eq. (13)) between
maps decoded in two time bins
as a function of their separation
τ (measured in units of time
bins), for three values of the
prior strength K . Correlations
are well fitted by exponential
decaying functions, over a
characteristic number of bins τ0.
b Value of τ0 as a function of
the prior strength K . c
Application of the prior on CA1
teleportation session for
different values of prior strength
parameter K . Difference in
log-probabilities of the neural
activity configurations over time
bons t . Ising decoder, with a
discretization time bin
Δt = 120 ms

a b

c

filter, similar to a convolution with a sliding averaging win-
dow, which acts as a noise-cancelling filter, and improves
decoding precision. Secondly, the application of the prior
enhances the stability of the decoded maps. This improves
the decoding performance since, as pointed before, the test
session is such that light conditions remain stable for long
times (minutes) before the switch.

3.3 Transitions between maps in “teleportation”
experiment

Brain hippocampal memory circuitry is a dynamic system
expressing distinct states of activity - neural representations
of surrounding space - with attractor properties (Wills et al.
2005; Colgin et al. 2010; Jezek et al. 2011). We applied
our Ising decoder to dynamically identify those states to
CA1 recordings in the ‘teleportation’ setup introduced in
(Jezek et al. 2011), in which the appearance of recording
box is abruptly changed by switching between two familiar
light cue settings (A and B, respectively) while the labo-
ratory rat continuously explores it (Methods, Section 2.2).
This procedure was shown to induce a rapid exchange of
corresponding hippocampal representations in CA3, includ-
ing periods of instability with spontaneous fast flickering
between them. The CA1 recordings considered here include
both data published in Jezek et al. (2011), and new record-
ings, see Methods section. Transitions between the maps
were identified based on activity models of representations

A and B, respectively, inferred from reference recordings
in both environments under stable conditions preceding the
‘teleportation test session’.

To illustrate performance of Ising method in the post-
teleportation kinetics of network state expression, we used
four teleportation events recorded in hippocampal CA1 in
three rats. Representative evolution of the difference in
log-probabilities E , see Eq. (1), of the neural activities, com-
puted with the models inferred for the two maps from the
reference sessions, is shown before and after two instances
of teleportation events in Fig. 6a. The criterion for accepting
given bin as corresponding to representation of environment
A or B, respectively, was set to match 1% error derived from
stable reference sessions, see Fig. 6b. This ensures that a
time bin is identified as A only if there is 99% (or higher)
confidence that this difference in log-probabilities cannot
be found in environment B (and vice-versa) under reference
conditions.

3.3.1 Teleportation procedure induces long-term network
instability

To characterize the kinetics of network state development,
we identified the amount of time bins expressing a neu-
ral representation that was incongruent (non-corresponding)
with the present environment, i.e. coding the environment
presented before the teleportation. We estimated the short-
term effect within interval of the first 10 seconds, and a
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Fig. 6 Log-probabilities of neural activities around teleportation
events. Difference E of the log-probabilities, Eq. (1), computed with
the Ising decoder applied to the neural activity recorded in a teleporta-
tion session (a), with light-cue switch from environment B to A (top)
and from A to B (bottom). The light switch is marked with a red
line, predictions higher than 99 percentile value of reference sessions
are colored in dark blue, weaker prediction are colored in light blue.
Panel (b) shows the distributions of differences of log-probabilities in

reference sessions. A percentile value θ in [0, 100] (normally in the
interval [90, 100]) is defined. We consider a test time bin as signif-
icantly decoded as A only if the log-probability difference E of the
activity configuration in the time bin is higher than the θ percentile
value of reference session B, and as B only if its value is lower than
the 100 − θ percentile value of reference session A. The underlying
reasoning is to decode a test time bin as A only if it is very unlikely
that it comes from reference population B, and vice-versa

possible long-term effect in the period that begun after
30 seconds after the teleportation has elapsed. The rates
of incongruent bins are shown in Fig. 7. The amount of
non-corresponding events per time bin raised from the base-
line levels before the teleportation 0.013 ± 0.002 SEM to
0.046 ± 0.021 measured within the first 10 seconds after
the teleportation (short-post effect). However, this increase
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Fig. 7 Teleportation enhances network instability over both short-
and long-term periods. Percentage of temporal bins expressing the
environment-incongruent coding computed in rest conditions (pre),
during the first 10 seconds after a light switch (short post), and in
long-term period after the teleportation event (long post, more than
30 seconds after light switch). Only bins expressing E-values higher
than 99 percentile of reference sessions have been taken into account;
Similar results are obtained with 90 and 95 percentiles. Results were
averaged over a total of four sessions recorded from three different
animals. Recording durations before (pre)/after (post) teleportation
equal to, respectively, 10/8, 9/9 minutes (33 cells), 12/11 minutes (17
cells), and 2.5/3 minutes (20 cells). Analysis performed with Ising
environment decoder with discretization time bin Δt = 120 ms

was not significant, probably due to combination of large
variability within the short evaluated interval (10 seconds
in contrast to order of minutes of baseline state before the
teleportation) and frequent empty bins (no cell active in
40.5% ± 5.8 SEM of all bins).

Interestingly, the rate of flickering remained significantly
increased beyond 30 seconds after the teleportation (0.034±
0.021 SEM, F = 19.38, p < 0.01). Jezek et al. (2011)
used temporal binning that reflected local theta oscillation
(6 − 11 Hz) in the hippocampal circuitry. While all the
results reported so far were obtained with a fixed, regu-
lar binning with a similar rate (Δt = 120 ms, i.e. about
8 Hz), we decided to re-analyze the teleportation data in
a natural theta binning as done by Jezek et al. (2011). We
detected the phase of local theta oscillation based on min-
imum place-cell activity criterion, and the corresponding
timestamps were used to define the temporal bins. We got
the same pattern of results as with fixed binning (pre =
0.014 ± 0.002 SEM, short post = 0.041 ± 0.030 SEM,
p > 0.05; long post = 0.030 ± 0.005 SEM, F = 6.15,
p < 0.05), yielding non-significant increase within the
first 10 seconds and a significant increase after 30 seconds
following the teleportation, respectively.

Last of all, we analyzed once more this teleportation data,
this time with the Pearson correlation-based decoder. Nei-
ther in fixed nor theta-based binning this decoder returned
significant differences between the pre teleportation and any
of the post (short and long) teleportation intervals (p > 0.05
in all cases). This finding provides further evidence for the
results depicted in Fig. 3, that is, for the better performance
of Ising method over Pearson decoder for hippocampal CA1
data.
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3.3.2 Identification of transitions with strong continuity prior

Our network state-decoding procedure with continuity prior
can be used to detect internal state-shifts under predefined
criteria. For instance, when the prior strength is brought
to extreme values the decoding procedure discards the
fast instability-driven dynamics and, instead, returns a sin-
gle state transition time point that reflects the evolution
of log-likelihood values across the continuum of tempo-
ral bins. Taking as an illustration the CA1 teleportation
session in Fig. 8, we see that the response of network
activity state to the teleportation event is identified with
high accuracy. This is a valuable tool to measure the most
probable moment of network remapping even under widely
fluctuating dynamics.

4 Discussion

Graphical models for brain state identification in the
absence of input correlates Methods for decoding spa-
tial representations considered in this work can be divided
in two classes, depending on whether they make use of
positional information or not. Remarkably, the latter meth-
ods do not show worse performances than the former
approaches. In CA3, efficient decoding does not require
the use of sophisticated probabilistic models: due to the
quasi-orthogonality of maps, the simple independent-cell
decoder, which compares the activity at any time to the aver-
age activities in environments A and B irrespectively of the
rat position, shows very good performances (Posani et al.
2017). In CA1, the similarity in the firing fields across envi-
ronments constrained us to consider a graphical model, the
pairwise Ising model, which not only captures the average
activity of the place cells but also their pairwise correlations.
The higher performance of the Ising model, combined with
the lower number of parameters involved in the inference
process compared to firing field-based decoding methods,
suggests that the correlational structure of neural firing
activities conveys essential information about the internal
representation of memorized environments.

A substantial advantage of this approach is that it can be
effectively applied to other brain regions with much weaker
correlation between the local activity and its inputs, e.g.
the prefrontal cortex, or without any known input-output
relation. The use of graphical models does not require any
knowledge about the network inputs, as activity states are
identified based on a (high-dimensional) fit of the corre-
lation structure of the spiking data (Cocco et al. 2017).
The core idea, first put forward in the context of retinal
data modeling (Schneidman et al. 2006), is that the model
obtained after inference of the functional network is an
approximate (albeit quantitatively accurate, compared to
principal-component based approaches Lin and Gervasoni,
2008) description of the distribution of activities charac-
terizing specifically one brain state. Provided that we have
at our disposal different data sets for well-identified states
(here, the reference sessions) we may later use the inferred
model to decode the activity at any time. This approach
has recently been applied to identify transient activation of
memory-related cell assemblies in the rat prefrontal cortex
(Tavoni et al. 2015, 2016). We expect, owe to its generality
and its applicability to very fast time scales (down to ∼ 10
msec), further applications in future. Note that our decoding
approach, based on the inference of effective pairwise cou-
plings, could be extended to higher-order interactions. In the
hypothetical situation of distinguishing between brain states
that differ in high-order statistics, e.g. in the frequencies
of 3-cell firing events only, the inference of these high-
order effective interactions would be necessary to obtain an
efficient decoder.

Let us also remark that, once the Ising parameters have
been inferred from reference sessions corresponding to the
possible states (here, maps), the computation of the log
probability difference E({si,t }) is very fast, as it requires
O(N2) operations only. Our decoder could therefore be
applied online, provided the neural activity configuration
are available, e.g. through automatic spike sorting, at any
time. One potential issue here is that fast spike sorting may
introduce error in the activity variables, leading to wider and
more overlapping distributions of E , see Fig. 6b. Maintain-
ing high precision in the decoding would still be possible

Fig. 8 Network state transitions
identified by implementation of
continuity prior. Ising decoder
and Viterbi algorithm with
strong continuity constraint
applied to neural activity in a
CA1 teleportation session with
enlarged examples. Light
switches are marked with red
lines. Analysis performed with
time bin Δt = 120 ms
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if the confidence threshold θ is increased, but at a price of
smaller recall, see Fig. 3b.

Functional connectivity-based models for map decod-
ing: Ising and other models The Ising decoder introduced
in this article yields the highest performance on all time
scales Δt in CA1 (Fig. 3). While we have here mostly con-
sidered the activity vectors as discretized in regular-spaced
time windows of duration Δt , our approach was also eas-
ily extended to process activity in elementary windows in
correspondence to Theta cycles. It would be interesting to
pursue the latter analysis to deepen our understanding of
the role of Theta oscillations for the dynamics of transitions
(Jezek et al. 2011) in CA1, and to assess the plausibility of
the different transition scenarios (temporary disappearance
or coexistence of both map representations) put forward by
theoretical studies (Monasson and Rosay 2015).

In this regard, repeating the present study with proba-
bilistic models capable of capturing some aspects of the
activation dynamics in recorded spiking sequences, such as
Generalized-Linear Models (Truccolo et al. 2005), could be
potentially interesting. Contrary to their Ising model coun-
terparts effective couplings in the GLM approach are not
necessarily symmetric, and may reflect specific ordering
in neuron activations. However, some basic assumptions
underlying GLM, such as the Poissonian nature of firing
events are questionable for hippocampal place cell activity
(Fenton and Muller 1998). Another potentially interesting
alternative is provided by reverse engineering of networks
of Integrate-and-Fire neurons (Makarov et al. 2005; Monas-
son and Cocco 2011; Koyama and Paninski 2010), which
were already applied to recordings, e.g. of retinal data with
tens of neurons.

Instabilities in hippocampal space representations In the
CA3 area of hippocampus, patterns of place-cell activity
across different environments behave as uncorrelated net-
work states with attractor properties (Wills et al. 2005).
Transitions between those hippocampal activity states
were recently studied based on recordings taken during
a free exploration in two environments in an experimen-
tal paradigm shown to induce rapid switches (Jezek et al.
2011). In the present paper we used multiunit recordings
from hippocampal area CA1. Both CA3 and CA1 are parts
of the entorhino-hippocampal loop, an essential circuit for
spatial memory and navigation in mammalian brain. Despite
being directly connected in series (CA3 signalling into
CA1), they very much differ in their architecture - while
CA3 is organized as a recurrent network with attractor

properties, CA1 has a feed forward structure - and in
their connections with other brain areas involved into space
representation (Knierim 2006).

Use of the Ising model allowed us to robustly decode the
memory state expressed in the CA1 network, with tempo-
ral resolution high enough to reflect natural time patterning
of activity provided by local theta oscillation (ca. 6-11 Hz).
We could track the network state kinetics following the sen-
sory input switch. In agreement with previous report in CA3
(Jezek et al. 2011), we detected a high degree of flickering
in CA1 following the switch.

Moreover, when analyzing the development of post-
teleportation population vector activity on a long-term scale
(20-60 sec), we found sustained network instability in CA1
spanning far beyond the 10 seconds interval reported in
Jezek et al. (2011), see Fig. 7. This effect is statistically
significant with the Ising decoder but could not have been
discovered with simpler, correlation-based methods. The
presence of long-term instabtility in CA1 is rather sur-
prising as the network usually reaches a relative stability
within a couple of seconds after the cue switch (Jezek
et al. 2011). An occasional delayed spontaneous flickering
was described in CA3 as a result of repetitive teleporta-
tion within a short time period (every 40-60 seconds) (Jezek
et al. 2011). This suggests prolonged (though rare) flicker-
ing effect might be present in both CA3 and CA1. In our
data the persistent instability in CA1 came after one or two
teleportation events on a given day, respectively.

What mechanism can account for this observation? The
current view considers the short term (up-to 10 sec.) insta-
bility as a product of teleportation-induced conflict between
a sudden change in the allothetic visual input (another
environment presence) and a non-corresponding idiothetic
signaling (no self-motion tracked traversal). Within couple
of seconds the idiothetic input seems to reset as the rate
of flickering dramatically decreases to levels close to the
baseline steady state. The fact an occasional flickering is
present longer both in CA3 and CA1 can have more rea-
sons. The autoassociative character of CA3 is capable to
store and express stable patterns of activity, but also to asso-
ciate between different simultaneously active ensembles in
the network. After teleportation, despite an attractor separa-
tion on a theta frame binning has been proved, an occasional
overlap between both representations is present as well.
Such brief coactivation of concurrent maps can eventually
lead to their binding by collateral synapses or by detecting
and learning their conjunction by CA1 (Treves and Rolls
1994). Such a linkage could, under appropriately ambigu-
ous or noisy input (e.g. encountering an odor mark dropped
in the concurrent lighting conditions), eventually lead to
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a rare completion of the concurrent activity state. Other,
rather speculative, possibility is that the observed activation
of the other representation in CA3 and CA1 could be related
to a reflection of past configuration of the external world,
eventually to an expectation of another coming change of
environment identity, so far of unknown mechanisms. What-
ever input triggers the long-term flickering, these transient
episodes do not occur during sharp wave/ripple complexes
as they were present during strong theta network oscilla-
tion without any apparent increase of population activity. A
further insight that is beyond the scope of this report is nec-
essary to provide a better understanding of the origin and
characteristics of long-term dynamics of transition between
distinct hippocampal network states.
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Appendix A: ACE inference convergence details

The ACE inference procedure of Ising model parameters
was applied with L2-norm regularization of strength γ =

Table 2 Studied sessions (cv. = cross-validation, t. = teleportation,
followed by number of teleportation and environment) number of
recorded cells (N) and ACE parameters at convergence: threshold θ

for cluster selection, cross-entropy (in natural log.), maximal size KC

and number NC of selected clusters

Session N θ(×10−3) S KC NC

cv. A 36 0.89 5.31 7 390

cv. B 36 0.08 6.21 8 4789

t. I-II A 33 0.21 4.82 4 509

t. I-II B 33 1.4 4.33 5 198

t. III A 17 1.1 1.60 3 27

t. III B 17 0.81 1.76 3 34

t. IV A 20 0.89 5.45 4 117

t. IV B 20 0.99 4.51 6 1347

The algorithms stops when the relative errors on single-neuron fre-
quencies and pairwise connected correlations become smaller than
unity (Barton et al. 2016)

5/B, where B is the total number of time bins (Barton et al.
2016). Details on the convergence are given in Table 2.
The full code for Adaptive Cluster Expansion can be down-
loaded from the GitHub repo https://github.com/johnbarton/
ACE/.

Appendix B: Comparison of neuron activities
across spatial maps

Similarly to Fig. 2 where we compare the Ising parameters
inferred from the population activity in the two environ-
ments A, B, we show in Fig. 9 the probabilities of firing
of all cells i (in fixed time bins with Δt = 120 ms) and
the pariwise correlations (defined as the probability that
cells i, j fire together in a bin minus the product of their
individual firing probabiltiies). We see that no substantial
correlation is found in the pairwise statistics of cells across
the two environments.
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Fig. 9 Comparison between correlations and averages of the two
maps of the cross-validation reference sessions. Fixed binning with
Δt = 120 ms
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Appendix C: Dependence of Jij on temporal
binning

Couplings inferred for time-bin duration Δt = 120 ms are
compared to the ones inferred for Δt = 10 ms in Fig. 10.
Many couplings are very similar across the two binning
choices. Differences, in particular null couplings in just one
of the two cases, mostly arise from sampling differences.
For 10 ms time windows, it is rare to find two neurons active
within the same time bin, while, for larger time bins, there
is a smaller number B of time bins, which forces us to con-
sider larger ACE threshold θ . Couplings inferred using the
theta-binning discretization procedure for data are very sim-
ilar to the ones inferred using a fixed time binning of 120
ms (average duration of theta cycles), see Fig. 11. A dis-
cussion of the independence of Ising couplings from the bin
duration Δt was done by Cocco et al. (2009).
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Fig. 10 Scatter plot of couplings inferred with time bin Δt = 120
ms vs. Δt = 10 ms (fixed time bin discretization procedure, from
cross-reference data set)
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Fig. 11 Scatter plot of couplings inferred with fixed time bin vs. theta-
binning procedure (Δt = 120 ms, from cross-reference data set)
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