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Ion transporters in Nature exhibit a wealth of complex transport
properties such as voltage gating, activation, and mechanosensi-
tive behavior. When combined, such processes result in advanced
ionic machines achieving active ion transport, high selectivity,
or signal processing. On the artificial side, there has been much
recent progress in the design and study of transport in ionic chan-
nels, but mimicking the advanced functionalities of ion trans-
porters remains as yet out of reach. A prerequisite is the devel-
opment of ionic responses sensitive to external stimuli. In the
present work, we report a counterintuitive and highly nonlin-
ear coupling between electric and pressure-driven transport in a
conical nanopore, manifesting as a strong pressure dependence
of the ionic conductance. This result is at odds with standard
linear response theory and is akin to a mechanical transistor
functionality. We fully rationalize this behavior on the basis of
the coupled electrohydrodynamics in the conical pore by extend-
ing the Poisson–Nernst–Planck–Stokes framework. The model is
shown to capture the subtle mechanical balance occurring within
an extended spatially charged zone in the nanopore. The pro-
nounced sensitivity to mechanical forcing offers leads in tuning
ion transport by mechanical stimuli. The results presented here
provide a promising avenue for the design of tailored membrane
functionalities.
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Ionic transport in nanometric-scale channels and pores has
been an intense topic of research for two decades (1, 2), high-

lighting novel transport processes at the nanoscale (1, 2), with
applications to, e.g., physical modeling of biological channels (3,
4), energy generation (1, 5–8), and desalination (9). Coupling of
electrostatic and electrodiffusive processes at the nanoscale can
result in ionic current rectification, in analogy with classical solid-
state semiconductor diodes (1, 10–14). Diode-like behavior of
the ionic current can be harvested for applications such as sol-
vent rectification and desalination (9, 15–18), counter-gradient
ionic pumping (19), and energy harvesting (20).

However, the ability to tune the ionic conduction by an exter-
nal stimulus, exhibited in biological nanopores (21–24), remains
challenging to achieve artificially. The nanofluidic equivalent of
the transistor, pioneered by refs. 25 and 26, still poses many diffi-
culties for efficient implementation in nanofluidic circuitry. More
generally, the nonlinear response of ionic transport in nanopores
to external forcings and its relation to the nanopore geome-
try remain poorly understood. Diode-like behavior highlights a
rectified current–voltage response in asymmetric nanopores, but
the extension to driving forces other than the electric forcing
remains largely unexplored up to now. Of particular interest
is the coupling of ionic transport to mechanical forcings—e.g.,
an imposed pressure drop—beyond the linear response regime.
The ability to tune the conduction by such an external stimu-
lus would open up the possibility of designing advanced fluidic
circuitry, such as the hypothetical memristor response (27).
However, the low Reynolds number hydrodynamics governing
nanometric fluid transport are by essence time reversible and res-
olutely linear in pressure forcing, suggesting the a priori impossi-
bility of a nonlinear mechanical response. Accordingly the ionic

response to mechanical driving is usually described in terms of a
streaming current that is linear in pressure drop and verifies the
Onsager symmetry relations (1).

In this paper, we report observations of ionic transport in
conical nanocapillaries demonstrating a considerable nonlinear
sensitivity of ionic conduction to applied pressure. This results
in an ionic conductance that exhibits a nonanalytic increase or
decrease with pressure, allowing for robust and versatile tuning
of the conductance. Even more striking is the fact that this behav-
ior is observed for small imposed pressure drops, while the classi-
cal linear response is recovered at large imposed pressure drops,
at odds with the expected linear response scenario. We rational-
ize these observations on the basis of a theoretical framework
based on the coupled electromechanical dynamics in the coni-
cal nanopore. It demonstrates the role played by the pressure-
induced modifications of the spatially charged zone (SCZ) that
forms in the interior of the nanopore and is at the origin of the
highly nonlinear current response.

Experiments
We conducted experiments on conical glass nanocapillaries,
which constitute easily fabricated and readily reproducible phys-
ical models of a single conical nanopore. The interior radius of
these nanocapillaries varied between 250 µm on the upstream
end and 165± 15 nm at the tip over a length of ∼3 mm, corre-
sponding to a half angle of approximately 5◦. (Fig. 1B and SI
Materials and Methods). During the experiments, ionic current
was measured as a function of applied voltage (−400<∆V <
+400 mV) and pressure (0<∆P < 1, 500 mbar) at a fixed ionic
concentration c0 of potassium chloride (KCl), as illustrated in
Fig. 1A and detailed in Materials and Methods.
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Fig. 1. Experimental setup with a single conical nanopore and experi-
mental response of the ionic current I to applied voltage ∆V and pres-
sure ∆P. (A) Sketch. (B) SEM image. (C) Current–voltage curves for increas-
ing values of ∆P, as indicated in the key. Inset shows the current as a
function of ∆P for several different values of ∆V , colored according to
the key in D. (D) Additional current induced by applied pressure, IP , as
a function of ∆P for several different values of ∆V , as indicated in the
key. The arrow indicates Ioffset, the offset in IP compared with the lin-
ear response obtained for ∆V = 0, for −400 mV. The experimental data
are fitted according to Eq. 1 (solid lines). All measurements correspond
to a molarity [KCl] = 10−3 M, pH' 6, and a nominal tip radius of R0 =

165± 15 nm.

The results of experiments conducted at a molarity [KCl] =
10−3 M and pH≈ 6 are shown in Fig. 1 C and D. At this con-
centration and pH, we observe substantial rectification of the
current–voltage (IV) curve for ∆P = 0 (Fig. 1C), in agreement
with previous observations (17, 28, 29). Conversely, for ∆V = 0,
the pressure-driven response behaves as expected and a stream-
ing current is generated, linear in ∆P (Fig. 1C, Inset) (1, 2,
30). This streaming current originates from the pressure-induced
advection of ions within the Debye screening layer that forms in
the vicinity of solid–liquid interfaces (2). It is given by the Smolu-
chowski result, which, in a conical nanopore with linearly vary-
ing radius of slope α1, takes the form Istm =πR0α1µEO×∆P ,
where R0 is the minimum radius occurring at the tip of the
nanopore, and µEO≡ (ε/η)(−ζ) is the electroosmotic mobility.
In the latter quantity, ζ is the so-called zeta potential, and η
and ε are the water viscosity and dielectric constant, respec-
tively. Quantitatively, the streaming conductance Sstm = Istm/∆P
obtained at zero applied voltage is Sexp

stm = 0.153 nA · bar−1, cor-
responding to a zeta potential of ζ '−42 mV in agreement with
the literature (31). Incidentally, by comparing the above expres-
sion for the streaming current to the classical result obtained
for a cylindrical geometry, Istm = (πR2

0/L)µEO×∆P , we find
that the gradient is confined to an effective length of the order
Leff =R0/α1.

The behavior for combined finite ∆V and ∆P differs dra-
matically from the behavior observed when only one forcing is
nonzero. As shown in Fig. 1C, the IV response changes qual-
itatively for increasing applied pressures, linearizing for pres-

sures & 200 mbar. Similarly, for a given applied voltage drop
∆V , the current–pressure (IP) response is dramatically non-
linear for small pressures ∆P . 50 mbar. As shown in Fig.
1D, this nonlinearity is particularly apparent if we examine
the additional current induced by pressure, IP ≡ I (∆P , ∆V )−
I (∆P = 0, ∆V ), as a function of ∆P for fixed values of
∆V . As shown in Fig. 1D, for any voltage drop the pressure
dependence of IP is well described by a simple expression of
the form

IP (∆P) =Sstm∆P + Ioffset
a1 ∆P1/2 + a2 ∆P

1 + a1 ∆P1/2 + a2 ∆P
, [1]

where the fitting coefficients ai and Ioffset are functions of the
voltage drop ∆V . This highlights a small pressure response of
the current that scales as IP ∼∆P1/2, while the linear regime
IP ∼∆P is recovered for large pressure. The square-root depen-
dence of the ionic current on pressure as ∆P→ 0 suggests
that the response is nonanalytic at ∆P = 0, within the accu-
racy of the experiments. This response is obviously at odds
with naive considerations, which would rather suggest that the
pressure-induced response at small ∆P should take the form
of a Taylor expansion in odd powers of ∆P , IP ' b1∆P +
b3∆P3 + . . ., where the coefficients of the expansion may them-
selves be expressed as (even) analytic expansions in ∆V . As
highlighted by Fig. 1D, the response to mechanoelectric driving
forces is highly nonlinear and far stronger than such considera-
tions would suggest.

Surprisingly, while the pressure response observed here is
highly nonlinear for small ∆P (and any finite ∆V ), the limit-
ing slope of the IP curves obtained for large ∆P is independent
of voltage and equal to the slope obtained when ∆V = 0 V (Fig.
1D). In this large ∆P regime, the IP response is again character-
ized by a linear relationship, but now with a voltage-dependent
offset current (Eq. 1). The offset current represents a substantial
enhancement of the streaming current that would be obtained in
the ordinary linear response regime; this can be seen by compar-
ing the linear IP curves corresponding to ∆V = 0 and −400 mV
(Fig. 1D).

Finally, we note that this drastically nonlinear behavior is
obtained when no Debye-layer overlap occurs in the nanocap-
illary; the Debye layer here is ∼10 nm thick, an order of mag-
nitude smaller than the minimum nanocapillary radius, R0 =
165± 15 nm.

Altogether, these results are best described in terms of a
pressure-dependent ionic conductance. We report in Fig. 2 A and
B, respectively, both the apparent conductance Gapp≡∆I /∆V
and the differential conductance Gdiff ≡ ∂I /∂∆V . Both quanti-
ties highlight a strong sensitivity of the conductance to pressure
for small applied pressures. Depending on the applied voltage,
the conductance increases or decreases with ∆P , with variations
of up to 100% for a change of pressure as small as 100 mbar. The
result is an ionic conduction that is dramatically dependent on
external mechanical conditions.

Model
To rationalize the a priori unexpected experimental results pre-
sented above, we have developed a one-dimensional model
of the ionic transport based on the radially integrated Pois-
son, Nernst–Planck, and Stokes equations for the electrostatic
field, ionic fluxes and concentrations, and the pressure and
hydrodynamic velocity, respectively. Radial integration of the
Nernst–Planck and Stokes equations typically proceeds on the
assumption of a local Poisson–Boltzmann equilibrium (1, 2,
7). Such an equilibrium requires local electroneutrality, with
the integrated ionic charge density exactly balancing the local
surface charge density everywhere. However, in the present
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Fig. 2. Experimental (A and B) and model-derived (C and D) effective (A
and C) and differential (B and D) conductance as a function of applied
pressure for several different values of applied voltage. The correspond-
ing values of ∆V (Φ) are indicated in A (C). Φ and PeP are the dimen-
sionless rescaled voltage and pressure, respectively, and are defined in the
main text.

model, we allow for small deviations from local equilibrium
with the possibility of nonelectroneutral regions, so-called SCZs.
These deviations are characterized by a local net charge δnc ,
defined as

δnc ≡nc + S
2Du0

R
, [2]

where nc is the local volume density of ionic charge, nondi-
mensionalized by ec0; e is the elementary charge; c0 is the
ionic concentration in the reservoirs; S =−1 is the sign of the
surface charge for glass (31); R is the local radius, nondi-
mensionalized by the minimum value R0; and the Dukhin
number is defined in terms of the magnitude of the sur-
face charge |σ|, the reservoir concentration, and the minimum
radius as

Du0≡
|σ|

ec0R0
. [3]

The Dukhin number indicates the relative importance of ionic
transport in the screening layer vs. in the bulk (1). In everything
that follows, we use the nondimensionalized variables defined in
Table 1.

The dimensionless and radially averaged 1D fluxes take
the form

I =

Idiff︷ ︸︸ ︷
πR2

(
−dnc

dx

)
+

Iep︷ ︸︸ ︷
πR2c

(
−dφ

dx

)
+Qδnc +

Ieo︷ ︸︸ ︷
2πRk

(
−dφ

dx

)

+

Istm︷ ︸︸ ︷
1

Peosm

µEO

µEP
πR2

(
−dP

dx

)
+

Ido︷ ︸︸ ︷
2πRk

(
S
d lnc
dx

)
[4]

Jsol =−πR2

(
dc

dx
+nc

dφ

dx

)
+Qc, [5]

Q = −πR4

(
dP

dx
+ Peosmδnc

dφ

dx

)
+πR2

[
µEO

µEP

(
−dφ

dx

)
+
µDO

D

(
−d lnc

dx

)]
, [6]

which verify conservation laws

dI

dx
=

dJsol

dx
=

dQ

dx
= 0, [7]

together with the Poisson equation(
λD

`

)2
1

πR2

d

dx

(
πR2 dφ

dx

)
+ δnc = 0. [8]

These equations are derived in Derivation of Eqs. 4–8: Radial
Integration of PNPS Equations; they express conservation of elec-
tric charge, solute mass, and solvent volume. In the right-hand
side of Eq. 4, the terms represent the contributions from diffu-
sion (Idiff), electrophoresis (Iep), bulk advective transport of the
local net charge, electroosmosis (Ieo), streaming current (Istm),
and diffusioosmosis (Ido). Similar interpretations hold for the
terms in Eq. 5. We emphasize that we do not presuppose the
overlap of Debye layers.

The mechanisms at play are described in terms of various
mobilities: µEP and µEO, the electrophoretic and -osmotic mobil-
ities; µDO, their diffusioosmotic counterpart (32); and the dif-
fusion coefficient D , related to the electrophoretic mobility by
the Einstein relation D =µEP× kBT/e . The equations also con-
tain the Debye length λD ≡

√
εr ε0kBT/e2c0 and `, the geomet-

ric length scale characterizing the nanocapillary tip (Fig. 3). In
addition to the Dukhin number (Eq. 3), we have introduced the
dimensionless parameter

Peosm≡
R2

0kBTc0

8ηD
, [9]

which compares diffusion to a pressure-driven flow associated
with the scale of an osmotic pressure kBTc0 and may accord-
ingly be interpreted as an osmotic Péclet number. Finally, 2πRk

Table 1. Model variables and their rescaled dimensionless
counterparts

Variable Notation Rescaled

Position x x→ `x
Radius R R→R0R
Concentration c c→ c0c
Charge Density nc nc→ ec0nc

Potential φ φ→ (kBT/e)φ
Solute flux Jsol Jsol→ (R2

0Dc0/`)Jsol

Electric Current I I→ (R2
0eDc0/`)I

Water flux Q Q→ (R2
0D/`)Q

Pressure P P→ (8ηD/R2
0)P

The length ` characterizes the transition between the interior of the
nanopore and the reservoir (Fig. 3 and main text).
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Fig. 3. A sketch of the geometry of the glass nanocapillary. Inset shows
a zoom-in of the model geometry in the vicinity of the tip. The radius is
taken to vary between two regions of linear variation over a length-scale `
as indicated, and these regions are characterized by radial slopes α1 = 0.1
in the interior and α2 = 200 in the exterior.

is the local cross-sectionally integrated electroosmotic conduc-
tivity, with k ≡ 16Du0Peosm(λD/R0)2. The values of all of the
dimensionless parameters governing the solution were estimated
for the experiments presented above: Du0' 0.5, λD/R0' 0.05,
λD/`' 0.1, µEO/µEP' 0.2, µDO/D ' 1, Peosm' 10, and `/R0≈
0.5. Additionally, the interior radial slope is α1≈ tan(5◦)≈ 0.1.
These parameters are used in all of the numerical calculations
presented below.

The model geometry is shown in Fig. 3. The radius is taken
to vary continuously between two linear regions: The upstream
region of slope dR/dx =−α1, representing the nanopore inte-
rior, and the downstream region of slope dR/dx = +α2 = 200,
representing the rapid divergence of the radius as the down-
stream reservoir is approached. The transition between radial
slopes occurs continuously over a length ` (Fig. 3 and Model
Geometry). The boundary conditions are imposed in the reser-
voirs at x =±∞: φ(x→+∞) =P(x→+∞) = 0, φ(x→−∞) =
Φ, P(x→−∞) = PeP , together with conditions on the charge
and salt concentration c(x→±∞) = 1 and nc(x→±∞) = 0. In
the preceding, we have introduced the dimensionless driving
forces

Φ ≡ e∆V /kBT ≈∆V /25 mV

PeP ≡ R2
0∆P/8ηD ≈∆P/6 mbar. [10]

Results
The coupled transport equations given above, Eqs. 4–7, were
solved numerically, and the results for the response of the cur-
rent to applied voltage and pressure are reported in Fig. 4. The
results for the conductance are reported in Fig. 2 C and D.

Crucially, this theoretical framework reproduces all of the
essential qualitative features of the experiments. Comparing
the experimental results—Figs. 1 C and D and 2 A and B—to
the theoretical predictions—Figs. 2 C and D and 4—, we see
that we successfully recover a strong, nonlinear dependence of
the ionic conduction on pressure (Fig. 2 C and D), resulting in
a highly sensitive response of the pressure-induced current IP to
pressure (Fig. 4B). We note that, in the model, the applied forc-
ings are larger than those in the experiments. This was necessary
to recover the correct degree of rectification in the IV curves

and is presumably due to the simplifying one-dimensionality of
our model.

Furthermore, the prediction for the Péclet dependence of the
current IP shown in Fig. 4B is successfully described by Eq. 1, in
full agreement with the experimental results shown in Fig. 1D.
This demonstrates that the experimental behavior IP ∼∆P1/2

measured for low pressure drop is fully recovered by the model,
indicating a strong sensitivity to applied pressure for small pres-
sures. Finally, the theoretical IV curves are observed to linearize
as pressure is increased, in accordance with the experimental
observations shown in Fig. 1C, with the conductance for all volt-
ages approaching the conductance at zero voltage drop, Φ = 0
(Fig. 4A). The apparent offset in the linear streaming current for
large applied pressures is asymmetric in applied voltage, growing
much more quickly for negative than for positive values of Φ, in
full agreement with its experimental counterpart.

Discussion: The Deformation of the SCZ
We now show that this nontrivial behavior originates in the sen-
sitivity of the SCZ to the balance between electrical and mechan-
ical forcing. We first note that at equilibrium the present system
exhibits a nonvanishing net charge density (δnc , Eq. 2) profile.
Solving the above transport equations for I = Jsol =Q = 0, we
find that the net charge density at equilibrium, δnequ

c , is nonzero
in the conical system and obeys an implicit linear relationship
with the Dukhin number,

Gb

(
`

λD

)2 ∫ +∞

−∞

dx
πR2

∫ x

−∞
dx′πR2δnequ

c = 2π
`

R0
α1S Du0,

[11]

where Gb =
[∫ +∞
−∞ dx/πR2

]−1

is the (dimensionless) bulk elec-
trophoretic conductance. (Note that a more detailed derivation
of this equation and those following is given in Derivation of Eqs.
11 and 12, Derivation of Eq. 13, and Derivation of Eq. 14.) This
result may be interpreted in terms of the buildup of a Donnan
potential inside the conical nanocapillary, which in the present
conditions (a nonoverlapping Debye layer) disappears as the
capillary angle α1 vanishes and a simple cylindrical geometry is
obtained.
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Fig. 4. Model-derived response of the ionic current I to applied voltage Φ

and pressure PeP in a conical quasi–one-dimensional geometry (Fig. 3). (A)
IV curves for increasing values of PeP , as indicated in the key. Inset shows
the current as a function of PeP for several different values of Φ, colored
according to the key in B. (B) Additional current induced by applied pres-
sure, IP , as a function of PeP for several different values of Φ, as indicated
in the key. In B, the model predictions are fitted according to Eq. 1, similar
to Fig. 1 for the experimental data (with ∆P replaced by the Péclet number
PeP). The slope of the dashed black line in A indicates the value of G0, and
that in B indicates the value of Sstm (Eq. 14).
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Under applied voltage and pressure drops, this equilibrium
SCZ is modified. Interestingly, one may still obtain an ex-
plicit integral relationship between the current and the charge
imbalance:

I =Gb

[
Φ−

(
`

λD

)2 ∫ +∞

−∞

dx
πR2

∫ x

−∞
dx′πR2 [δnc − δnequ

c ]

]
.

[12]
In practice, this equation is obtained by first solving the Poisson
equation (Eq. 8) for the electric flux at x =−∞ and then relating
this to the ionic current by examining the limiting behaviors of
the flux equations (Eqs. 4–6).

This result explicitly confirms that the nonlinear response
results from the deformation of the SCZ under these driv-
ing forces. From the model results, we learn that for small
Péclet number PeP→ 0, the current is dominated locally by
the electrophoretic and electroosmotic responses. On the other
hand, at large Péclet number, the linearization of the IP
response is found to correspond to an increase in importance
of the local streaming current, such that the current is domi-
nated by the local electrophoretic, electroosmotic, and stream-
ing current responses. We discuss each of these two regimes in
turn.

Small Péclet Regime. In this regime, the striking result is the dra-
matic sensitivity of the conductance to applied pressure. As sug-
gested by Eq. 1, the current IP exhibits a nonanalytic square-root
dependence on pressure drop (or Péclet number) in this regime,
so that the model predicts G ∼∆P1/2. The conductance in this
small Péclet regime may be estimated by retaining only the elec-
trophoretic and electroosmotic terms in the expression for the
ionic current (Eq. 4). Integrating in x , one finds for the apparent
conductance G = I /∆V ,

G =

[∫ +∞

−∞

dx
πR2

(
c + 2k

R

)]−1

, [13]

where the (nonlinear) pressure dependence is hidden in the con-
centration profile c(x ; PeP , Φ). The above result for the appar-
ent conductance (Eq. 13) shows that for small Péclet number,
the variation in the apparent conductance with pressure drop,
G(PeP ), may be understood in terms of the pressure-induced
variations in the concentration profile c(PeP ) relative to equi-
librium. Concentration profiles are plotted in Concentration and
Cumulative Charge Profiles and Fig. S3. These profiles exhibit a
strong sensitivity to applied pressure when PeP < 50, with the
concentration everywhere relaxing to the reservoir value as the
linearizing Péclet number Pelin

P ≈ 300 is approached.
The equivalence of Eq. 13 and the more general Eq. 12 in

describing the current response at low PeP implies a direct rela-
tionship between the net spatial charge δnc and the concen-
tration field. This is illustrated in Fig. S3, where we have also
plotted profiles of the cumulative charge in the nanopore, δq ≡∫ x

−∞ dxπR2δnc . The structural similarity between the cumula-
tive charge and the excess concentration relative to the reservoir
value δc≡ c− 1 is immediately apparent.

This suggests a back-of-the-envelope argument to account for
the square-root variation of the conductance with Péclet num-
ber, G ∼Pe1/2

P , highlighted in Eq. 1. Under a pressure drop,
one may anticipate a simple mechanical balance for the SCZ
between the electrostatic and pressure forces. This typically
takes the form δq ×Eapp∼R2

0∆P , where δq is the variation
of the cumulative charge in the SCZ and Eapp is the varia-
tion in the induced electric field, under the applied pressure.
Equivalently, one may interpret the force balance in terms of a
balance between the Maxwell stress and the applied pressure:

1
2
εE2

app∼∆P . The equivalence of these perspectives requires
that the cumulative charge in the SCZ be proportional to the
induced electric field, δq ∼Eapp, in agreement with the Pois-
son equation, Eq. 8. Solving for δq yields δq ∼±

√
∆P (depend-

ing on the sign of the applied voltage drop) or, in dimension-
less variables, δq ∼±

√
PeP . Furthermore, as noted above, the

variation in the concentration field is found to scale with the
cumulative charge. We thus have δc∼ δq ∼±

√
PeP . From Eq.

13, this variation in the concentration leads to a modification of
the conductance scaling as δG(PeP )∼±

√
PeP for small Péclet

number.
While this scaling is established a posteriori, it recovers the

nonanalytic square-root correction to the conductance in the
Péclet number, in full agreement with the corresponding varia-
tion observed in the experiments and theory, as shown in Fig. 2.
It also suggests that the origin of the nonanalyticity is in the con-
tribution to the mechanical balance on the SCZ of the Maxwell
stress tensor and its quadratic dependence on the electric field.
Interestingly, this dependence is expressed for the present coni-
cal geometry, but disappears for cylindrical geometries with con-
stant radius.

Large Péclet Regime. In this regime, the current response is lin-
ear in applied voltage and pressure (Figs. 1 and 4). This puz-
zling behavior can be rationalized analytically by noting that the
current is dominated by the electrophoretic, electroosmotic, and
streaming contributions. Under these conditions, one can deduce
the analytical expression for the current as

I =G0

(
Φ + γ

µEO

µEP

PeP

Peosm

)
≡G0Φ + SstmPeP , [14]

where γ≡
[∫ +∞
−∞ dx/πR4

(
1 + 2k

R

)]/(∫ +∞
−∞ dx/πR4

)
is an

order-one constant. We have also introduced G0 =[∫ +∞
−∞ dx/πR2

(
1 + 2k

R

)]−1

, the bulk electrophoretic conduc-
tance Gb enhanced by the electroosmotic contribution (1).

This result, although formally clear, is striking in several
aspects. First, in this regime, the current is shown to be lin-
ear in both voltage drop (Φ) and pressure drop (PeP ), in full
agreement with the experimental results. Furthermore, the con-
ductance and streaming current take their linear response val-
ues, i.e., those calculated at vanishing voltage and pressure
drop. Indeed, with the exception of small corrections induced
by the inclusion of the electroosmotic contribution, the stream-
ing conductance Sstm≡ ∂I /∂PeP =G0γ(µEO/µEP)(1/Peosm)≈
Gb(µEO/µEP)(1/Peosm) takes the value obtained by assuming
that the streaming current alone drives the local current response
at high pressure everywhere in the nanopore.

Conclusions and Perspectives
Our results demonstrate that the ionic conductance of a coni-
cal nanopore can be tuned very sensitively by the applied pres-
sure. An increase or decrease of the conductance by up to 100%
can be achieved under slight variations in the pressure, stimulat-
ing a transition from a high to a low conductance state (or vice
versa). Furthermore, the pressure dependence of the conduc-
tance is found to be nonanalytical in the applied pressure drop,
while a linear behavior is counterintuitively recovered only at
high pressure. This strongly nonlinear transport behavior is fully
captured by a theoretical framework accounting for the defor-
mation of the SCZs under the coupled mechanical and electrical
drivings.

The possibility to mechanically tune conduction mim-
ics a mechanical transistor functionality, with the pressure
opening or closing conductance channels. In organisms, the
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mechanosensitive response of dedicated pores is of crucial
importance in preventing fatal osmotic shocks by activating chan-
nels under hydrostatic or diffusioosmotic forces (21–23). Here
the response to pressure is of a different type, as the pressure
is found to tune rather than open or close the electric con-
duction channels. However, it would be interesting to extend
the present study to the osmotic response induced by a dif-
ference in salinity across the nanopore. Such a salt concentra-
tion difference results in a Nernst potential difference which,
according to our present analysis, will couple to the pressure
response. Furthermore, salinity differences lead to diffusioos-
motic forces which will enter the mechanical balance on top of
electrical and mechanical forces studied here (23). This suggests
that more complex nonlinear responses are expected in such sit-
uations, opening the possibility to tune both ionic and solute flux
responses under a variety of stimuli.

We conclude by noting that such a mechanosensitive behav-
ior may also find applications in the context of membrane sci-
ence, where the possibility to activate or inhibit the electric
conduction by small pressure stimuli could be of interest for
various applications. For example, in the context of osmotic
(blue) energy, the maximum achievable power is proportional
to the electric resistance of the membrane (20), and the present

nonlinear couplings may allow for mechanical tunability of the
extracted power.

Altogether the pressure-sensitive conduction constitutes an
elementary building block which we hope will allow for devel-
opment of new active functionalities mimicking the advanced
machines (33) existing in Nature.

Materials and Methods
Nanocapillary profiles and tip diameters were determined using scanning
electron microscopy (SEM). (Fig. 1B and Fig. S1). During the experiments,
both ends of the nanocapillary were submerged in reservoirs containing
Ag/AgCl electrodes and the same aqueous solution of KCl. Ionic currents
were then measured between the electrodes for fixed applied voltages
(applied via the upstream electrode; Fig. 1A and Fig. S2) and pressures
(applied in the upstream reservoir). The current response was recorded
in the range −400<∆V <+400 mV and 0<∆P< 1, 500 mbar. Further
details of the experimental procedure and setup are given in SI Materials
and Methods.
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