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Coevolution of residues in contact imposes strong statistical constraints on the sequence vari-
ability between homologous proteins. Direct-Coupling Analysis (DCA), a global statistical inference
method, successfully models this variability across homologous protein families to infer structural
information about proteins. For each residue pair, DCA infers 21 ⇥ 21 matrices describing the
coevolutionary coupling for each pair of amino acids (or gaps). To achieve the residue-residue contact
prediction, these matrices are mapped onto simple scalar parameters; the full information they contain
gets lost. Here, we perform a detailed spectral analysis of the coupling matrices resulting from
70 protein families, to show that they contain quantitative information about the physico-chemical
properties of amino-acid interactions. Results for protein families are corroborated by the analysis of
synthetic data from lattice-protein models, which emphasizes the critical e↵ect of sampling quality
and regularization on the biochemical features of the statistical coupling matrices. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4966156]

I. INTRODUCTION

Across evolution, the structure and function of homolo-
gous proteins are remarkably conserved. As a consequence,
neighboring residues in the three-dimensional structure tend
to coevolve, leading to strong constraints on the sequence
variability. Direct Coupling Analysis (DCA),1,2 a global
inference method based on the maximum-entropy (MaxEnt)
principle,3,4 successfully exploits pairwise correlations in
amino-acid occurrence, which are easily observable in large
multiple-sequence alignments (MSA), to infer spatial residue-
residue contacts within the tertiary protein structure. This
approach uses a global statistical model P(a1, . . . ,aL

) for
an amino-acid sequence (a1, . . . ,aL

) of length L, whose
parameters are fields/biases {h

i

(a)} and statistical couplings
{J

i j

(a,b)}, where a,b are amino acids or alignment gaps
(denoted for simplicity by {1, . . . ,21} throughout the paper).
These parameters are learnt from site-specific amino-acid
frequencies, and from the covariance between amino-acid
pairs estimated from multiple-sequence alignments (MSA),
which are readily available thanks to rapidly increasing
sequence databases.5,6 Contact prediction is performed
by measuring the total coupling strength between two
residues. The coupling matrices—inferred at high compu-
tational cost—are mapped onto simple scalar parameters,
and the full information they potentially contain gets
lost.

a)S. Cocco, R. Monasson, and M. Weigt contributed equally to this work.

The aim of our work is to provide a better quantitative
understanding of these inferred couplings. Earlier works have
shown that the coevolutionary couplings derived by DCA
contain an electrostatic signal.7 In the present study, we
go considerably further and show that the coevolutionary
couplings also contain quantitative and interpretable biological
information related to all the physico-chemical properties
of amino-acid interactions, not only electrostaticity but
also hydrophobicity/hydrophilicity, cysteine-cysteine bonds,
histidine-histidine, and steric interactions. These interactions
are consistent with knowledge-based amino-acid potentials
inferred from known protein structures,8–10 in particular
the classical statistical potential derived by Miyazawa and
Jernigan.11

To carry out our study, we first consider a set of 70
Pfam6 protein families from which we infer the coupling
matrices. After selecting the top ranked residue pairs for
each family, we analyze the mean coupling matrix and its
spectral modes. Considering structural classifications and
solvent exposure helps unveiling the full biological content
of the coupling matrices {J

i j

(a,b)}
a,b2{1, ...,21}. Our analysis

also shows that the distribution of contact distances in the
tertiary structure greatly depends on the type of interaction
associated to the contact.

In the second part of the article, to better understand the
e↵ect of sampling and regularization on the previous findings,
we focus on lattice proteins (LP),12 an exactly solvable
model of proteins folding on a 3D lattice. Lattice proteins
indeed provide an interesting framework for testing statistical
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modeling approaches like DCA in a relatively realistic and
fully controllable context.13

II. REVIEW OF DIRECT-COUPLING ANALYSIS
OF RESIDUE COEVOLUTION

A. Maximum-entropy approach

A global probabilistic model P(a1, . . . ,aL

) assigns a
probability to any amino-acid sequence A = (a1, . . . ,aL

) based
on empirical frequency counts in the MSA. More precisely,
in order to be coherent with the MSA, the probabilistic model
is chosen to reproduce the empirical one- and two-residue
amino-acid frequency counts,

X

{a
k

|k,i}
P(a1, . . . ,aL

) = f
i

(a
i

),
X

{a
k

|k,i, j}
P(a1, . . . ,aL

) = f
i j

(a
i

,a
j

),
(1)

where f
i

(a) denotes the fraction of proteins having amino acid
a in column i of the MSA and f

i j

(a,b) counts the fraction
of proteins with amino acid a in column i and amino acid
b in column j. The least constrained or Maximum-Entropy
(MaxEnt)3,4 model reproducing these observations is a Potts
model with q = 21 (20 possible amino acids +1 alignment
gap “-”) states, or equivalently a Markov random field,

P(a1, . . . ,aL

) = 1
Z exp

8>><>>:
LX

i< j

J
i j

(a
i

,a
j

) +
LX

i=1

h
i

(a
i

)
9>>=>>;
, (2)

where Z is a normalization constant (known as partition
function in the context of the Potts model) and h

i

(a) represent
site-specific local biases. Parameters {J

i j

(a,b)}
a,b=1...q are

direct statistical couplings between residues i and j, taking
the form of 21 ⇥ 21 matrices.

The numerical values of J
i j

(a,b) and h
i

(a) have to be
determined such that Eqs. (1) are satisfied—leading to the
approach known as Direct Coupling Analysis (DCA).1,2 From
a computational point of view, it is not feasible to solve
Eqs. (1) exactly: the calculations of the normalization Z and
of the marginals require to sum over all qL possible amino-
acid sequences of length L. With q = 21 and typical protein
lengths of L ' 50 � 500, there are 1065 � 10650 possible
configurations.

Several methods may be used to approximate the
parameters, the computationally most e�cient of which is
the mean-field approximation,2 where the coupling matrix is
the inverse of the correlation matrix. This method is closely
related to the Gaussian modeling scheme used by PsiCov.14

A more involved approximation, called Pseudo-Likelihood
Maximization (plmDCA15 and GREMLIN16,17), is shown to
outperform mean-field DCA on biological sequence data. The
asymmetric version18 of plmDCA will be used in the present
article, cf. Appendix A.

B. Regularization and reweighting

Protein sequences are not independently and identically
distributed (i.i.d.); they form a finite and usually small-size

sample. Indeed, a Potts model describing a protein family with
sequences of 50 � 500 amino acids requires ca. 106 to 108

parameters. Few protein families are large enough to directly
determine these parameters, and regularization is essential to
avoid overfitting. Moreover, adding a regularization term helps
the hill-climbing optimization in plmDCA to rapidly find the
maximum of the pseudo-likelihood. Di↵erent regularization
schemes and their e↵ects have been extensively addressed in
the literature.19

A prior probability distribution (typically Gaussian) is
considered for the model parameters, which discounts large
values resulting from insu�cient statistics in the original
MSA. The following l2-penalty is therefore added to the
log-likelihood of the data:

µ
LX

i=1

qX

a=1

h
i

(a)2 + µ
LX

i< j

qX

a,b=1

J
i j

(a,b)2. (3)

For plmDCA, the standard value of the regularization
parameter is µ = 10�2 as it gives optimal results for contact
prediction.15

On the other hand, there are strong sampling biases due
to phylogenetic relations between sequenced species. This
problem has been the object of previous studies,20,21 but a
simple sampling correction can be implemented by counting
sequences with more than 80% identity and reweighting
them in the frequency counts.2 The number of non-redundant
sequences is measured as the e↵ective sequence number Me↵
after reweighting. As a rule of thumb Me↵ has to be at least
300 to enable plmDCA to predict residue-residue contacts in
real proteins.

C. Reparametrization (gauge) invariance
and zero-sum gauge

The Lq single-residue ( f
i

(a)) and 1
2 L(L � 1)q2 two-

residue frequencies ( f
i j

(a,b), i < j) estimated from the
data are not independent. The former sum up to 1, and
the latter have the single-residue frequencies as marginals.
Therefore not all constrains in Eq. (1) are independent:
The total number of nonredundant parameters is actually
1
2 L(L � 1)(q � 1)2 + L(q � 1). This number is smaller than
the total number Lq + 1

2 L(L � 1)q2 of Potts parameters
h
i

(a) and J
i j

(a,b) appearing in Eq. (2). The model is
therefore over-parametrized, a fact referred to as gauge
invariance in physics language. We can reparametrize the
model without changing probabilities using an arbitrary
K
i j

(a),1  i, j  L,a 2 {1, . . . ,21},

J
i j

(a,b) ! J
i j

(a,b) + K
i j

(a) + K
j i

(b),
h
i

(a) ! h
i

(a) +
X

j( j,i)
K
i j

(a). (4)

The inferred fields and couplings will be expressed
throughout this paper in the so-called “zero-sum gauge,”
in which

P
q

c=1 J
i j

(a,c) = Pq

c=1 J
i j

(c,a) = Pq

c=1 h
i

(c) = 0 for
all amino acid a and all positions i, j. In practice, the
couplings J

i j

(a,b) can be simply put in the zero-sum gauge
through
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J
i j

(a,b) ! J
i j

(a,b) � J
i j

(·,b) � J
i j

(a, ·) + J
i j

(·, ·),
h
i

(a) ! h
i

(a) �
X

j

J
i j

(a, ·), (5)

where g(·) denotes the uniform average of g(a) over all 21
amino acids + gap symbols a at fixed position. The zero-sum
gauge minimizes the Frobenius norm of the coupling matrices,
which is used as a scalar measure of the coupling strength. It
allows for the ranking of residue pairs (i, j) in order to predict
residue-residue contacts.1,15,22

D. Contact prediction

After having estimated the parameter values of the DCA
model P(a1, . . . ,aL

), each residue pair (i, j) is characterized
by a 21 ⇥ 21 matrix {J

i j

(a,b)}
a,b2{1, ...,21}. To measure the

coupling strength of two sites, the inferred {J
i j

(a,b)} has
to be mapped onto a scalar parameter. These parameters will
then be ranked to perform a contact prediction: the bigger they
are, the higher is also the probability that i and j are in contact
in the model. It has been observed that a modified score—the
Frobenius norm F

i j

of the coupling matrix adjusted by an
Average Product Correction (APC) term—improves contact
prediction,15

FAPC
i j

= F
i j

�
⌦
F
i j

↵
i

⌦
F
i j

↵
j⌦

F
i j

↵
i, j

, (6)

where the mean h.i denotes positional average over single i
or double (i, j) sites. To compute this score, the couplings are
first shifted to the zero-sum gauge described in Eq. (5) after
the inference by plmDCA.

FIG. 1. (a) Miyazawa-Jernigan (MJ)
energy matrix E

MJ
0 (a,b). (b) Spectrum

of the MJ matrix. MJ’s 3 largest spectral
modes, displaying physico-chemical
interactions: (c) hydrophobicity-hydro-
philicity (�(1)= 4.55), (d) electrostatic-
ity (�(2)=�3.51), (e) cysteine-cysteine
(�(3)= 1.28), and (f) histidine-histidine
(�(4)= 1.04) signals.
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E. The Miyazawa-Jernigan (MJ) statistical potential

Developed in the 1980s, the Miyazawa-Jernigan (MJ)
knowledge-based potential EMJ(a,b) was derived from the
statistics of amino acids in contact in known 3D protein
structures. This 20 ⇥ 20 interaction matrix reflects the physico-
chemical properties of the amino acids, torsion angles, solvent
exposure, and hydrogen bond geometry.11 In contrast to more
detailed potentials including also, e.g., the residue distance,
the MJ interaction matrix is a natural starting point for
comparison with the DCA-derived coupling matrices. Other
statistical potentials exist, some of them are more e↵ective
than MJ for specific tasks, such as identifying the folded
state in a set of decoys.8,10,23,24 We refer the reader to the
supplementary material Section I for more details about two
other statistical potentials, which provide coherent results with
the MJ potential.

Panel (a) of Fig. 1 displays EMJ
0 (a,b), the 20 ⇥ 20

matrix provided by Miyazawa and Jernigan in 1996,25

upon transformation into zero-sum gauge with the help of
Eq. (5), to compare with DCA couplings later on. It has
also been multiplied by a factor �1 to comply with the
standard convention that attractive interactions are positive
and repulsive ones are negative,

EMJ
0 (a,b) = �EMJ(a,b) + EMJ(·,b)

+ EMJ(a, ·) � EMJ(·, ·). (7)

In this specific gauge, the spectrum of the MJ matrix shows a
few significant eigenvalues (Fig. 1 panel (b)).

Panels (c)–(f) display the first spectral projections of the
MJ matrix (M (k)(a,b) = �(k)v (k)

a

v (k)
b

, k = 1 . . . 4, see Eq. (10)
below). They are localized on particular amino acids according
to physico-chemical interactions. Panel (c) is related to
hydrophobicity/hydrophilicity: amino acids from A to P are
hydrophobic, whereas the rest are hydrophilic. Hydrophobic
amino acids tend to form contact with other hydrophobic
amino acids but not with hydrophilic ones, according to
the signs of the corresponding entries. Panel (d) is related
to electrostaticity: amino acids K, R, and H are positively
charged whereas D and E are negatively charged. Panel (e) is
localized on the cysteine-cysteine entry, as those amino acids
tend to form strong chemical disulfide bounds where paired
with each other. Finally, panel (f) shows the fourth spectral
mode of the MJ matrix, localized on the histidine-histidine
entry, forming like-charged contact pairs.26

The eigenvalues corresponding to hydrophobicity/
hydrophilicity (�(1) = 4.55), the cysteine-cysteine (�(3)

= 1.28), and histidine-histidine interactions (�(4) = 1.04) are
positive, describing an attractive interaction between like
amino acids. On the other hand, the eigenvalue corresponding
to electrostaticity (�(2) = �3.51) is negative, reflecting the
attraction between charges of opposite sign and repulsion
between like charges.

III. RESULTS ON PROTEIN SEQUENCE DATA

A. Method

We consider 70 protein families from the Pfam database,6
containing enough sequences (Me↵ > 500) to guarantee a good

inference (su�cient sampling for plmDCA) and possessing at
least one X-ray crystal structure of resolution below 3 Å in the
Protein Data Bank27 (PDB); the complete list can be found in
the supplementary material Section VI. For each Pfam family
n we infer with the plmDCA method18 the 1

2 L
n

(L
n

� 1) (with
L
n

being the aligned length of the proteins in family n)
coupling matrices at standard regularization (µ = 10�2), and
transform them into zero-sum gauge. The top ranked pairs
(i, j) of residues (according to the FAPC score defined in
Eq. (6)) are selected until a rate of 20% of false-positive
contact predictions is reached within the selection. Then, only
the true-positive predictions (contacts in the tertiary structure)
are kept in the selection S

n

. The number of selected pairs
|S

n

| thus depends on the Pfam family n. We obtain the
global selection of residue pairs S by assembling the selected
pairs of each Pfam family together: S = S70

n=1Sn with |S |
= 3790.

Here, a residue pair is considered to be a true positive
prediction if its minimal heavy-atom distance is below 6 Å in
the protein structure (the method used to define the contact
map from the protein crystal structures is described in
Appendix B). To avoid both trivial contacts and strong but
uninformative “gap-gap” signals, we also impose a minimum
separation | j � i | > 10 along the protein backbone. Indeed,
gaps in the MSA are not generally modeled well by DCA
methods, as they tend to come in long stretches, giving rise to
artificially high couplings for closer sites on the backbone.28

A smaller separation imposed along the backbone gives rise to
similar results, except that a “gap-gap” mode appears among
the first spectral modes of the mean matrix introduced below,
decreasing the correlation with MJ. See the supplementary
material Section II for more details.

In the following, we consider the mean matrix:

e(a,b) =
⌦
J
i j

(a,b)
↵
i j 2S, (8)

where h.i
i j 2S denotes the mean over all residue pairs in

the above-mentioned selection S, all Pfam families taken
together. The matrix e is subsequently symmetrized, as
any non-symmetric feature of the amino-acid interactions
originates from finite-sampling e↵ects in the selection,

e(a,b)! 1
2
�
e(a,b) + e(b,a)

�
. (9)

The average coupling matrix e is already in the zero-sum
gauge, since the couplings J

i j

are. By considering the mean
matrix, we expect site specificities and finite-sampling noise
to be averaged out, while the joint global interaction modes
should be prominently displayed.

We define the spectral mode k of e by

M (k)(a,b) = �(k)v (k)
a

v (k)
b

, (10)

where {�(k), v (k)}
k=1...21 are the eigenmodes of e, with the

eigenvalues �(k) ranked in decreasing order in absolute value.

B. The coupling matrices contain biologically
relevant information

Strikingly, we find that the mean matrix e and its top three
spectral modes display some physico-chemical interactions at

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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FIG. 2. (a) Mean matrix e(a,b) over
all residue pairs in the selection, tak-
ing all Pfam families together. (b) His-
togram of the spectrum of e, domi-
nated by three eigenvalues. (c) First
spectral mode of e (�(1)=�0.0923),
displaying the electrostatic interaction.
(d) and (e) Second (�(2)= 0.0363) and
third (�(3)=�0.0197) spectral mode of
e(a,b), mainly localized on hydropho-
bic amino acids (A to P).

the amino-acid scale, consistent with the MJ energy matrix
EMJ

0 , cf. Fig. 2. The first spectral mode (�(1) = �0.0923) is
indeed related to electrostaticity, the second (�(2) = 0.0363)
and third (�(3) = �0.0197) modes are mainly localized on
some hydrophobic amino acids (A to P). The third mode
illustrates favorable residue pairing between amino acids
of opposing size: A on one hand (van der Waals volume
of 67 Å3) and F, I, L on the other hand (van der Waals
volume of 135 Å3, 124 Å3, and 124 Å3, respectively). This
coevolutionary e↵ect derives from stericity and is dominant
here because of the abundance of the involved amino acids.
The favorable interaction between amino acids of opposite
size and unfavorable between amino acids of the same size
can be easily understood: given a contact between two amino
acids of opposite size, each single change of a small into a
large or a large into a small amino acid induces unfavorable

steric e↵ects. A compensatory mutation of the second amino
acid would be possible.

The sign of all eigenvalues is consistent with what
has been previously reported for the MJ energy matrix, cf.
Sec. II E: it is positive for attractive interaction between
like amino acids (second mode related to hydrophobicity),
negative for attractive interaction between unlike amino acids
(first and third modes related to charge and size). Note that the
entries and the eigenvalues of e(a,b) are small compared to
their counterparts in MJ, a fact we will discuss in Section III E.

We conclude that the inferred DCA coupling matrices
display quantitative and biologically relevant information,
beyond their known e�ciency to predict tertiary contacts.
However, contrary to the MJ statistical potential (Fig. 1) which
includes the possibility of contacts between hydrophilic amino
acids (from H to G) and cysteine-cysteine (C-C entry), we do
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not observe such a signal in the modes of the mean matrix
e. The Pearson correlation coe�cient between e(a,b) and
EMJ

0 (a,b) is 0.58.

C. The C-C signal can be found through structural
classification of the pool of Pfam families

Cysteine-cysteine contacts do have a very strong DCA-
inferred coupling, with the corresponding matrices strongly
favoring cysteine pairings (large positive C-C entry) and
disfavoring pairings of a cysteine with di↵erent amino acids.
However, cysteines are scarce within proteins, making such
pairings statistically rare compared to other residue pairings in
the selection S described above. In the naive average coupling
introduced in Sec. III A, the individually strong signal is
therefore diluted; and it becomes di�cult to pick up in our
spectral analysis.

In order to gain a more detailed view of the possible
contact matrices, we divide up the pool of Pfam families into
structural domains based on similarities of their structures
using the manual Structural Classification of Proteins
(SCOP) database29 (the repartition is in the supplementary
material Section VII). Five SCOP classes are considered
in this analysis: all ↵-proteins, all �-proteins, ↵- and �-
proteins (mainly antiparallel beta sheets: beta-alpha-beta
units and segregated alpha and beta regions), membrane
and cell surface proteins and peptides, and small proteins.
The latter is characterized by the abundance of disulfide
bridges between two cysteines. This gives rise to five
new selections S(x) =

S
n2x Sn, where x is the SCOP

class (x 2 {↵, �,↵ + �,membrane,small}). We get |S(↵)|
= 300, |S(�)| = 493, |S(↵+�)| = 1814, |S(membrane)| = 879, and
|S(small)| = 304.

Figures 3–7 display, for each of the five SCOP classes, the
new mean matrices e(a,b|x) =

⌦
J
i j

(a,b)
↵
i j 2S(x), their spectra,

and the top three spectral modes. Electrostatic spectral modes
are found in all five SCOP classes (with negative eigenvalues),
whereas hydrophobicity-related modes are identified in all but
the small protein classes. The cysteine-cysteine mode is found
only in the small protein class, as expected (and with a positive
eigenvalue). Interestingly, while the hydrophilic signal (amino
acids H to G) is still rare in the dominating spectral modes,
its presence can be observed in classes ↵, �, and small,
respectively, on the third (Fig. 3, panel (e)), second (Fig. 4,
panel (d)), and third (Fig. 7, panel (e)) spectral modes. The
third mode of small (Fig. 7, panel (e)) even displays both
hydrophobic and hydrophilic interactions, similarly to the MJ
energy matrix EMJ

0 (see Fig. 1, panel (c)).
The spectrum of e(a,b|�) is dominated by one eigenvalue

(�(1) = �0.1171), the second and third eigenvalues being
relatively close (�(2) = 0.0405, �(3) = 0.0328). It causes the
separation between the second and third spectral modes
(Fig. 4, panels (d) and (e)) to be less clear and more
sensitive to finite sampling noise than for the other
classes, whose spectra are dominated by more than one
eigenvalue.

D. Hydrophilic contacts can be identified considering
solvent exposure

The weakness of a signal involving hydrophilic amino
acids (from H to G) may be explained by the scarcity of
contacts between two sites localized on the surface of the
protein as compared to all other contacts—surface amino
acids are indeed most likely to be hydrophilic. We now
divide the selected residue pairs in S into three classes
depending on the solvent exposure—measured by the relative
solvent accessibility (RSA) determined using the naccess
software30—of the involved residues, regardless of the Pfam
family they are issued from:

FIG. 3. ↵ proteins. (a) e(a,b |↵). (b) Spectrum. (c)-(e) Top three spectral modes displaying electrostatic (�(1)=�0.1043), hydrophobic (�(2)= 0.0459), and
hydrophilic (�(3)= 0.0238) interactions.

FIG. 4. � proteins. (a) e(a,b |�). (b) Spectrum. (c)-(e) Top three spectral modes displaying electrostatic (�(1)=�0.1171) and hydrophobic/hydrophilic
interactions (�(2)= 0.0405, �(3)= 0.0328).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641


174102-7 Coucke et al. J. Chem. Phys. 145, 174102 (2016)

FIG. 5. ↵+� proteins. (a) e(a,b |↵+�). (b) Spectrum. (c)-(e) Top three spectral modes displaying electrostatic (�(1)=�0.0905) and hydrophobic
(�(2)= 0.0412, �(3)=�0.0198) interactions.

• “surface-surface” contacts: more than half of the
surface of both residues is exposed to the solvent
(selection S(ss) = {i j 2 S | RSA(i),RSA( j) > 50%}),

• “core-core” contacts: less than half of the surface
is exposed (selection S(cc) = {i j 2 S | RSA(i),RSA( j)
< 50%}), and

• “core-surface” contacts: one residue has more than half
of its surface exposed, the other has less than half
(selection S(cs) = {i j 2 S | (RSA(i) > 50%,RSA( j)
< 50%) or (RSA(i) < 50%,RSA( j) > 50%)}).

Fig. 8 displays the repartition of core-core (blue), surface-
surface (green), and core-surface (yellow) contacts among
all existing tertiary contacts (left panel) and contacts in the
selection S (right panel). As expected, by far the largest
part of the tertiary contacts lies in the core of the proteins.
Only 2%-3% of the (selected) contacts are between surface
residues.

Similarly to what has been done before, we consider
average coupling matrices for these three new classes:
e(a,b|y) =

⌦
J
i j

(a,b)
↵
i j 2Sy, with y 2 {ss,cc,cs} along with

their spectral modes. For all classes, the first spectral mode
displays the usual electrostatic signal, cf. the supplementary
material Section III for a full description of the modes.

However, while the second mode of the “core-core” class is
localized on hydrophobic amino acids (from A to P) only,
in agreement with what is observed in Fig. 2, the second
modes of the “surface-surface” and “core-surface” classes are
localized only on hydrophilic (H to G) amino acids, as shown
in Fig. 9.

E. Di�erences with Miyazawa-Jernigan’s
statistical potential

The analog of MJ’s contact energy (see Eq. (9a) in
Ref. 11) in our description would be approximately the
quantity Estat(a,b) defined through

Estat(a,b) = log

⌦
f
i j

(a,b)
↵
i j 2S

h f
i

(a)i
i2S

⌦
f
j

(b)
↵
j 2S

, (11)

where h.i
i j 2S denotes the mean over all residue pairs in the

selection S (all Pfam families taken together), and h.i
i2S and

h.i
j 2S are the means over all single residues involved in a

contact pair in the selection S. Estat is then symmetrized and
shifted to the zero-sum gauge, cf. Eq. (5). Its first spectral
modes are very similar to the genuine MJ energy matrix
EMJ

0 (a,b) and the Pearson correlation coe�cient between Estat

FIG. 6. Membrane proteins. (a) e(a,b |membrane). (b) Spectrum. (c)-(e) Top three spectral modes displaying electrostatic (�(1)=�0.0729) and hydrophobic
(�(2)=�0.0366, �(3)= 0.0299) interactions.

FIG. 7. Small proteins. (a) e(a,b |small). (b) Spectrum. (c)-(e) Top three spectral modes displaying electrostatic (�(1)=�0.1129), cysteine-cysteine
(�(2)= 0.005 67), and hydrophobic/hydrophilic (�(3)= 0.0306) interactions.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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FIG. 8. Distribution of core-core (blue), surface-surface (green), and core-
surface (yellow) contacts among all contacts (left panel) and contacts in our
selection (right panel). Surface-surface contacts are statistically underrepre-
sented in both cases.

and EMJ
0 is 0.81 (see the supplementary material Section IV).

The contribution of the one- and two-point frequencies makes
it possible to pick up, for instance, the cysteine-cysteine signal
even if this amino acid is globally rarely found (a large weight
is attributed to residue pairs of rare amino acids but with a
strong signal).

The Estat matrix can be related to the inferred couplings
in an approximate way as follows. For pairs of site i, j in
contact (in the selection S), contrary to sites not in contact,
the major contribution to the direct coupling J

i j

(a,b) comes
from the direct correlation f

i j

(a,b)/( f
i

(a) f
j

(b)) between the
sites. Indirect contributions to f

i j

(a,b), mediated through
other sites, are expected to be much smaller. Approximating

J
i j

(a,b) with log( f
i j

(a,b)/( f
i

(a) f
j

(b))) is indeed exact in the
case of two interacting sites only. Consequently we introduce
the matrix EDIR(a,b) as

EDIR(a,b) = log

⌦
f
i

(a) f
j

(b) exp{J
i j

(a,b)}
↵
i j 2S

h f
i

(a)i
i2S

⌦
f
j

(b)
↵
j 2S

. (12)

Again, EDIR is symmetrized and shifted to zero-sum gauge.
As displayed in Fig. 10, the first spectral modes are very close
to the MJ energy matrix (Fig. 1), although not in the same
order (of decreasing eigenvalue in absolute value). The order
of magnitude of EDIR(a,b) and its top eigenvalues are much
more similar to the MJ matrix EMJ

0 , with a Pearson correlation
coe�cient of 0.77.

This shows that the DCA couplings reflect the full
information of the MJ contact energy, provided that the
mean is properly weighted by the single-site frequencies.
This is consistent with the previous results where the data set
of coupling matrices is divided up into structural classes or
solvent exposure related classes. To complement this analysis,
we have compared the DCA couplings with two alternative
statistical potentials proposed in Refs. 8 and 10. Results, which
are exposed in detail in the supplementary material Section I,
are coherent with those obtained with the MJ potential.

F. Distance distribution

Within the SCOP classification defined in Section III C,
we assign each residue pair (i, j) in the selection S(x) to
one spectral mode (k) of e(a,b|x) (with x 2 {↵, �,↵ + �,

FIG. 9. Second spectral modes of
the mean matrices (a) e(a,b |cc) over
“core-core” contacts, (b) e(a,b |ss)
over “surface-surface” contacts, and (c)
e(a,b |cs) over “core-surface” contacts.
A hydrophilicity-related signal is dis-
played on the latter two.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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FIG. 10. (a) Mean matrix E

DIR over
all residue pairs in the selection, tak-
ing all Pfam families together. (b) His-
togram of the spectrum of EDIR. (c)–(f)
First spectral modes of EDIR displaying
hydrophobic-hydrophilic (�(1)= 6.44),
cysteine-cysteine (�(2)= 3.78), histi-
dine-histidine (�(3)= 1.80), and elec-
trostatic (�(4)=�1.41) interactions.

membrane,small}) as follows. We first define the score ⇡(k)
i j

via the projection of the coupling matrix J
i j

(a,b) onto the
spectral mode (k) through

⇡(k)
i j

=

21X

a,b=1

J
i j

(a,b) v (k)
a

v (k)
b

, (13)

where the v (k)
a

s are the components of the eigenvector
associated to the kth eigenvalue of e(a,b|x). Then, the residue
pair (i, j) is assigned to the mode (k) on which the projection
⇡(k)
i j

is maximum.
For each class SCOP, we consider the projection onto the

top two spectral modes k = 1,2: electrostatic and hydrophobic
for the SCOP classes ↵, �, ↵ + �, membrane, and electrostatic
and cysteine-cysteine for the class of small proteins (Figs. 3 to
7). The top two eigenvalues of e(a,b|x) indeed account in each
class for about 50% of the sum of all eigenvalues. Figure 11

displays the two projection scores ⇡(k)
i j

, with k = 1,2, for all
residue pairs (i, j) within the five SCOP classes. Each color
corresponds to the cluster the residue pairs are assigned to,
i.e., the mode (k) with maximum projection ⇡(k)

i j

.
The projection ⇡(elec)

i j

on the electrostatic modes (red dots
in Fig. 11) is positive for the vast majority of contacts (i, j),
reflecting the strength and importance of the electrostatic
interaction. Residue pairs assigned to hydrophobic modes
(blue dots in Fig. 11) usually have a projection ⇡(elec) close
to zero, reflecting the fact that hydrophobic residues are
uncharged. While the assignment procedure seems to be well
justified for the SCOP classes ↵, membrane, and small (panels
(a), (d), (e)), no clear separation is observed for classes � and
↵ + � (panels (b) and (c)), in which the values of the projection
scores of contacts (i, j) may be both large and comparable in
magnitude. This can be explained by the overlapping supports
of the electrostatic and hydrophobic spectral modes in these



174102-10 Coucke et al. J. Chem. Phys. 145, 174102 (2016)

FIG. 11. Projection scores ⇡(k )
i j

, k = 1,2 for all residue pairs (i, j) within
SCOP classes (a) ↵ (electrostatic and hydrophobic), (b) � (electrostatic and
hydrophobic), (c) ↵+� (electrostatic and hydrophobic), (d) membrane (elec-
trostatic and hydrophobic), and (e) small (electrostatic and cysteine-cysteine).
Colors indicate the cluster the residue pair has been assigned to: electrostatic
(blue), hydrophobic (red), and cysteine-cysteine (yellow).

classes, the latter also having a hydrophilic signal (amino acids
K, H, R, D, and E are charged and hydrophilic), especially for
the � class, see Fig. 4 panel (d) and Fig. 5 panel (d). Notice
that, for the class small, the separation between electrostatic
and cysteine-cysteine modes is very good as the amino acids
supporting those interactions are disjoint (K, H, R, D, and E
for the former, C for the latter).

We now study how the native distances in the tertiary
structure between the residue pairs vary with the type
of interactions they have been assigned to (electrostatic,
hydrophobic, or cysteine-cysteine) as described above. The
distance distributions are shown in Fig. 12 and vary
considerably with the interaction types. The “hydrophobic”
type involve residue pairs with a contact distance centered
around 3.5 Å, the “electrostatic” type displays a bimodal
distance distribution mostly around 2.7 Å and 3.5 Å, and the
“cysteine-cysteine” type is the only one to have a significant
number of pairs in contact at short distance 2 Å. Notice that
3.5 Å is the typical distance between heavy atoms, twice
the van der Waals distance (1.7 Å), 2.7 Å corresponds to

FIG. 12. Distribution of distances among the selected residue pairs in contact
for the di↵erent interaction types, pooled across the SCOP classes.

the distance between atoms linked by a strong to moderate
hydrogen bond,31 and 2 Å is the distance between two
cysteines involved in a disulfide bridge.

IV. LATTICE PROTEINS

Lattice proteins (LP) are exactly solvable models of
proteins, folding on a 3D lattice into a compact conformation
given by a self-avoiding walk on a cube of dimension
3 ⇥ 3 ⇥ 3.12 Real proteins and LP share many common
properties (e�cient folding, nontrivial statistical features,
existence of families in the profile HMM sense with
conserved folds, etc.), but LP as in silico systems allow
for precise numerical control. It is easy to generate even
large samples of sequences (MSA) corresponding to a single
fold, defining the equivalent of a protein family, without
any phylogenetic sampling bias. LP are therefore an ideal
benchmark for studying and better understanding inference
methods developed in the context of real protein data.13 We
will hereafter use the LP framework to study in detail the
e↵ect of sampling quality vs. regularization strength in the
inference of the coevolutionary couplings J

i j

(a,b).

A. Background

A lattice protein is a chain of L = 27 residues
occupying the sites of a 3 ⇥ 3 ⇥ 3 simple cubic lattice;
each residue position in the chain can be occupied by
one of the 20 di↵erent amino acids. N = 103 346 self-
avoiding conformations unrelated through symmetry have
been enumerated.12 Each conformation defines a possible
structure or fold of the protein sequence. The geometry
of the cube imposes exactly 28 contacts (neighbors on the
lattice but not on the backbone) between the protein sites,
cf. Fig. 13. Geometrical constraints also impose all sites to be
on the surface, except for a single buried one (e.g., residue
24 in fold S

A

). As for now, the buried site is not treated
di↵erently than the sites on the surface, although it would be
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FIG. 13. Four representative LP structures used for the analysis. Three
among the 28 contacts of structure S

A

have been circled in the top left panel.

interesting to consider solvent exposure in lattice proteins via
a protein-solvent coupling.

Given a fold S, an energy is assigned to each amino-acid
sequence A = (a1, . . . ,a27),

E(A|S) =
27X

i< j

cS
i j

EMJ(a
i

,a
j

), (14)

where cS
i j

is the contact map of structure S, i.e., the 27 ⇥ 27
adjacency matrix (cS

i j

= 1 if i and j are in tertiary contact—not
along the chain—and 0 otherwise). Amino acids in contact
interact through the MJ statistical potential EMJ(a,b). The
probability that a given sequence A folds in structure S is
defined by

Pnat(S|A) =
e�E(A|S)

PN
S

0=1 e�E(A|S0)
(15)

and depends on its energies in all folds S0. A good folder is
a sequence with a large gap between its energy in the native
structure S and all the other folds S0.

Covariation properties of LP were recently studied by
Jacquin et al.13 MSAs corresponding to the four folds S

A

, S
B

,
S
C

, and S
D

in Fig. 13 were generated by Monte Carlo Markov
Chain (MCMC) sampling of Pnat(S,A). The same inverse
methods based on maximum-entropy and Potts modeling used
for real proteins (mean field, plmDCA, and the adaptive cluster
expansion of Refs. 32 and 33) were applied to infer pairwise
couplings J

i j

(a,b) from the one- and two-point statistical
correlations measured on the MSAs of the lattice proteins.
As in real data, inferred couplings are excellent predictors of
contacts in the structure. Interestingly, a linear dependency
was observed between the inferred couplings J

i j

(a,b) and MJ
energetics parameters EMJ(a,b) used to compute the energy
(see Eq. (14)), both in the zero-sum gauge and for a given
residue pair (i, j): J

i j

(a,b) ⇡ �
i j

EMJ
0 (a,b). The prefactor �

i j

was interpreted as a measure of the coevolutionary pressure
on the residues (i, j), due to the design of the native structure.
Large positive �

i j

indicate positive design, and generally

correspond to residues (i, j) in contact in the native structure,
but not in its competitor folds S0. Conversely, large negative �

i j

reflect negative design and generally correspond to residues
(i, j) in contact in competitor structures but not in the native
structure.13 Notice that a profile-HMM34,35 built on a subpart
of a MSA associated to a given fold is very family-specific
and gives high scores to sequences with a high Pnat for this
fold. Sequences belonging to other families have lower scores,
see the supplementary material Section V.

B. Properties of the inferred couplings

We have downloaded the MSAs for structures S
A

,S
B

,S
C

,
and S

D

from the Supporting Information of Ref. 13; each
MSA contains M = 50 000 sequences folding with probability
Pnat > 0.995. For each fold, the coupling matrices are
computed using plmDCA in zero-sum gauge (as in Section III)
for 4 di↵erent values of the sampling and regularization
parameters:

• large sample size (M = 50 000 sequences) and strong
regularization (µ = 10�2, standard value for plmDCA),

• large sample size (M = 50 000 sequences) and weak
regularization (µ = 1/M = 2 ⇥ 10�5),

• small sample size (M = 500 sequences extracted from
the MSA) and strong regularization (µ = 10�2), and

• small sample size (M = 500 sequences extracted from
the MSA) and weak regularization (µ = 10�4).

As expected, the inferred coupling matrices are closely
related to the MJ energy matrix,13 but varying the sampling
and regularization strength provides interesting insights. The
default regularization parameter is set in plmDCA to the
value µ = 10�2 giving the best results for contact prediction.15

This regularization strength penalizes large couplings and
sparsifies the 20 ⇥ 20 matrix. With smaller regularization
penalties µ = 10�5 � 10�4, couplings can acquire larger
values.

1. E�ect of the regularization

Figure 14 displays the coupling matrix J14,17 of a
representative residue pair (14,17) in contact in structure
S
A

(Fig. 13) at strong (µ = 10�2, panel (a)) and weak
(µ = 1/M = 2 ⇥ 10�5, panel (b)) regularizations. Left and
bottom colorbars are single site frequencies f14 and f17,
and red squares indicate zero frequency. The characteristics
of the mean coupling matrix will be described in
Section IV B 3.

Strikingly, decreasing the regularization strength enables
new interaction signals to emerge, e.g., hydrophobic and
cysteine-cysteine interaction, which are consistent with the
MJ matrix, see panel (a) of Fig. 1. The correlation between
J
i j

(a,b) and EMJ
0 (a,b) for all (i, j) in contact in the four

studied folds therefore increases, with an average Pearson
coe�cient raising from 0.51 (strong regularization) to 0.70
(weak regularization).

The unveiling of interactions at weak regularization
depends, however, on the amino-acid statistics on the involved

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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FIG. 14. Coupling matrices of pair
(14,17), structure S

A

. Left and bottom
colorbars are single site frequencies f14
and f17. Red squares indicate zero fre-
quency. (a) M = 50 000, µ = 10�2, (b)
M = 50 000, µ = 2⇥10�5, (c) M = 500,
µ = 10�2, (d) M = 500, µ = 10�4.

sites. For example, for the pair (14,17) displayed in Fig. 14,
electrostatic and hydrophilic amino acids (H to G) have
su�ciently large frequencies on sites 14 and 17 to produce
enough correlation statistics for the corresponding interaction.
On the contrary, no interaction signal is revealed at low
regularization for amino acids F, I, and L, as they are
never found on site 17 (vertical band of zero couplings
on panel (b)). Decreasing the regularization in the latter
case merely results in increasing noise, as discussed in
Subsection IV B 2.

2. E�ect of the sampling

The length of LP is L = 27, which is small compared
to real biological proteins (typically 50 � 500 amino acids in
a single domain). Moreover, the MCMC procedure used to
generate MSAs ensures that the sequences are well distributed
in sequence space. In consequence, inference based on good
sampling (M = 50 000 sequences) becomes very accurate.
As discussed in Section II B, the situation for real biological
sequences is less optimal, as the e↵ective number of sequences
Me↵ is much smaller (we have chosen Me↵ = 500 as a lower
bound for the 70 Pfam families studied in the present work),
and only very few proteins reach values close to M = 50 000
chosen for LP in Ref. 13.

To test our analysis of LP in a more realistic situation, we
therefore select subalignments of M = 500 sequences for each
of the four structures. The bottom panels of Fig. 14 display the
coupling matrices obtained in this poor sampling situation,

at strong (panel (c)) and weak (panel (d)) regularizations.
Contrary to the good sampling case, no new interaction signal
compatible with MJ is revealed at low regularization. Globally,
the coupling matrices of all residue pairs in contacts are even
less correlated with MJ, as the Pearson correlation goes
from 0.42 (small sample size, strong regularization) down to
0.36 (small sample size, weak regularization). The di↵erence
between couplings at strong and weak regularization seems to
be due to noise for poor sampling.

The couplings for real protein sequences have been
inferred at (plmDCA standard) high regularization (µ = 10�2).
Coherently with what has been described in the last paragraph
for LP, and since real biological sequences are not very well
sampled (Me↵ ' 500 � 1000), decreasing the regularization
does not change the mean matrices and their spectral modes;
they contain simply more noise.

To sum up the e↵ects of the di↵erent parameters
(regularization and sampling), Table I gathers the Pearson

TABLE I. Pearson correlation coe�cients between J

i j

(a,b) and the MJ
energy matrix E

MJ
0 (a,b) across all residue pairs (contacts/noncontacts) in the

4 studied folds for di↵erent samplings and regularization strength.

Sampling Regularization Correlation

M = 50 000
µ = 10�2 0.51 / �0.15
µ = 1/M 0.70 / �0.14

M

0= 500
µ = 10�2 0.42 / �0.05
µ = 10�4 0.36 / �0.04
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FIG. 15. Mean matrix e(a,b |LP) over
all pairs in contact in the 4 studied
folds. (a) M = 50 000, µ = 10�2, (b)
M = 50 000, µ = 1/M , (c) M = 500,
µ = 10�2, (d) M = 500, µ = 10�4.

correlation coe�cients between J
i j

(a,b) and EMJ
0 (a,b) for

all amino-acid and residue pairs in the 4 studied folds
(4 ⇥ 28 = 112 pairs). As we have discussed above, with a
good sampling, the correlation between J

i j

(a,b) and EMJ
0 (a,b)

globally increases when the regularization decreases. On
the contrary, with poor sampling (as it is the case for real
biological data), the correlation slightly decreases when the
regularization decreases. However, the inferred signal appears
pretty stable at strong regularization, which may be a reason
why plmDCA needs this high regularization on real protein
data.

3. Mean coupling matrix

Similarly to what has been done for real sequences data
(Section III), we compute the mean matrix

e(a,b|LP) =
⌦
J
i j

(a,b)
↵
i j

, (16)

where the mean h.i
i j

is over all residue pairs in contact
in the 4 studied folds (112 coupling matrices). The 4
cases of di↵erent sampling and regularization parameters
defined in Section IV B give rise to 4 di↵erent matrices
e(a,b|LP): (M = 50 000, µ = 10�2), (M = 50 000, µ = 1/M),
(M 0 = 500, µ = 10�2), and (M 0 = 500, µ = 10�4), displayed in
Fig. 15. Consistently to what has been previously stated,
the correlation between e(a,b|LP) and the MJ energy matrix
EMJ

0 is maximum (0.94) in the case of large sample size and
weak regularization (panel (b)). Appendix C reports a full
description of the modes of e(a,b|LP).

V. SUMMARY AND CONCLUSIONS

Direct coupling analysis exploits the statistical correla-
tions implied by coevolution in protein-multiple sequence
alignments to infer residue-residue contact within the tertiary
structure. The probabilistic model takes the form of a q = 21-
states Potts model, whose parameters are inferred to reproduce
the one- and two-residue statistics of the data. Usually, the
inferred coupling matrices {J

i j

(a,b)} are mapped onto scalar
parameters to measure the coupling strength between two
residues and thereby predict contacts, without exploring the
full information they contain. By studying extensively 70
Pfam protein families, we show that these couplings reflect the
physico-chemical properties of amino-acid interactions, such
as electrostatic, hydrophobic/hydrophilic, cysteine-cysteine,
and steric interactions. Some of these interaction modes are
present in a small fraction of residue pairs only, and are not
easily seen in the global analysis over the 70 protein families.
We show, however, that cysteine-cysteine and hydrophilic
signals are unveiled, when we consider the SCOP structural
classification (small proteins) and solvent exposure (surface
contacts).

The way the averaging is done is crucial to unveil the
full information contained in the DCA coupling matrices.
By properly reweighting the naive average of the coupling
matrices of Eq. (8) with the one- and two-site frequencies
(see the quantity EDIR(a,b) defined at Eq. (12)), it is possible
to pick up, for instance, the cysteine-cysteine signal even if
this amino acid is globally rare, as a large weight is attributed
to residue pairs of rare amino acids but with a strong signal.
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This is coherent with the construction of the MJ statistical
potential, which results also from a weighted average (see
Eq. (9a) in Miyazawa et al.11) and therefore successfully
captures the physico-chemical properties of residue-residue
contacts.

Study of lattice proteins (LP)—synthetic protein models
folding on a 3D lattice with energetics ruled by the Miyazawa-
Jernigan statistical potential—gives useful insights on the
e↵ect of regularization strength and sampling on contact
classes. Decreasing the regularization penalty (from the
default plmDCA value µ = 10�2 to µ = 1/M , the inverse
of the MSA size) allows for a richer interaction signal
to emerge in the coupling matrices, highly correlated with
the Miyazawa-Jernigan energy matrix. However, this rich
interaction pattern may be inferred only if the sequence sample
(MSA) is su�ciently large. For sample sizes representative of
current real protein databases, decreasing the regularization
strength simply makes the correlation with the Miyazawa-
Jernigan energy matrix worse as the inferred couplings merely
reproduce the sampling noise in the amino-acid pairwise
correlations. With such poor sampling strong regularization
is more reliable: the inferred interaction signal becomes
relatively insensitive to the sample size, explaining why
plmDCA on real proteins was found to perform consistently
with a constant regularization of µ = 0.01. Note that
this picture somewhat depends on the inference method
considered: more precise inference procedures could allow
for detecting a larger correlation with MJ even with poor
sampling.14,33,36

The order of magnitude of the di↵erent mean coupling
matrices and their top eigenvalues greatly depend on
the regularization strength. Strong regularization imposes
important constraints on the couplings, prohibiting large
absolute values in the inferred J

i j

(a,b). On the other hand,
LP are characterized by strong structural selection. The
presence of negative and positive designs13 causes the inferred
couplings to be larger. The entries and top eigenvalues of the
mean matrices e(a,b|LP) are consequently similar or larger
than the ones of the MJ energy matrix. The situation for real
proteins is less stable, as structure is only partially conserved
over protein families, and contacts stabilizing a structure may
not always be the same across thousands of distant homologs.
This probably explains why the entries and top eigenvalues
of the mean coupling matrix e(a,b) are much smaller in real
proteins than in the MJ energy matrix.

An important question is whether the detailed structure of
the inferred couplings revealed in this work could be used to
improve structural predictions, based so far on the Frobenius
norms of the couplings only. It was recently shown that for LP
the projection of the couplings onto the MJ matrix generally
gives a better score for contact prediction than the usual
Frobenius-based estimator, see Section IV A and Ref. 13.
The reason is twofold. First the projection, contrary to the
norm, has a sign and allows for the distinction of positive
design (positive projection, likely to correspond to contact
in the native fold) from negative design (negative projection,
likely not to correspond to a contact). Second the projection
measures the magnitude of the coupling matrix along one
direction in the 20 ⇥ 20-dimensional space of amino-acid

pairs and is thus not sensitive to the noise in the 399
remaining orthogonal directions, contrary to the Frobenius
norm.

However, the applicability to real protein data appears
currently limited due to two reasons. First, the projection in
Ref. 13 is done on the MJ matrix used in the generative model
of the lattice proteins, i.e., complementary information not
coming from the data is used. In real proteins, the reference
coupling matrix has to be inferred from data first and is
thus expected to be less accurate. Second, the currently
limited sampling in real proteins was shown to impose
a strong regularization during the inference of the DCA
model parameters, which even in lattice proteins reduces the
correlation between inferred couplings and the MJ matrix.
We anticipate this situation to improve soon due to the rapid
growth of available genomic data, leading to a better sampling
of protein families.

We previously tried to actually use the physico-chemical
properties of amino acids, as well as predicted secondary
structure and solvent accessibility, to enhance the prediction
of residue-residue contacts within the tertiary protein
structure—using a simple posterior re-scoring scheme rather
than the projection to a reference coupling matrix. While
we found significant biases in predicting contacts depending
on the amino-acid properties and secondary structure, the
overall contact prediction was only marginally improved. In
addition, the Gaussian regularization used in this work can be
considered as a weakly informative prior distribution intended
to prevent that solutions of the inference problem are infinite
due to insu�cient sampling, i.e., when the one- and two-site
frequencies from the data are close to 0 or 1 (respectively,
never observed amino acids/amino-acid combinations or
totally conserved sites). While it is beyond the scope of
the present article, replacing the Gaussian regularization in
the inference procedure by a prior distribution compatible with
a reference coupling matrix is an interesting project which
deserves further investigation.

Nevertheless, even at the current state of sequence
sampling, the coupling matrices contain important quantitative
information which can directly be implemented into protein-
structure prediction: our work indicates that the type of
interaction reflected by the inferred couplings is correlated
with the distances in the tertiary structure between the residues
in contact (Section III F). Cysteine-cysteine tend to form very
strong chemical bonds such as disulfide bridges and therefore
are the only contact type associated to very short distances
⇠2 Å. Electrostatic contacts give rise to distances with a
bimodal distribution, centered around 2.7 Å and 3.5 Å. Finally,
hydrophobic contacts are mainly located around 3.5 Å. While
this information has been so far discarded when using DCA or
related methods to guide tertiary protein structure prediction,
it could in principle be used to make the resulting structural
models more accurate.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on
two other statistical potentials (Section I), the e↵ect of a
smaller separation along the protein backbone on the DCA

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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mean matrices (Section II), coupling matrices averaged over
solvent-exposure related classes (Section III), the analog of the
Miyazawa-Jernigan matrix computed with one- and two-site
frequencies from alignments (Section IV), considerations on
the profile HMM of lattice proteins (Section V), the list of the
Pfam families (Section VI) and their repartition into SCOP
classes (Section VII), and the list of the PDB structures used
in the analysis (Section VIII).
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APPENDIX A: PSEUDO-LIKELIHOOD MAXIMIZATION
(plmDCA)

The log-likelihood of the data consisting in a
MSA of M sequences A(m) = (am

1 , . . . ,a
m

L

), m = 1 . . . M ,
reads

L[{J,h}|MSA] = 1
M

MX

m=1

log P(A(m)) = 1
M

MX

m=1

266666664
� logZ +
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i=1
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i

(am

i

) +
LX

i, j=1
i< j

J
i j
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i

,am

j

)

377777775
. (A1)

plmDCA substitutes the probability in the log-likelihood
in Eq. (A1) by the conditional probability of observing one
amino acid at site r in a sequence A(m) given all the others,

P(a
r

= a(m)
r

|A(m)
\r ) =

exp
�
h
r

(am

r

) +P
i,r J

r i
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�

P
q

l=1 exp
�
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r
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i,r J

r i

(l,am

i

)
� , (A2)

where, for notational convenience, we use J
r i

(l, k) = J
ir

(k, l)
for i < r . The notation A\r = (a1, . . . ,ar�1,ar+1, . . . ,aL

) is
used for the subsequence not containing position r .

The parameters h
r

and J
r

= {J
ir

}
i,r can be computed

via the maximization of the pseudo-loglikelihood

PL
r

(h
r

,J
r

) = 1
M

MX

m=1

log P{h
r

,J
r

}(ar

= a(m)
r

|A(m)
\r ). (A3)

This procedure is statistically consistent, i.e., it guarantees to
extract the exact parameter values in the limit of an infinitely
large sample drawn from the Potts model. However, for a finite
sample, this procedure returns two di↵erent values for the
couplings J

ir

: J⇤, i
ir

and J⇤,r
r i

obtained from the maximization of
PL

i

andPL
r

, respectively. One simple way to reconcile these
values is to replace them by the average: J

ir

= 1
2 (J
⇤, i
ir

+ J⇤,r
r i

).
This approach is referred to as asymmetric pseudolikelihood
maximization18 and has been used in this paper.

APPENDIX B: CRYSTAL STRUCTURE MAPPING

We use multiple sequence alignments (MSA) of protein
domains downloaded from the Pfam database version 27.0.6

We select randomly 70 domain families that satisfied the
following criteria: (i) the family contains an e↵ective number
of homologous sequences greater than 500, to provide a
su�ciently good sample for plmDCA; (ii) each family has at
least one member sequence with an experimentally resolved
high-resolution crystal structure (resolution lower than 3 Å)

available from the Protein Data Bank (PDB),27 this permits
to extract experimental contact maps and to use the SCOP
classification;29 (iii) every PDB chains that contain a selected
domain family have been classified into a unique structural
group according to SCOP; and (iv) the families are selected
to cover a broad range in protein length and to have good
sensitivity in the contact prediction.

We consider the first level of SCOP categorization of
PDB structures, the Group, that account for the types of folds
(e.g., beta sheets). Five structural groups have been used (see
the supplementary material Section VII for the list of Pfam
families per SCOP class).

A mapping application was developed to map domain
family alignments to crystal structures and to extract distances
of residue pairs in PDB structures in order to obtain the contact
map. Two residues are considered in contact if the minimal
distance between all the heavy atoms is lower than 8 Å.
This threshold is chosen coherently with prior studies.2 We
take into account several crystal structures, when available,
to include the structural variability over homologous proteins
that are present in the PDB. Therefore, when more structures
are at disposal, we take as the distance between residues
the minimum distance over the residue pairs in the di↵erent
PDBs. The complete list of PDB structures can be found in
the supplementary material Section VIII.

TABLE II. Pearson correlation coe�cients between e(a,b |LP) and the MJ
energy matrix E

MJ
0 (a,b) for di↵erent samplings and regularization strength.

Sampling Regularization Correlation

M = 50 000
µ = 10�2 0.76
µ = 1/M 0.94

M

0= 500
µ = 10�2 0.74
µ = 10�4 0.72

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-013641
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FIG. 16. (M = 50 000, µ = 10�2). (a) Mean matrix e(a,b |LP) over all residue pairs in contact across the 4 studied fold. (b) Histogram of the spectrum
of e(a,b |LP). (c)–(e) First spectral modes of e(a,b |LP) displaying electrostatic, cysteine-cysteine, and mixed cysteine-cysteine/hydrophobic/hydrophilic
interactions.

FIG. 17. (M = 50 000, µ = 1/M = 2⇥10�5). (a) Mean matrix e(a,b |LP) over all residue pairs in contact across the 4 studied fold. (b) Histogram of the
spectrum of e(a,b |LP). (c)–(e) First spectral modes of e(a,b |LP) displaying electrostatic, cysteine-cysteine, and hydrophobic/hydrophilic interactions.

We compute the relative solvent accessibility (RSA) of a
given residue using the naccess tool.30

APPENDIX C: MODES OF THE MEAN MATRIX
e(a, b|LP ), DEPENDING ON SAMPLING
AND REGULARIZATION

e(a,b|LP) and its first spectral modes are closest to the
ones of the MJ matrix EMJ

0 in the case of large sample size
and weak regularization (M = 50 000, µ = 1/M), as displayed
in Fig. 17 and consistently to what has been addressed

in Section IV B. Table II displays the Pearson correlation
coe�cients between e(a,b|LP) in the 4 cases (panels (a) of
Figs. 16–19) and the MJ energy matrix EMJ

0 .
Interestingly, the regularization strength seems to play an

important role in determining the order of magnitude of the
entries of the matrix e(a,b|LP) and its dominant eigenvalues.
With a fixed sampling M = 50 000, the top eigenvalues are
divided by 5 with the regularization going from µ = 10�2

to µ = 2 ⇥ 10�5 (see panels (b) of Figs. 16 and 17). On the
contrary, decreasing M at fixed regularization does not a↵ect
the top eigenvalues (panels (b) of Figs. 16 and 18).

FIG. 18. (M 0= 500, µ = 10�2). (a) Mean matrix e(a,b |LP) over all residue pairs in contact across the 4 studied fold. (b) Histogram of the spectrum
of e(a,b |LP). (c)–(e) First spectral modes of e(a,b |LP) displaying electrostatic, cysteine-cysteine, and mixed cysteine-cysteine/hydrophobic/hydrophilic
interactions.

FIG. 19. (M 0= 500, µ = 10�4). (a) Mean matrix e(a,b |LP) over all residue pairs in contact across the 4 studied fold. (b) Histogram of the spectrum
of e(a,b |LP). (c)–(e) First spectral modes of e(a,b |LP) displaying electrostatic, cysteine-cysteine, and mixed cysteine-cysteine/hydrophobic/hydrophilic
interactions.
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In the optimal case of large sample size and weak
regularization, where the correlation with the MJ energy
matrix is maximal (see Table II), the entries of e(a,b|LP) and
its top eigenvalues are larger than the MJ energy matrix (see
Fig. 1). Decreasing the folding probability Pnat, and therefore
the structural constraints, causes the inferred couplings to
decrease. It illustrates the strong influence of the evolutionary
pressure and positive/negative design in LP.13
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