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Abstract
Inverse statistical approaches to determine protein structure and function from Multiple

Sequence Alignments (MSA) are emerging as powerful tools in computational biology.

However the underlying assumptions of the relationship between the inferred effective

Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we

use lattice protein model (LP) to benchmark those inverse statistical approaches. We build

MSA of highly stable sequences in target LP structures, and infer the effective pairwise

Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce

many important aspects of ‘true’ LP structures and energetics. Careful analysis reveals that

effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energet-

ics of the native structure but also on competing folds; in particular, the coupling values

reflect both positive design (stabilization of native conformation) and negative design

(destabilization of competing folds). In addition to providing detailed structural information,

the inferred Potts models used as protein Hamiltonian for design of new sequences are

able to generate with high probability completely new sequences with the desired folds,

which is not possible using independent-site models. Those are remarkable results as the

effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the

competition between the folds. Our findings elucidate the reasons for the success of inverse

approaches to the modelling of proteins from sequence data, and their limitations.

Author Summary

Inverse statistical approaches, modeling pairwise correlations between amino acids in the
sequences of homologous proteins across many different organisms, can successfully
extract protein structure (contact) information. Here, we benchmark those statistical
approaches on exactly solvable models of proteins, folding on a 3D lattice, to assess the
reasons underlying their success and their limitations. We show that the inferred
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parameters (effective pairwise interactions) of the statistical models have clear and quanti-
tative interpretations in terms of positive (favoring the native fold) and negative (disfavor-
ing competing folds) protein sequence design. New sequences randomly drawn from the
statistical models are likely to fold into the native structures when effective pairwise inter-
actions are accurately inferred, a performance which cannot be achieved with indepen-
dent-site models.

Introduction
Prediction of protein structure from sequence remains a major goal of computational struc-
tural biology with significant practical implications. While great progress was achieved in de
novo prediction of structures and even direct folding of smaller globular water soluble proteins
[1, 2], structure prediction remains challenging for larger proteins, and membrane and other
non-globular proteins. For these cases indirect methods such as homology modeling are most
promising. An approach to predict structure from the statistics of multiple sequence alignment
(MSA) was proposed twenty years ago [3]. The underlying assumption for these statistical
approaches is that residues that covary in a MSA are likely to be in close proximity in protein
structure [4].

Recently, this approach has been significantly improved and has become a practical tool to
extract structural information from sequence data [5, 6], and to help in folding proteins [7].
Progress was made possible by the application of the maximum entropy principle of statistical
mechanics [8, 9] to derive the distribution of sequences in a protein family, i.e. their probability
of appearing in an MSA. This approach is similar in spirit to the derivation of Gibbs distribu-
tion in Statistical Mechanics, with an effective Hamiltonian constructed to reproduce single-
site amino-acid frequencies and pairwise amino-acid correlations. As such, the effective Hamil-
tonian is a Potts model [10] with parameters (the site-dependent fields and pairwise couplings
acting on amino acids) fitted to reproduce the MSA statistics. This approach allows one to dis-
entangle direct (corresponding to couplings) from indirect (mediated by other sites) correla-
tions [6, 11]; large couplings are much better predictors of contacts than large correlations.

The exploitation of covariation information in proteins extends beyond structural predic-
tion, and is potentially useful for homology detection, for characterizing the fitness changes
resulting from mutations, or for designing artificial proteins with ‘natural’ properties [12].
Experiments show in particular that a sizeable fraction of artificial sequences generated to
respect the 1- and 2-point amino-acid frequencies calculated from the natural MSA of the WW
domain (a short protein domain with’30 amino acids) acquire the native fold [13, 14]. This
fraction vanishes when artificial sequences are generated which respect the pattern of single-
site frequencies only. Recent studies have shown that inferred maximum-entropy models are
helpful to predict the effects of mutations in various protein sequences [15–17], including HIV
virus sequences [18].

Despite those successes fundamental issues remain poorly understood. To what extent do
the inferred couplings reflect the physical (energetics) and structural (contact) properties of
proteins? How much are the covariation properties of one family influenced by the need to pre-
vent sequences from folding into competing structures? Are pairwise correlations, and hence,
couplings generally sufficient to capture the statistical features of protein families and define
generative models?

In this work we answer those questions using lattice-based protein (LP) models [19–21].
Using LP allows us to evaluate the strengths and limitation of the Potts inference methods by
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comparing recovered solutions with known exact ones. Protein-like sequences are generated
using a well-defined Hamiltonian that employs 20 amino-acid types and the Miyazawa-Jerni-
gan energy function to approximate contact energies [22]. LP share many common properties
with real proteins, for instance nontrivial statistical features of the sequences associated with a
given fold, with variable conservation along the protein chain [20, 23]. Surprisingly, the covari-
ation properties of LP had not been much studied so far [24]. Here, we do so by generating
MSA data for various LP folds, and apply to those sequence data the same inverse approaches
used for real proteins (Fig 1). In particular, we show that the inferred couplings are excellent
predictors of contacts in the protein structure. In addition, while the inferred Potts pairwise
couplings mostly reflect the energetics and the contacts in the fold corresponding to the MSA,

Fig 1. From lattice-protein sequence space to inferred Potts model. Protein families, each corresponding to a particular structure S, represent portions of
sequence space (colored blobs), in which all sequences (colored dots) fold into a unique conformation. Many sequences are expected to be non folding, and
not to belong to any family (black dots). Protein families differ by howmuch they are designable, i.e. by the numbers of sequences folding onto their
corresponding structures, represented here by the sizes of the circles. SA and SB are the least designable folds, while SC and SD are realized by larger
numbers of sequences, see Table 1. From a multi-sequence alignment (MSA) of one family, we infer the maximum-entropy pairwise Potts model reproducing
the low-order statistics of the MSA. The model is then tested for structural prediction and generating new sequences with the same fold. An important issue is
to unveil the meaning of the inferred pairwise couplings J, which depend both on the family fold, as well as on the competitor folds.

doi:10.1371/journal.pcbi.1004889.g001
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they also strongly depend on the nature of the other folds competing with the native structure,
and have transparent interpretations in terms of positive and negative designs. Furthermore,
we show that the pairwise Potts model is generative: it produces with high probability
sequences with the right fold, a performance which cannot be achieved by models reproducing
single-site frequencies alone. This is a non-trivial result as the log probability of LP sequences
constrained to fold in a given structure is not a sum of pairwise contributions only, but includes
multi-body interactions to all orders due to contributions from competing folds.

Results
We have generated MSA for four representative LP structures shown in Fig 2A, referred to as
SA to SD; the energetics of the LP model, the Boltzmann probability Pnat(S|A) of a sequence A
to achieve a fold S, and the procedure for sampling the sequence space and generate MSA are
described in the Methods section. Any structure S is characterized by the volume it occupies in
sequence space (Fig 1), that is, by the number of sequences A it is associated with, e.g. with val-
ues of Pnat(S|A) larger than, say, 0.995. For the four structures considered here, the numbers of
associated sequences are extremely large compared to the MSA we have generated (5104

sequences). The higher this number, the more designable the corresponding structure is
expected to be [21]. The designability of each structure can be empirically estimated from the
diversity of the sequences in the corresponding MSA, from the spectral properties of the con-
tact matrix [25], and, as shown below in this paper, from the entropy of the Potts model
inferred from the MSA (Methods and Table 1). More information about how to define and
estimate designability can be found in S1 Text, Section I.B.

Potts pairwise couplings give accurate contact prediction
We show in Fig 2A the positive predictive value (PPV) for contact prediction (Methods) for
the four structures SA, SB, SC, SD, based on the ranking of the mutual information (MI) scores
[26] and of the inferred Potts couplings, with the mean field (DCA) [6], the pseudo likelihood
(PLM) [27], and the adaptive cluster expansion (ACE) [28–30] procedures. A fifth method,
called Projection, shown with magenta lines in Fig 2A will be introduced later on. Mean-field
DCA is a very fast, approximate method to infer the couplings. PLM is another approximation
method, known to be remarkably accurate for contact prediction on real protein data. ACE is
slower, but provides a more precise estimate of the coupling parameters (Methods). As in the
case of real protein data, Potts-based contact predictions, either with DCA, PLM or ACE, gen-
erally outperformMI-based predictions. MI, indeed, does not disentangle large indirect corre-
lations mediated by one or more sites from direct correlations due to contacts. PLM and ACE
couplings are more precise than their DCA counterparts and accordingly, give better contact
predictions for all four structures (Table 2). As shown later, most of the missed contacts with
ACE (3 or 4, depending on the structure in Fig 2A) are carried by the site at the center of the
structure. Why this is so and how to improve contact prediction (magenta lines in Fig 2A) will
become clear from the detailed interpretation of the Potts couplings below.

While the results above were obtained for uniformly sampled MSAs, real protein data suffer
from imperfect sampling, e.g. resulting from phylogenetic correlations. To analyze the effects
of biases in the sampling on structural predictions in a simple and controlled way we have
introduced a sampling procedure that favors sequences with small Hamming distances to a ref-
erence, wild-type sequence (Methods). As shown in Fig 2B, modifying the strength of the bias,
b, allows us to interpolate smoothly between the uniform sampling above (b = 0) and strongly
biased MSAs with reduced sequence diversities (large b values). Results for contact prediction
obtained with the PLM procedure are reported in Fig 2B. We observe that performances
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Fig 2. Inverse statistical approaches are able to extract structural information from sequence data of
lattice proteins. A. Left: Structures SA, SB, SC, SD. Amino acids (blue circles) are shown with their number,
running from 1 to 27 along the protein backbone (black line). There are 28 contacts between nearest-
neighbor amino acids not supported by the backbone. Right: Positive predictive values (PPV), defined as the
fraction of contacts among the k top scores, with the MI, DCA, PLM, ACE, and Projection procedures
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worsen as the bias in the MSAs increases. Empirical reweighting of the sequence statistics
according to their similarity with the other sequences in the MSA (Methods), as usually done
for real protein data, efficiently improves the quality of the structural prediction for intermedi-
ate bias values. For very strong biases (b = 0.1 in Fig 2B), the effective number of sequences
resulting from reweighting is so low that results become very poor.

Potts model generates good folding sequences with high probability, in
contrast to Independent-site Model
We now test the ability of the inferred Potts model to be generative, that is, to produce
sequences having high probability of folding into the native structure. To do so, we infer the
pairwise Potts model, Eq [9], from the MSA, hereafter referred to as ‘natural’, of structure SB
with the ACE procedure. We sample the Potts distribution using Monte Carlo simulations,
thereby generating a new MSA, hereafter referred to as ‘Potts-ACE’. We then compute the
probabilities of folding (into SB) of all the sequences in the Potts-ACE MSA, see Eq [5]. Results
are shown in Fig 3A. Strikingly, the ‘majority of the sequences have high folding probabilities.
Conversely, sequences generated with an Independent-site Model (IM, see Methods) following
the same procedure are unlikely to have the right fold, as shown in Fig 3A. Pairwise interac-
tions are therefore crucial to design new sequences with the right fold. Because the Potts-ACE

(Methods). Multi-sequence alignments withM = 5 � 104 sequences were generated with Monte Carlo
sampling at inverse temperature β = 103(Methods). B. Structural predictions for biased alignments (M = 105

sequences). The left panel shows the PPV with the PLM procedure for MSA for structure SB, generated with
four values of the bias b (Methods). Squares and dots correspond to predictions done with and without
reweighting respectively (Methods). Predictions for the weakest bias (b = 0.01) are identical to the unbiased
case (b = 0) shown in Fig 2A. The right panel reports the histograms of the Hamming distances to the Wild
Type (WT) sequence, KCLIDRTEFKAREVLVPAKCCEFKECL, randomly chosen among the unbiased MSA
of SB. The effective number of sequences (Methods) in the MSAs whereMeff = 100000, 75000, 6378, 102 for,
respectively, b = 0.01, 0.05, 0.075, 0.1.

doi:10.1371/journal.pcbi.1004889.g002

Table 1. Designabilities and entropies of structures SA to SD. Some estimates of how designable are the protein families associated to structures SA, SB,
SC, SD: largest eigenvalue of the contact map matrix c (1st column) [25], entropy of the Potts-ACEmodel (2nd column), shown to be generative in Fig 3A, and
mean percentage of identity between sequences in the attached multi-sequence alignments (MSA) (3rd column). The mean identity is defined as the number
of sites carrying consensus amino acids, averaged over all sequences in the MSA and divided by the length of the protein (L = 27); low identity corresponds
to diverse MSA, and, hence, to large designability. According to our estimates of the entropies, the volumes (Fig 1) associated to structures SB and SC are,
respectively, of about 41020 and 8.51024 sequences, while the total number of sequences is 2027 ’ 1035. For more information about the meanings of desig-
nability and entropy, see Section I.B in S1 Text.

Structure Top eigenvalue of c Entropy (Potts-ACE) Mean identity between seq. (%)

SA 2.5 49.5 23

SB 2.6 47.5 24

SC 2.9 57.4 19

SD 2.7 53.5 21

doi:10.1371/journal.pcbi.1004889.t001

Table 2. Quality of contact prediction with the different methods of inference, and average pressure.Number of correctly predicted contacts after 28
predictions with the methods MI, DCA, PLM, ACE, and Projection, see Fig 2A, and pressures λ, defined in Eq [2], averaged over the pairs of amino acids in
contact in the native folds.

Structure MI DCA PLM ACE Projection Average pressures

SA 20 19 24 24 27 2.00

SB 19 20 24 24 27 2.09

SC 19 21 25 24 27 1.32

SD 16 19 22 25 27 1.78

doi:10.1371/journal.pcbi.1004889.t002
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Fig 3. Inferred Potts-ACEmodel generates sequences with high folding probabilities and diversities.
A. Folding probabilities Pnat(SB|A), Eq [5], for four sets of 104 sequences A randomly generated with the
Independent-site Model (IM, green), the Potts-ACE (red), the Potts-PLM (orange) and the Potts-Gaussian
(blue) models vs. their Hamming distances to the consensus sequence of the ‘natural’MSA of structure SB

used to infer the four models. Black symbols show results for the ‘natural’ sequences, sampled at inverse
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model is generative, its entropy can be used as a quantitative estimate of the designability of the
structure, with results reported in Table 1 and S1 Text, Section I.B.

To better characterize the generative properties of Potts-ACE, we show in Fig 3B the scatter

plot of the ‘energies’HPotts�ACE½A;h;J�, Eq [9], with the inferred Potts-ACE model vs. the effec-
tive Hamiltonian -β log Pnat(SB|A) for the best folding sequences A in the MSA generated with
the Potts-ACE model for structure SB. We observe a roughly monotonic relationship between
the two quantities: the lower the energy with the Potts-ACE model, the more likely is the
sequence to be a good folder (Fig 3B). However, while the Potts-ACE model rightly predicts

that sequences with increasing energies are less likely to be good folders, the value ofHPotts�ACE

is less and less predictive about the precise value of Pnat, as shown by the increasing dispersion
in Fig 3B. Note that the low-energy part of this scatter plot, corresponding to the best sequences
generated with the Potts-ACE model, is quantitatively similar to its counterpart for the ‘natu-
ral’MSA, see Fig F in S1 Text.

We stress that Potts couplings have to be inferred with high precision to generate high-qual-
ity sequences. We show in Fig 3A that sequences generated by the Potts-Gaussian model,
which makes use of the approximate DCA couplings (details in S1 Text, Section II.B), have
very high folding probabilities, but are extremely concentrated around the consensus sequence.
The Potts-Gaussian model, contrary to the IM and the Potts-ACE model, fails to reproduce the
diversity of sequences observed in the natural MSA. This failure is a direct consequence of the
Gaussian approximation (S1 Text, Section IV). The Potts-PLMmodel reproduces the diversity
of natural MSA, but generates sequences, whose folding properties largely vary from very good
to very poor (Fig 3A). The poor folding discrimination is mostly due to the large regularization
parameter used in the inference (Section II.C and Fig B in S1 Text). In summary, the Potts-
ACE model, in contradistinction with IM, DCA and PLM, is capable to generate a large set of
diverse sequences that fold with high probability in the target native structure.

Potts couplings reflect both energetics in the native fold and competition
with other folds
We now study in more detail the properties of the Potts couplings. We show in Fig 4A the scat-
ter plot of the Potts couplings Jij(a, b) inferred with the ACE method for structure SB vs. the
Miyazawa-Jernigan energetics parameters −E(a, b) used to compute the LP energies (Methods);
scatter plots for the other structures are shown in Figs H, I, and J in S1 Text. For each pair of
sites i, j, we observe a linear dependency,

Jijða; bÞ � lij � �Eða; bÞð Þ ; ð1Þ

where the slope λij is positive for the pairs in contact in the native structure (red symbols in

temperature β = 103 (Methods). Most sequences drawn from the Potts-ACEmodel have high folding
probabilities, while most sequences drawn from the IM have low values of Pnat; sequences generated with the
Potts-PLMmodel lie somewhere in between. Sequences drawn from the Potts-Gaussian model have very
high folding probabilities, but are very close to the consensus sequence, and fail to reproduce the diversity of
sequences seen in the ‘natural’MSA (black) and Potts-ACE (red) data. Hamming distances for the Potts-
ACE and PLMmodels have been shifted by, respectively,þ 1

4
and� 1

4
to improve visibility. Filled ellipses show

domains corresponding to one standard deviation of the effective Hamiltonian bHLP½AjS� ¼ �b logPnatðSjAÞ,
Eq [6]. B. Scatter plot of the ‘energy’HPotts�ACE ½A;h; J�, Eq [9], with the inferred Potts-ACE (x-axis) vs.
effective Hamiltonian bHLP½AjS� ¼ �b logPnatðSjAÞ, Eq [6] (y-axis), for the sequences in the MSA generated
with the Potts-ACE model for structure SB. Only sequences within the 90%-100% percentiles of Pnat values
are shown. Colors identify intervals of values for Pnat, see legend in panel. The energy of the sequences
computed with the Potts-ACEmodel have been subtracted the energy of the best folder, such that the
minimal energy is zero.

doi:10.1371/journal.pcbi.1004889.g003
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Fig 4. Inferred Potts couplings encode energetics and structural information about native and competitor folds, reflecting both positive and
negative designs. A. Values of Jij(a, b) (inferred from a MSA of structure SB with the Potts-ACE method) vs. −E(a, b) across all pairs of sites i, j and of amino
acids a, b (found at least once in the MSA on those sites). Couplings and MJ energy parameters are shown in the consensus gauge, in which the entries
attached to the most probable amino acids in each site are fixed to zero. Red symbols correspond to pairs (i, j) in contact, while blue symbols correspond to
no contact.B. Lower-triangle: contact map cij of structure SB. Full blue squares correspond to pairs of sites i, j in contacts. Green and red dots show,
respectively, true and false positives among the 28 largest scores FAPC

ij with the ACEmethod (Methods). Upper triangle: average contact map �cij, computed
over all competitor folds weighted with their Boltzmann weights (Methods). The four missed contacts (all touching the central site 4) correspond to large �cij.
Red squares locate the four false positives.C. Pressure λij for each pair of sites (i, j), computed from Eq [2], vs. cij � c� ij for structure SB. The 195 pairs of sites
which can never be in contact on any fold due to the lattice geometry are shown with magenta pluses. The 28 contacts on SB (red symbols) are partitioned
into the Unique-Native (UN, 14 full triangles) and Shared-Native (SN, 14 empty triangles) classes, according to, respectively, their absence or presence in the
closest competitor structure, SF (Fig 4D). The remaining 128 pairs of sites (blue symbols) are not in contact on SB, and are partitioned into the Closest-
Competitor (CC, 14 full squares) and the Non-Native (NN, 114 empty squares) classes, according to, respectively, whether they are in contact or not in the
closest competitor structure, SF. Similar results are found for SA, SC and SD, see Table 2 and Figs H, I, and J in S1 Text. As in Fig 4A, we use coupling and MJ
entries expressed in the consensus gauge, since the consensus sequence corresponds, or is close to the best folding sequence, used as a reference
sequence in our theoretical calculation of the pressure (S1 Text, Section III). Changing the gauge e.g. to the least-probable gauge affects the amplitudes of
the pressures λij, but does not qualitatively alter the results.D. Structure SF, the closest competitor structure to SB. Note that the four missed contacts (among
the top 28 FAPC scores with the ACEmethod) are carried by the center of the cube (site i = 4 on SB and SF), see fold SB in Fig 2A and its contact map in Fig
4B. Two of the four false positives are contacts on SF, and are thus in the CC class.

doi:10.1371/journal.pcbi.1004889.g004
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Fig 4A), and negative, or zero for the pairs not in contact (blue symbols). In the following, we
characterize each pair i, j with its slope, computed through

lij ¼
�P

abJijða; bÞEða; bÞP
abEða; bÞ2

: ð2Þ

We interpret λij as a measure of the coevolutionary pressure on the sites i, j, due to the
design of the native structure. This interpretation is supported by the following theoretical and
approximate expression for the pressure (see Methods and derivation in S1 Text, Section III):

lTHij � cij � �cij

log 1þ 1
b NS e�D

h i : ð3Þ

The numerator, cij � �cij, measures the difference between the native contact map, cij (= 1 if i, j

are in contact and 0 otherwise), and the average contact map, �cij, of the structures in competi-

tion with the native fold, each weighted by e−Δ, where Δ is the typical gap between the energy of
sequences folded into the native structure and their energies in the competing structures
(Methods) [31]. The native and average contact maps for structure SB are shown, respectively,
in the lower and upper triangles of Fig 4B. The denominator in Eq [3] depends on the inverse
sampling temperature, β, in the Monte Carlo procedure used to generate the MSA, the effective
number, NS, of competing structures, and the typical energy gap, Δ (Methods and S1 Text, Sec-
tion III.D).

Fig 4C shows the pressures, λij, computed from the inferred couplings, Eq [2], vs. the con-
tact-map difference, dcij � cij � �cij, across all pairs of sites i, j for the native fold SB. We observe

a monotonic dependence of the pressure λij with δcij; in particular, λij has the same sign as δcij,
except for a few, small (in absolute value) λij and δcij. Note that pairs i, j such that j − i is even
valued can never be in contact in any structure on a cubic lattice: cij ¼ �cij ¼ 0, as can be seen in

the checkerboard pattern of �cij in Fig 4B. The associated pressures, λij, are weak and indicate

the level of noise in the inference (magenta symbols in Fig 4C).
A detailed classification of the pairs of sites is shown in Fig 4C, based on the identification

of the closest competitor to SB, structure SF, represented in Fig 4D. The closest competitor is
defined as the structure that is closest in energy (smallest gap) to the native structure, see Meth-
ods, Eq [11]. Informally speaking, SF is the ‘most’ dangerous structure as sequences folding in
SB could fold in SF upon a few undesirable mutations. As the native fold is not in competition
with a single structure, the notion of closest competitor is somewhat reductive, but is helpful to
understand the mechanisms controlling covariation and the meaning of the inferred couplings.
In particular, comparison of the contact maps of SB and SF allows us to define four classes of
contacts, and to illustrate concretely the mechanisms for positive and negative designs [24, 32].

Pairs with large and positive δcij are in contact in the native fold, but not in the competitor
structures. They are under strong covariation pressure to stabilize the native fold and not the
competitors (positive design). We see in Fig 4C that the pairs of sites in contact in SB and not
in SF (class Unique Native, UN) are associated with large couplings. On the contrary, pairs
with small and positive δcij are in contact both in the native and competitor folds, and are sub-
ject to weak pressures. As a result, the corresponding couplings are weak, and contact predic-
tion is difficult. Pairs of sites in contact in both SB and its closest competitor, SF, form the
Shared Native (SN) class in Fig 4C. For the structures we have studied, those contacts are gen-
erally established between the site at the center of the cube and its four neighbors (see fold SB in
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Fig 2A and its contact map in Fig 4B) as these central contacts are typically shared with closest
competitor folds (Fig 4D and Fig K in S1 Text).

Sites i, j not in contact in the native fold correspond to negative δcij. Most of those pairs are
not in contact in the competitor structures either and correspond to weak pressures and weak
inferred couplings. This phenomenon is illustrated by the Non-Native (NN) class, which gath-
ers the pairs of sites that are neither in contact in SB more in SF, see Fig 4C. However, some
pairs do correspond to contacts in the competitor folds (large and negative δcij), and are subject
to strong and negative pressures. The anti-correlation between the couplings Jij(a, b) and the
Miyazawa-Jernigan parameters −E(a, b) is the result of negative design: the native structure is
favored by rendering contacts that appear only in competitor folds unfavorable [32]. Negative
design is clearly visible for the pairs of sites in the Close Competitor (CC) class in Fig 4C,
which are in contact in SF but not in the native fold, SB.

As the scores used for contact predictions are based on the squared couplings (Methods),
pairs of sites in the CC class, associated with large couplings (anti-correlated with the Miya-
zawa-Jernigan energy parameters), may have larger scores than true contacts in the SN class,
associated with weaker couplings (positively correlated with MJ). To avoid those false positives,
we rank pairs of sites according to their projection on the MJ matrix, defined in Eq [2] (Meth-
ods). This ranking method, referred to as ‘projection’, improves contact prediction, see PPV in
magenta in Fig 2A. It allows us to detect, in particular, the contacts of the central site, which
are often shared among the native and competing structures (see contact maps in Fig 4B for
structure SB and its competitors), and which correspond to weak, positive pressures. We find,
for the four structures studied, that 27 out of the 28 largest projections do correspond to real
contacts (Table 2).

The evolutionary pressures, averaged over the pairs of sites in the UN, SN and CC classes,
give λUN � 2.8, λSN � 1.4, λCC � −0.9. Those results are comparable to, but smaller than, the

average theoretical predictions from Eq [3]: lTH
UN ¼ 4:5, lTHSN ¼ 2:7 and lTHCC ¼ �1:8. Larger val-

ues, closer to the theoretical estimates are obtained when the regularization parameter, penaliz-
ing large couplings, is made smaller (Methods). To further test the theoretical prediction of the
pressure, Eq [3], we have varied two features of the Monte Carlo procedure used to generate
the MSA: (1) the pool of possible competing structures appearing in the denominator of the
folding probability, Pnat, in Eq [5], and (2) the inverse sampling temperature β (Methods). We
observe that the pressures λij increase when the pool of competing structures is restricted to
structures similar to the native one, or when β is increased, as sequences are constrained to
have higher values for Pnat (Fig L and Table A in S1 Text).

Discussion
Lattice proteins offer a fully controlled, nontrivial benchmark to characterize the factors that
affect the success of inverse statistical approaches in predicting structure from multi sequence
alignments (MSA). The maximum entropy Potts model, inferred to reproduce the low-order
statistics of an MSA, can be successfully used for structure prediction. Potts-based predictions,
in particular with accurate sophisticated inference methods (PLM, ACE), outperform Mutual
Information approaches on lattice protein data (Fig 2A), as for real protein data. An important
finding in the present work is the approximate linear relationship between the inferred Potts
couplings, Jij(a, b), and the Miyazawa-Jernigan energetic parameters, E(a, b), across the pairs of
amino acids a, b for a given pair of sites i, j, Eq [1] and Fig 4A. The slope of this linear relation-
ship, λij, is a measure of the covariation ‘pressure’ on the pair i, j due to the structural con-
straints. The pressure depends on (i) the difference between the contact maps of the native fold
(cij) and the ones of the competing structures (�cij), see Fig 4B; (ii) the proximity (in terms of
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energy, Eq [11]) of the native fold with its competitor structures; (iii) the strength of constraints
in the design, controlled here by the inverse sampling temperature (Eq [3]). A consequence of
(i) is that the intensities of the inferred couplings, Jij(a, b), measured through the scores Fij in
Eq [10], are directly related to the local properties of the contact map on sites i, j (and not on
other sites), which explains the success of inverse approaches to disentangle direct from indi-
rect effects in amino-acid correlations. However, the relationship also involves the average con-
tact map �c, originating from the competitor folds. As �c, contrary to the native contact map c, is
not sparse, neither are the couplings J. Couplings can, in particular, take non-zero values for i, j
in contact in the competing folds (�cij close to 1), but not in the native fold (cij = 0), see Fig 4A

and 4B. Those ‘repulsive’ couplings give rise to negative pressures λij, and prevent the sequence
from forming contacts that would result in the wrong fold, a clear illustration of negative
design [24, 32, 33]. Reciprocally, sites in contact in the native fold (cij = 1) need not be subject
to strong covariation and associated to strong couplings, if they are also in contact in the com-
peting folds (�cij close to 1). Our results clearly show that strong couplings do not necessarily

imply, nor require structural contact (in the native fold). They also explain the success and lim-
itations of contact prediction based on the magnitude of the inferred couplings (Fig 2A).

A second major result of our approach, shown in Fig 3A and 3B, is that the inferred Potts
model, when accurately inferred, here, with the ACE procedure, generates sequences that fold
with high probability in the native state and show amino-acid diversity similar to the one
observed in the original MSA. This performance is remarkable. While the energy of a LP
sequence in a given structure is a sum of pairwise contributions only, the effective Hamiltonian
of the sequences constrained to fold with high probability in this structure (and not in the com-
peting folds) includes high-order multi-body interactions (originating from the competing
folds) between amino acids, as can be expected for real proteins. Furthermore, independent-
site models are unable to produce sequences with the correct fold (Fig 3A). Our result corrobo-
rates the works of Ranganathan and collaborators [13, 14], who experimentally showed that
sequences built according to a reshuffling of the MSA of the small WW domain respecting site
conservation and (approximately) pairwise correlations folded correctly with a good (30%)
probability. The generative character of the Potts model, combined with the linear relationship
between couplings and energetics parameters, agrees with previous studies showing that
designed and real protein-like sequences are generated by Gibbs measure with Hamiltonian
reflecting real protein energetics [20, 32]. We stress that couplings have to be inferred with
great care, going beyond the mean-field DCA approximation, in order for the Potts model to
be generative (Fig 3A).

The analysis of real protein data could benefit from our analysis in several ways. First, the
understanding of the relationship between the couplings and the contact map obtained here
indicates that the pressures λij (Eq [2]) are excellent estimators of contacts (Fig 2A), and may

outperform the usual scores, FðAPCÞ
ij (Eq [10]). The use of λij allows one to both keep track of the

sign of the couplings (and avoid false positives corresponding to pressures originating from
negative design, see above) and increase signal-to-noise ratio, by removing noise in the inferred
couplings not aligned along the Miyazawa-Jernigan energy matrix. In real proteins, the phy-
sico-chemical properties of amino acids suggest the existence of different classes of contacts,
whose energetics could be inferred from large-scale analysis of databases and used to define
class templates E. Projections of the inferred Potts couplings on those templates could in turn
be used for contact predictions. Secondly, the detailed analysis of lattice proteins done here has
allowed us to better understand how the existence of positive and negative design influences
the covariation statistics of the MSA, and, hence, the properties of the inferred couplings. The
relevance of negative design was already put forward in literature, e.g. in the study of the TIM-
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barrel fold protein [32]. A promising path to further investigate negative design could be the
study of coexistence between natively folded and misfolded proteins [34]. The direct estimate
of �c in that case would be straightforward, as it would essentially correspond to the contact
map of the misfolded competing structure. More generally �c in real proteins can be determined
from the ensemble of misfolds obtained either from all-atom folding simulations [2] or from
threading approaches. This is the subject of future work. Last of all, our work suggests a practi-
cal way to quantify the designability of a protein family, i.e. to measure the number of
sequences ‘belonging’ to the family. Current approaches rely on the computation of the maxi-
mal eigenvalue of the native contact matrix c [25], though our study suggests that the matrix �c,
gathering information about the competing protein folds, is also a determinant of the designa-
bility. Given the generative character of the inferred Potts model, a direct and more accurate
measure of the designability is provided by its entropy computed with the ACE procedure, see
Methods and Table 1. This approach can be applied to real protein families, an example is pro-
vided in [35].

In future studies, the total control we have over lattice proteins will allow us to study the
importance of covariation and the success of inverse approaches in ‘Gedanken’ experiments
related to many important issues of interest for real proteins, and going beyond the structural
aspects studied here. Among those let us cite the detection of homology. Current protein data-
bases, such as PFAM, classify query sequences into families based on Hidden Markov Model
profiles, an extension of independent-site models capable of taking into account deletions and
insertions [36]. It is an open problem to understand whether coupling-based models, exploit-
ing covariation, could, contrary to HMM, recognize sequences with low homology in a reliable
and computationally tractable way. Another very important issue is the estimation of fitness
landscapes, or fitness changes in responses to one or more mutations [37, 38]. Covariation-
based models have been recently introduced to predict escape paths of pathogens (virus or bac-
teria) from drugs or vaccines in this context [18]. Lattice proteins offer a unique benchmark to
understand deeply and quantitatively and, ultimately, improve those approaches.

Methods

Lattice-protein model
We consider model proteins, whose L = 27 amino acids occupy the sites of a 3 × 3 × 3 cubic lat-
tice [19–21]. Four of the 103,406 possible configurations of the backbone (excluding symme-
tries), hereafter called folds or structures, are shown in Fig 2A. Unless otherwise said, we restrict
ourselves to a representative subset ofN ¼ 10; 000 folds [39]. Two amino acids are said to be
in contact if they are nearest neighbors on the lattice (but not on the backbone). The contact

map c(S) of structure S is its 27 × 27 adjacency matrix: cðSÞij ¼ 1 if i, j are in contact, 0 otherwise.

Amino acids in contact interact through the Miyazawa-Jernigan (MJ) 20 × 20 energy matrix E
[22]. The energy of a sequence A = (a1, . . ., a27) of amino acids folded into structure S is

EðAjSÞ ¼
X
i<j

cðSÞij Eðai; ajÞ : ð4Þ

The Boltzmann probability that sequence A folds into structure S is given by (for unit tempera-
ture):

PnatðSjAÞ ¼ e�EðA;SÞ

XN
S0¼1

e�EðA;S0Þ
: ð5Þ
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Good folders are sequencesA with large gaps between EðAjSÞ and the energies EðAjS0Þ with
the other folds [20].

Sampling of sequence space
We generate a multi-sequence alignment (MSA) for the native fold, say, S, through Monte
Carlo (MC) simulations with the Metropolis rule [32]. The simulation starts from a sequence
A, and attempts to mutate randomly one amino acid at a time, say, ai ! a0i; Let A

0 denote the
new sequence. If Pnat(S|A0)> Pnat(S|A) the mutation is accepted; otherwise it is accepted with
probability [Pnat(S|A0) / Pnat(S|A)]

β(<1). Parameter β plays the role of an inverse algorithmic
temperature that sets the stringency of sequence selection in the sampling MC procedure. The
corresponding effective Hamiltonian,

HLP½AjS� ¼ � logPnatðSjAÞ ; ð6Þ
includes not only the native-structure energy EðA; SÞ in Eq [4], with pairwise interactions
between the amino acids ai, but also contributions coming from all the other folds S0 in Eq [5],
with multi-body interactions at any orders� 2.

In practice we choose β = 103, which ensures that sequences fold in the native structure S
with probability 0.995 or larger and that thermalization is fast (Fig A in S1 Text). A conserva-
tive estimate of the equilibration time of the MC dynamics (defined as the time needed for Pnat
to relax to its equilibrium value independently of the initial sequence condition) is< 1,000 MC
steps. The MSA is then made of the sequences Aτ, with τ = 1, . . .,M = 50,000, generated at reg-
ular intervals of 1,000 steps. Each sequence Aτ is therefore drawn according to the equilibrium
measure equal to Pnat(S|A

τ)β, up to a multiplicative normalisation factor.
To mimic the biases in real protein MSAs, e.g. resulting from phylogeny, we may add to the

effective Hamiltonian a penalty term proportional to the number of mutations with respect to
a wild-type sequence A(wt),

HLP
biased½AjS; b� ¼ � logPnatðSjAÞ � b

X
i

d
ai ;a

ðwtÞ
i

; ð7Þ

and repeat the MC sampling procedure above, withM = 100,000. High values of the bias
strength b produce MSAs with high sequence identity, see Fig 2B.

Inference of Potts model from sequence data
We compute the one- and two-point amino-acid empirical frequencies computed from the
sequences Aτ in the MSA of a given native structure,

fiðaÞ ¼
1

Meff

XM
t¼1

otda;ati ; fijða; bÞ ¼
1

Meff

XM
t¼1

otda;ati db;atj
; ð8Þ

where δ denotes the Kronecker function. The weight ωτ sequence Aτ is defined as the inverse of
the number of sequences in the MSA whose sequence identities with Aτ are larger than 27 × (1

− w), where w is an arbitrary cut-off. The effective number of sequences isMeff ¼
PM

t¼1 o
t.

Throughout this work no reweighting was imposed (w = 0 and ωτ = 1), except for the biased
sampling case, where some results were obtained with cut-off w = 0.2, see Fig 2B.

We consider the maximum entropy (least constrained [8]) distribution over the sequences,
that reproduces the one- and two-point empirical frequencies. This maximum entropy distri-
bution is the Gibbs measure of a Potts model, with q = 20-state variables, whose energy is given
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by

HPotts½A;h;J� ¼ �
X

i

hiðaiÞ �
X
i<j

Jijðai; ajÞ ; ð9Þ

where the sets of L × q fields, h = {hi(a)}, and of L(L − 1)/2 × q2 couplings, J = {Jij(a, b)}, are cho-
sen so that the frequencies computed from the Potts model distribution reproduce those of the
data, Eq [8]. Note that, as the distribution depends on the energies of the sequence configura-
tions through their relative differences the Potts parameters are defined up to an arbitrary
gauge (S1 Text, Section II).

We resort to three methods to solve this hard computational problem. Within the mean-
field Direct Coupling Approximation (DCA) [6], J is approximated as minus the pseudo-
inverse of the connected correlation matrix c, with entries cij(a, b) = fij(a, b) − fi(a)fj(b). Data
are regularized through the introduction of a large pseudocount (S1 Text, Section II.B). The
Pseudo-Likelihood Method (PLM) is a more sophisticated approximation to compute the
direct couplings J, exploiting the full MSA (and not only the frequencies). A large regulariza-
tion L2-penalty, γ = 0.01, was considered during the inference [27] (S1 Text, Section II.C). The
Adaptive Cluster Expansion (ACE) is an accurate but slower procedure, which recursively
builds the most relevant clusters of strongly interacting sites [28–30]. Couplings were inferred
in the least-probable gauge, in which each interaction parameters corresponding to the least
frequent amino acids are set to zero, with a weak L2–penalty γ = 5/M;M is here the number of
the sequences in the MSA. See S1 Text, Section II.D for more information about the implemen-
tation of the methods, and the ability of the Potts-ACE distribution to reproduce high-order
statistics of the MSA. In addition to h, J ACE gives access to the entropy of the inferred Potts
model, which is an estimate of the designability of the native fold.

For the simpler Independent-site Model (IM), the energyHIM is a sum of field contributions
only (J = 0 in Eq [9]), see S1 Text, Section II.A for details.

Contact prediction
Computation of the Potts couplings J with DCA, PLM or ACE allows us to define the scores
[6] (with the Averaged Product Correction [40])

FðAPCÞ
ij ¼ Fij �

Fi:Fj:

F::

; where Fij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a;b

Jijða; bÞ2
s

; ð10Þ

and Fi. = ∑l Fil, F.. = ∑i Fi.. The values of the scores depend on the choice of the gauge. For the
PLM and DCA procedures it is customary to choose the so-called zero-sum gauge, in which
the sums of the coupling matrix elements Jij(a, b) over each column or row vanish. This gauge
is the one minimizing the Frobenius norm. For the ACE procedure, we have used the couplings
inferred in the least-probable gauge, see paragraph above and S1 Text, Section II.D, to compute
both the Frobenius (leading to black dots in Fig 2A) and the projection (magenta symbols)
scores; we have verified that contact predictions do not change for the four structures when
scores are computed from couplings expressed in the zero-sum gauge. Within the mutual
information approach, scores are simply given byMIij = ∑a, b fij(a, b)log [fij(a, b)/(fi(a)fj(b))]
[26] (and are then subject to the above APC correction), and do not distinguish direct from
indirect correlations. Scores are then ranked in decreasing order, and used to predict contacts.
The positive predictive value at rank k is the fraction of the top k scores whose corresponding
pairs of sites (i, j) are in contact.
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Competitors, gap and average contact map
We define the gap Δ(S|Snat) between structure S and the native fold Snat through

e�DðSjSnat Þ ¼ he�½EðAjSÞ�EðAjSnat Þ�iA ; ð11Þ

where the average is taken over sequences A in a MSA of Snat. The distributions of gaps for Snat
= SA, SB, SC, SD are shown in Fig G in S1 Text. The closest competitor to Snat is defined as the
structure Sminimizing Δ(S|Snat), see S1 Text, Section III. We approximate the number NS of
competitor folds and their typical gap Δ with the native structure Snat through

NSe
�D �

X
Sð6¼Snat Þ

e�DðSjSnat Þ. The average contact map of those competitors is defined as

c� ij �
1

NS e�D

X
Sð6¼Snat Þ

e�DðSjSnat Þ cðSÞij .
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