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Abstract. The effects of spatially organised data on
autoassociative neural networks are

investigated in the optimal storage case. An analytical study is possible for weak spatial cor-

relations. It predicts an increasing of the storage capacity ac and ferromagnetic means for the

couplings. Numerical simulations confirm these results for large spatial correlations.

1. Introduction.

Since it was introduced, the concept of attractor neural network has gained much attention
from the physics community [I]. Numerical and theoretical studies have already captured many
interesting features (e.g. working as an associative memory, robustness against degradation,
fast parallel processing, learning from examples, [2]). For mainly technical reasons, these
results were obtained in the absence of any spatial structure of both the neural networks and
the inputs. However most real life applications deal with spatially organised data.

In this paper, we focus on the effects of such a spatial organisation of the input patterns on

the behaviour of an autoassociative neural network. Such a network exists in a d- dimensional
physical space and realistic patterns exhibit spatial correlations.

The aim is twofold. First, it is of interest to see how the results derived for non spatially
structured networks are modified in this new framework. We shall concentrate upon the opti-

mal storage capacity, using the statistical mechanics tools developed by Gardner-Derrida [3].
Secondly, we shall investigate how the network organises itself (from the weights distribution
standpoint) in the presence of spatially correlated patterns. It has already been shown for
hetero-associative mapping [4] and information processing [5], [6] that the resulting couplings

organisation is non trivial. We shall see here that the latter is deeply different from the usual
uncorrelated case and influences the retrieval properties of the network near the saturation.
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2. Description of the model.

The network consists of N neurons, each connected to every other, and taking a value +I.

Neuron S; is connected to neuron Sj via a real valued synapse J;j (J;;
=
0, Vi). The dynamics

of the system follows a sequential updating rule of the form

s; (i + i) m
sign l~ J;j sj

i)j
(i)

>(x;)

The training set consists of P
=

ON binary patterns (ff ) belonging to a d-dimensional space.
Zerc-mean activity and spatial correlation are imposed by the constraints

~~' ~ ~~~ ~~~' ~~"'~i (2)

where the overbars represent an average over the probability distribution of the pattern bits.

C is a symmetric and positive matrix with a I on the diagonal, dependent on the distance

ii ii (the subscripts I and j may be seen as d-dimensional vectors but all the simulations

will be performed here for d
=
I ). Binary patterns obviously can not be entirely defined by

the two first moments of their distribution. We shall discuss this point in the next part.
The stability of the pattern ~t at site I is given by

&S'- ~S'
~ j,,~S' (3)

I i 'J I

>(Xi)

The training set is said to be stored if all the patterns are fixed points of the dynamics (I), I-e.
if all the stabilities are positive. However, an associative memory network requires that large
attraction basins surround these stored patterns. It has been shown (at least for uncorrelated
data) that their size increases with the value of the parameter ~ =

mini,~(Af) [8].
We further define a quantity which will appear in the following work. It is the N I

dimensional matrix
d;j

=
C;j C;icji (I, j

=
2. N) (4)

One can easily verify that the inverse matrix is

ld~~) =
(C~~);. (I, j

=
2. N) (5)

;j J

We define the normalised trace of any matrix A by TrA
=
) £; A;;.

3. Analytical study of the network.

In this part, we try to answer the following question what is the maximal size a of the training
set the above network is able to store ? Given a training set (ff), for each possible synaptic
matrix (J;j ), we define an error function

p N

E (lJ;>I, lftl)
=

~ ~ (~ At) (6)

where K is a positive parameter. Using the framework created by Gardner-Derrida [3], the

partition function of the network is

z(lffl)
=

/ fldJ;> fld ~ J(
lexP

(-SE (lJ;> Ii lffl)) (7)
I#>

>(#;)
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where fl plays the role of an inverse temperature. In the following, we shall send fl
- cc, so

that the integration in (7) takes into account the synaptic weights storing all the patterns with
stabilities larger than ~. The choice of the cost function (6) is natural in the zero temperature
limit only below the critical capacity. Training the network with other energies E (including
error-size, and not only error-number, dependences) may be more efficient at relatively small
fl and high storage levels to improve the retrieval performences of the network [9].
Using the replica method, we compute lnZ, which is assumed to be self-averaging in the

limit of large network size. Since the domain of suitable couplings remains connected even

with correlated patterns we make the replica symmetric Ansatz. This Ansatz has also been

shown to provide a stable saddle-point for heterc-associative storage [4].

3.I THE REPLICA CALCULATION OF THE PARTITION FUNCTION. The network partition
function Z defined in (7) is equal to the product of the N single site partition functions Z;
wherei=I. N.

Z;
=

/ fl dJ;j d ~j J;(
lexp -flf9

~ if ~j J,jf( (8)
>(Xi)

j(#I)
P"~ >(xi)

~

and in the large N limit [3],

~ W= ~ ~j@= @" rim rim
~~~~ (9)

N N

~i
N '~~°°"~° ~~

We introduce n replicas (J(),
a =

I. n and average over the patterns distribution (2)

@ fl d ja fl j £ ja )2 fl fi
l~

I
j,a lj a j lj p,a~ ~«~)

X exp (-fl £ 9(~ t( + £
~

i(t( + £~ I~) (10)
P>~ P>

where

I~
=
In exp

~j ii J( f(f( I= ~j I( ~j Jij Cij + ~ i(I$ ~j Jij J)kdjk
a,f a J ab jk

~j I]I$I[ ~j Jij J)k J/i c)(( + ii

abc jkl

The tensor appearing in the third term of the r-h-s- equals

C)~~ "
~l~j~k~l Cljckl Clkcjl Cllcjk + 2 Cljclkcll (~~)

We may assume, as for the hetero-associative storage [4], that the patterns satisfy some

clustering conditions, I.e. that the k-points connected correlation function of their probability
distribution always decrease exponentially with the distance separating the two closest points

among the k ones.

For any pattern ~t, the products f(f) are in average equal to Co The stability of the

pattern /J defined by formula (3) will be increased if the synapses between neighbouring neurons

are strengthened with the correct signs such that Jijcij > 0, Vj. It is thus plausible that
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Jij
=
O(I) when the neuron j is close to the neuron I, while it is of order fi in the usual

uncorrelated case. As a consequence, the truncation of the I~'s at the quadratic term in t is

not valid, even in the large N limit (as it used to be in [4]). An exact calculation of W for

any spatially correlated distribution of the input patterns does not seem possible. It would
both require the knowledge of all the moments of the statistical distribution of the patterns
and the computation of non Gaussian integrals in I.
In the following, we resort to an expansion of the partition function around the usual un-

correlated case (C;j ci d;j), keeping only the first two terms of the expansion (11). To be more

precise, when C;j
=

x"~i' and x < I, this Gaussian approximation can be shown to provide
the critical capacity up to x~.

3.2 THE RESULTS FOR WEAK CORRELATIONS. For C;j m b,j, the entropy of the synaptic
weights is equal to

) In Z m
'~l' )q# + s@ + mih + fi )Tr ~j

U + s-q

)~ (ln(2fiI + (2§ #)b)j
+)fli~ £)~_~ Cji[(2fiI + (2§ #)d)~~]jkcki + o

f Dz In (H
(@)j (13)

, -q

where
~~-z /2 +m

~~ @ '

~~~~ ~~ ~~~~

The three order parameters m, q, s are given by

'~

~~~
~ ~~~ ~

N

~
,~ ~ik < J j > ~ j

J,k=2
~ lk >

N

~ j~~ ~ ~ ~ ~lJ ~lk > (15)

where < > denotes the thermal average over the couplings J;j. Variables fli, #, § are Lagrange
parameters enforcing constraints (15). fi ensures the normalisation of each line of the synaptic
matrix to I. These seven parameters are found by solving the saddle-point equations of (13).
We restrict our analysis to the critical line a~(~) where s q -

0 and the four Lagrange
multipliers diverge. We then obtain two coupled equations linking the common critical value

s~ of q, s to the critical parameter m~

N

~mc "
vc~jcji[(d+v~I)-~]~~C~i

j,k=2

Tr
~

~2 v2
(

~_ j(/~ ~~ ~~-2j ~
(/~ + ~ i)2 c

ii c jk kl

~ ik=2

/~
'

N
(16)

~~
i~

+ Vcl '~~~~~ ~ ~~~ ~~ ~ ii [(~ + Vci) ~jjkckl
I,k=2
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where /~ e~~
(17)Vc(~, mC, ~C) ~'~ ~~ ~~~ ~ ~ 2~ H

@)
Once m~ and s~ have been computed, the critical capacity a~(K) is given by

~~
H j-j ~~ b

(vcll~~~~~

Let us now apply these results to the one-dimensional case with exponentially decreasing
correlations Cij

=
x'~~i', where x < I. The optimal capacity is reached when K =

0 and from

equations (16 18), we obtain

ac(x)
=
2 +

~ x~ + O(x~) (19)
ir

Let us evaluate indeed the value of the first neglected term (that involving C(~), see (12)). As

expected, the J's do not vanish for large N and are order x or less when x is small. The cubic

term in I therefore scales as at least x~. This scaling holds for the higher terms in the expansion
(11) while the quadratic term in I is of order x~. We conclude that the results derived when

forgetting all but the first two terms are valid up to order ~2.

4. Interpretation and simulations.

4,I THE STORAGE CAPACITY AND THE QUANTITY OF INFORMATION. The results derived

at the end of the previous part show that the critical capacity of attractor neural networks

increases with the presence of spatial correlations in the training patterns. For feed-forward
networks and hetero-associative mapping, the storage capacity remained equal to 2, whatever

Gil 141.
The patterns presenting the spatial correlations C;j

=
x"~J may be generated as equilibrium

configurations of a one
dimensional Ising model at temperature T such that x =

tanh(I IT).
Thus the quantity of information I(x) in a pattern is simply the entropy of this Ising lattice

I(x)
=
N (- ~) ln

~
~) ~ ~) ln

~ ( ~)j (20)
2 2 2

When x < I, the total quantity of information I(x) stored in the training set is

1(x)
=
a~(x)N.I(x)

=
N~ 21n 2 +

~~~ ~
l x~ + O(x~) (21)

7r

Though the capacity of autc-associative networks increases when they are presented with spa-
tially correlated data, we see that (as far as we can trust the small x result) the quantity of

information the neural network actually stores decreases. This situation already occurred with

biased patterns [3].
Some numerical simulations were carried out to check the increase of the storage capacity

with the amount of spatial correlations inside the training set. The patterns are generated
through a Monte Carlo simulation of the Ising model and the Minover algorithm finds the

couplings achieving the largest stability K [4], [7]. The sizes of the network were equal to N
=

50, 100 and 200. The differences between these three simulations were lower than the error
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Fig-I- the optimal stability ~ for different sizes a obtained from the Minover algorithm (the full

curve is a polynomial fit). The patterns are drawn from a one dimensional Ising model (z
=

0.7 see

text) and the number of neurons is N
=

200. The dotted line is the theoretical curve for the usual

uncorrelated case (z
=
0). The dash-dotted curve displays the solution of the saddle-point equations

valid for low z.

bars (due to the statistical fluctuations and the finite running time of the Minover). We plot
here the results obtained for N

=
200. Figure I compares the results obtained for x =

0.7

to the classical uncorrelated case (x
=
0) [3] and to the solution provided by the saddle-point

equations. We can notice that there is a good agreement between the simulations and the
small x theory for small a. However, when x - I, the critical capacity computed from the
saddle-points equations scales as

"~~~'~ ~~ ~

fi~~~ 2(1~ )~
~~~~

which is clearly unrealistic since the quantity of information I(x) would diverge.

4.2 THE FERROMAGNETIC STRUCTURE OF THE SYNAPTIC WEIGHTS. In order to shed some

light on the way the network increases its storage capacity, we compute the first moments of

the distribution of its weights (which is gaussian for small x) on the critical line o~(~)

N

< Jo > =
Ac ~ Cik ((£l + vcl)~~j

~.

Ac
=

) (23)
k=2

~
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~ ~~J'~~~ ~ ~ ~~J ~'~ ~~~ ~

(© ~I)2~
'

~C
f/j~)~i ~)~

~~~)
jk c @

In the usual uncorrelated case (C;j
=
d;j), all the synapses are of order §, with zero mean.

When the input data become spatially correlated, the weights J;j are equal to the sum of two

contributions
*

a ferromagnetic term J;( : the mean values of the synapses linking two close cells (in the

sense that ii j( is not much larger that the correlation length of the input data) are finite
and positive. They decrease quickly with the distance separating the units but do not vanish
when N goes to infinity.

* a spin-glass term J)j~' equation (24) shows that the couplings fluctuate around these

mean values from sample to sample. Furthermore, the typical deviations are of order ), like

with uncorrelated patterns.
The origin of the first term J( has already been explained in part 3.I. The parameter mc

may be interpreted as the typical value of the ferromagnetic part of the stabilities in the limit
of small x.

For more general correlation matrices (I.e. not close to the identity), the replica calculations
of part 3.I are no longer valid. We can nevertheless predict the qualitative behaviour of
the network. With respect to the usual uncorrelated case, the weights fluctuate around a

ferromagnetic background J(. The latter is self-averaging it depends only on the statistical
distribution C;j of the patterns, and not on the particular training set. This positive synaptic

"bump" provides all the units of the network with an additional field whose mean is equal to

N

h+
=

~j CijJ( (25)
j=2

for each pattern. As a result, the effective field due to the tuning of the weights (fluctuating
parts) is hs

g, = ~ h+ rather than ~. Near the saturation (when
~ =

0 for instance), hs,g, is
negative, while the total field hs_g_ + h+ is still positive. This explains how the critical capacity
of the present model may exceed 2 [3], as found in part 3.2.

The results of simulations done with C;j
=
(0.7)'~~~' and a =

I are displayed in figure 2.

The mean values of the weights J(
=
§ and the typical fluctuations J(~

=
J;j~ are

plotted for the distances k
=
1,..., 5 and the different sizes N

=
50,100 and 200 (the numbers

of samples the data are averaged over range from 10 to 100). The standard deviations seem

to vanish like fi as it is predicted in formula (24). Moreover they are roughly independent

on the distance ii j( separating the units. Other simulations performed from o =
0.5 to

a =
2 show that the coefficient B does not vary a lot when the size of the training set changes

(0.7 < B < 0.9 typically). The mean couplings J+ depend very weakly on the number of

neurons N (the variations are taken into account by the sizes of the squares). However, J(
decreases quickly with ii j(. Figure 3a shows that this decreasing is indeed exponential. It

may be well fitted by the following law

J(
=
Jt v(x, ~Y)"->' (26)

Figure 3b displays the values of y(x,a
=
0.5) obtained from figure 3a and compares them

to the theoretical expectations. Equation (23) also predicts an
exponential decreasing of the

synaptic weights. We see that the agreement is quite good although the theory is exact up

to order x~ only. In addition to the statistical fluctuations, the error bars appearing in figure
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Fig.2. the mean couplings J(
=

( (small squares) and the fluctuations J(~
=

fi
for different sizes N

=
50,100 and 200 and a =

I. The distances ii j( range from I to 5. The

scaling of the deviations is compatible with a
fi law. The mean weights seem to decrease

exponentially with the distance separating two neurons (see figure 3). The size of the squares
gives an upper bound of the statistical fluctuations of the J+ (from sample to sample and
inside each sample, from perceptron to perceptron) and of their variations for the different N.

3b include the uncertainty due the finite running time of the Minover. Using the notations of

[7] and [4], one must take into account the performance guarantee factor AT. It compares the

largest stability ~m achievable for one given sample (I.e. after an infinite time) to ~T obtained

by the algorithm at time T ~T < ~m < AT ~T. All the simulations were performed with

1.02 < AT < 1.06.
Figure 4 displays the behaviour of J;( for a given x =

0.7 and different sizes of the training
set. There is a good qualitative agreement with the Gaussian theory. For low a, the latter

predicts
J;( ci

@ C;j (a
-
0) (27)

This may be easily understood, since the Hebb rule becomes optimal (for the stability cri-

terium) for finite P. Thus, at low storage, the couplings reflect the inner structure of the input
patterns. Near the saturation, the theoretical result is

Jt
Ci -~ (C~~);> (a

- C1c) (28)

where ~ is a positive constant derived from the saddle-point equations. For C,j
=
xii-ii,
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Fig.3. (a) the mean values of the couplings J( as a function of the distance ii j( (semi-log plot).
The networks includes N

= 200 neurons and the data are averaged over 100 samples. The s12e of

the training set is
a =

0.5 and the different correlation strengths are from top to down
: z =0.8, 0.7,

0.6, 0.4 and 0.2. The numerical data provided by the Minover algorithm seem to obey an exponential
law proportional to y"~?' (see equation (26)). (b) the dotted line shows y(z) for a =

0.5 as obtained
from the weak correlation theory. The points are deduced flom the figure 3a. The error bars take into

account the statistical fluctuations and the uncertainty due to the stop of the Minover algorithm after

a finite time (see part 4.2).
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simulation results (the size of the symbols represent the largest statistical standard deviation).
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the only subsisting ferromagnetic couplings link the nearest neighbours [4]. This prediction
(I.e. the mean weights are given by the inverse matrix at the critical capacity) seenw to be
corroborated by the simulations.

4.3 THE DYNAMICAL STABILITY OF THE PATTERNS. The question we consider now is the
following does the ferromagnetic structure of the weights influence the retrieval abilities of the
network ? Let us start from a stored pattern ~t. We then choose a site at random (numbered
I) and flip the corresponding spin. In the usual uncorrelated case, the stabilities of the other
spins are changed by O(h). In the large N limit, this single flip cannot affect the other units

and the training pattern is perfectly retrieved through the dynamical evolution of the network
(the notion of attraction basins is classically defined from the reversal of a finite fraction of the
total number of neurons N [8]).
When the couplings have ferromagnetic means, the situation is more complicated. The stored

pattern ~t exhibit spatial correlations whose typical length is L with C;j
=
exp(-(I j (IL)

(e,g. L ci 2.8 for x =
0.7 in the previous simulations). It may be roughly described as the

juxtaposition of domains of same sign spins and the lengths of which are around L. Let us

suppose now that the site + I (or I) belongs to the same domain as I. After the flip, its
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stability is decreased by
dAf+1 =

-2Ji,1+iffff+1
=
-2Ji,1+1 (29)

which becomes equal to -2J£ in the large N limit. As soon as a is large enough (I.e. ~ < 2J£),
the neighbours are in turn flipped and the initial perturbation propagates. However, when it
reaches the edge of the domain, the stability of the first neuron m of the opposite spins block
is changed by

bA$
=
-2Jm-1,m($-1($

=
+2Jm-1,m (30)

which is now positive. This neuron is thus stable. We see that the the initial spin flip cause

the reversal of the whole domain this unit belonged to. We can conclude that the fixed point
of the dynamics differs from the pattern ~t in a finite number of bits (roughly L). There is no

perfect retrieval but for large networks, the overlap between the two patterns goes to I.
The above reasoning implicitely takes only into account the nearest neighbours interactions.

It is justified by the sharp decreasing of the J+ with the distance separating the units (see
Fig.2). This discussion also pointed out the main difference between the spins belonging to

centers of the domains (I.e. having the same sign as their neighbours) and the spins located at
the edgq of the blocks. The " center" units are, roughly speaking, stabilised by the J+ coup1blgs
while the field incoming onto the "edge" spins due to the ferromagnetic weights vanishes. The
latter can only be stored in their right directions (up or down) by the tuning of the J~.E.
couplings. Since the number of such "edge" spins is a fraction of N (as soon as L > 0), the

storage capacity increases.

5. Sununary and discussion.

In this paper, we have focused on the storage properties of autc-associative memories when they
are presented with spatially correlated patterns. We have computed the free energy for weak
correlations. It already predicts two mabl differences with respect to the classical uncorrelated

case.

First, the storage capacity increases but the total quantity of information seenw to decrease.
This situation is reminiscent of the biased patterns case [3] and emphasizes the necessity
of decorrelating the data to improve the efficiency of the memories. One must however be
cautious about the possible analogy with neurobiological facts (decorrelation of the visual
stimuli through the first retina layers for instance). The results we obtained here depend
strongly on the binary nature of the neurons. In particular, the ferromagnetic weights are

useful since they allow the units to strengthen the input fields in the right direction. Such

a principle would not be adequate any longer for continuous neurons (which may be more

relevant for biological modelizations), where the intensity of the fields (and not only their
signs) matters to the cells responses.
Secondly, the synaptic weights exhibit a richer structure than for uncorrelated patterns.

In addition to the usual O(j~) fluctuating weights (I.e. tuned during the training), there

is a
O(I) self-averaging and ferromagnetic background. These short range couplings take

advantage of the spatial correlations of the input patterns to enhance the cells fields, without
affecting too much the retrieval performances of large networks. Some numerical simulations

were performed for exponentially decreasing correlations and one dimensional patterns. They
show a surprisingly good agreement with above analytical predictions (valid for weak spatial
correlations).
All the results we presented here were derived for continuous weights. It would be interesting

to know what happens when other prescriptions are imposed over the couplings. With binary
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weights (J;j
=
+fi)

or bounded synapses ((J;j( < §), the ferromagnetic means could not

be of order I and the nature of the optimal synaptic matrix would be different.
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