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ABSTRACT: On the basis of the Poisson−Boltzmann equation in cylindrical
coordinates, we calculate the conductivity of a single charged nanotube filled
with electrolyte. The conductivity as a function of the salt concentration follows
a power-law, the exponent of which has been controversially discussed in the
literature. We use the co-ion-exclusion approximation and obtain the crossover
between different asymptotic power-law behaviors analytically. Numerically
solving the full Poisson−Boltzmann equation, we also calculate the complete
diagram of exponents as a function of the salt concentration and the pH for
tubes with different radii and pKa values. We apply our theory to recent
experimental results on carbon nanotubes using the pKa as a fit parameter. In
good agreement with the experimental data, the theory shows power-law behavior with the exponents 1/3 at high pH and 1/2 at
low pH, with a crossover depending on salt concentration, tube radius and pKa.

■ INTRODUCTION

The ionic transport of electrolyte solutions confined to
nanochannels and nanotubes shows different behavior from
that of the bulk electrolyte. Examples include surface
conduction,1 fast proton transport,2 rectification,3 permselectiv-
ity,4 and block−unblock transport.5−7 In this work, we focus on
the salinity dependence of the ionic conductivity. Stein et al.
observed that at high salinity the conductivity (denoted by K) of
50 μm-wide silica nanochannels is proportional to the bulk salt
concentration c0 (K ∼ c0), whereas at low salinity the
conductivity becomes constant (K ∼ const.) and is governed
by the surface charge density of the channel walls.1 Since at low
salinity the number of charge carriers in the channel equals the
surface charge, the saturation of K can be understood by
assuming the surface charge density to be independent of salinity.
However, the surface charge is usually governed by the
dissociation of protons from acidic groups, as well as by
adsorption of ions from the solution, and is therefore expected to
depend on c0.

8 In the presence of such charge regulation, scaling
laws K ∼ c0

γ are expected with exponents γ different from 0 or 1.
Such scaling laws of conductivity with γ ≠ 0 and γ ≠ 1 have been
reported in experiments on track-etched membranes,9,10 bio-
logical membrane pores,11−13 silicon-dioxide nanopores,14 and
single-walled carbon nanotubes.15−18 Recently, experiments by
Secchi et al. demonstrated that the conductivity of a single
multiwalled carbon nanotube obeys a power law as a function of
salinity with exponent γ = 1/3.19 Later, Biesheuvel et al.
theoretically derived a different power law with exponent γ = 1/2
at extremely low salinity.20 Theoretical descriptions of the
nanotube conductivity are based on the Poisson−Boltzmann
(PB) equation in cylindrical coordinates, the analytical solution

of which is not simple.21 Therefore, all previous discussions of
the conductivity at low salinity have considered approximations
of the PB equation in cylindrical coordinates, for example the
Donnan approximation,19,22 the co-ion-exclusion approxima-
tion,23,24 the planar approximation,25,26 or the linear approx-
imation.27 Yet the complete problem features many competing
length scales, such as the Debye length, the Bjerrum length, the
Gouy−Chapman length, the Stokes radius of the ions, and the
radius of the nanotube, and a careful consideration of the validity
of each approximation is paramount. Recently, Manghi et al. have
analytically revealed that small values of the surface charge
density give rise to the exponent 1/2 and large values give rise to
the exponent 1/3 at low salinity, as well as another exponent 2/3
induced by hydrodynamic surface slip.28 In their model, the
scaling with γ = 1/3 does not appear within the experimentally
accessible range of surface charge densities, however.
In this work, we numerically solve the PB equation in

cylindrical coordinates, modeling both charge regulation and ion
adsorption by the Langmuir adsorption isotherm.29 In addition,
we globally analyze the local exponent γ = d ln K/dln c0 as a
function of pH and salt concentration. Using the co-ion-
exclusion approximation, we analytically derive the crossover
boundaries between the regions characterized by the exponents γ
= 0, 1/3, 1/2, and 1 and show that they agree with the full
numerical solution. Using the pKa as a fit parameter, we argue
that the experimental data19 show the predicted crossover from γ
= 1/3 to γ = 1/2 with decreasing pH.
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■ THEORY
Model. We consider a single nanotube with radius R filled

with electrolyte connected to a reservoir. The electrostatic
potential ψ(r) is determined by the Poisson−Boltzmann
equation in cylindrical coordinates as follows:

κΨ = Ψ
⎡
⎣⎢

⎤
⎦⎥r

d
dr

r
d
dr

r r
1

( ) sinh ( )2

(1)

where r is the radial coordinate, Ψ(r) = eψ/kBT is the
dimensionless electrostatic potential, κ is the inverse Debye
length defined via κ2 = 2e2c0/εε0 kBT, e is the elementary charge,
kBT is the thermal energy, c0 is the reservoir salt concentration at
ψ = 0, ε is the dielectric constant of the solution, and ε0 is the
dielectric permittivity of vacuum. When we solve eq 1 with a
constant surface potential ΨR = eψ(R)/kBT and dΨ/dr|r=0 = 0 as
boundary conditions, we obtain the potential profile Ψ(r) and
the surface charge density σ = εε0 dψ/dr|r=R.
To determine the surface potential, we use the Langmuir

adsorption isotherm including the effect of the surface potential,
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where pH is the pH of the reservoir, pKa is the deprotonation
reactivity of the surface, and Γsite is the surface density of
dissociable sites. The charging mechanism for hydrophobic
surfaces is still under debate,30−35 but using different equilibrium
constants, the same functional form can be used to model the
surface adsorption of ions such as OH− or charged impurities
from the solution.32

When we assume that all the ions in the solution have the same
ionic mobility, then the conductivity is given by the following:
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where η is the viscosity of the solution, B = e2/4πεε0kBT is the
Bjerrum length, and ν0 is the ionic electrophoretic mobility in the
solution. We call the first term of eq 3 the convective part Kcv and
the second term of eq 3 the conductive part Kcd. Note that the
nanotube conductivity is additionally influenced by interfacial
effects such as surface slip and the inhomogeneity of the dielectric
constant, as well as the effects of confinement on the bulk
dielectric constant, viscosity, and ionic mobility. To preserve the
analytical tractability of the asymptotic expressions, we neglect
these effects in this work. If the length of the nanotube is short
compared to the radius, then the conductance of the inlet and
outlet of the nanotube dominates the total conductance.36,37 In
this work, however, we assume the length to be long enough to
neglect the entrance effects. The validity of the continuummodel
is expected to be limited to radii that are large compared to the
atomic length scale. The fact that nanotubes of R = 0.8 nm also
show power-law conductivity17 suggests that this lower bound
has not been reached.
To evaluate the conductivity, we need to solve eq 1. However,

the analytical expression of the exact solution is not simple,21 and
only some asymptotic solutions are available. Therefore, we use
the co-ion-exclusion approximation23,24 to derive the asymptotic
scaling laws analytically. To verify the validity of this
approximation, we also solve eq 1 numerically.
Co-ion-exclusion Approximation. The co-ion-exclusion

approximation is valid when c−(r)/c+(r) = e2Ψ(r)≪ 1 for all r, with
c±(r) being the concentrations of cations and anions. Neglecting

the contribution of the co-ions in eq 1, Ψ(r) satisfies the
following:

κΨ = − −Ψ⎡
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The exact solution of eq 4 is given by the following:23,24

κΨ = + Σ − Σ
Σ + Σ

r
R r R
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16 (1 )
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where the rescaled radius is given by the following:

σ
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with the Gouy−Chapman length being defined by GC = 2εε0
kBT/e|σ|. In the co-ion-exclusion regime, GC provides a measure
of the width of the ion distribution at the charged interface, and
therefore Σ characterizes the extent of counterion binding to the
nanotube surface. Equation 5 gives the surface potential as
follows:
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R
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16 (1 )R

2 2

(7)

Using the potential of eq 5, we calculate the conductive part of
the conductance by eq 3,

∫ν ν σ
= =

| |+
−Ψ

K
e c
R

r dr
R

4 e
2

2R r

cd
0 0
2 0

( )
0

(8)

∫ν

ν κ

=

=
Σ + Σ

+ Σ + Σ

−
Ψ

⎛
⎝⎜

⎞
⎠⎟

K
e c
R

r dr

e c
R

4 e
2

16 (1 )
1

3
,

R r

cd
0 0
2 0

( )

0 0

2 2 2

(9)

where Kcd
± is the cation (anion) contribution to Kcd, and Kcd = Kcd

+

+ Kcd
− . For the convective part of the conductivity, eq 3 yields the

following:
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where in the second line the equation has been rewritten in terms
of the ionic Stokes radius S = e/6πην0. In the limit of Σ ≪ 1
(corresponding to R≪ 2 GC), the total conductivity, given by the
sum of eqs 8, 9, and 10, becomes the following:
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whereas in the limit of Σ≫ 1 (corresponding to R≫ 2 GC), we
obtain the following:
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To check the self-consistency of the co-ion-exclusion
approximation, we now verify the condition e2Ψ(r) ≪ 1. Since
Ψ(r) is a monotonic function, we need to check only whether
e2Ψ(0) ≪ 1, which by eq 5 becomes the following:
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Equation 13 is fulfilled at low salt concentration (κR ≪ 1 and
κ GC ≪ 1), but also depends on the surface charge density and
the nanotube radius in a nontrivial way. If eq 13 holds, then the
relative co-ion conductance also satisfies the following for both
cases Σ ≪ 1 and Σ ≫ 1:
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which means that we may indeed calculate the conductivity using
the co-ion-exclusion approximation.
Power-Law Behavior of the Conductivity in the Low

Salt Regime. First, we study the asymptotic behavior of the
adsorption isotherm, eq 2. The surface potential is always
negative,ΨR < 0, and if the solution is sufficiently acidic such that,

≪ −
Ψ

KpH p
ln 10

R
a (15)

then the surface charge density can be expressed as follows:

σ ≈ − Γ Ψe e0
R (16)

whereΓ0 =Γsite 10
pH−pKa. Conversely, if the solution is sufficiently

basic such that,

≫ −
Ψ

KpH p
ln 10

R
a (17)

then the surface charge density becomes constant and equal to
the following:

σ ≈ − Γe site (18)

Next, we calculate the conductance for different combinations
of surface charge and nanotube radius (quantified by Σ) at low
pH, in which case eq 16 is valid. When Σ ≪ 1 and the co-ion-
exclusion approximation is valid (at low salinity) we obtain the
following from eq 11

ν σ
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| |
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Note that in eq 19, the contribution from convection has
vanished. Combining eqs 7 and 16 with Σ ≪ 1 yields the
following:
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Substituting eq 20 into eq 19, we obtain the following:
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which shows a power-law dependence of K on c0 with the
exponent γ = 1/2.20

When, conversely, Σ ≫ 1 and the co-ion-exclusion
approximation is valid (at low salinity), eq 12 becomes the
following:
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which does include a convective contribution, contrary to eq 19.
Combining eqs 7 and 16 with Σ ≫ 1 yields the following:
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Substituting eq 23 into eq 22, we obtain the following:
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which exhibits a power-law dependence of K on c0 with the
exponent γ = 1/3.19 This shows that the crossover between
power-law exponents 1/2 and 1/3 is governed by the extent of
counterion binding quantified by Σ.
Finally, we study the case of high pH, when the surface charge

density becomes constant. In this limit, it follows from eq 18 that,

πΣ ≈ Γ ≫R 1B site (25)

Substituting eq 25 into eq 22, we obtain the following:
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which is constant as a function of c0, and can be interpreted as a
power law with the exponent γ = 0.

■ NUMERICAL RESULTS
In this section, we numerically solve eq 1 without any
approximation and evaluate the conductivity K and the local
exponent γ defined by the following:

γ =c
d K
d c

( , pH)
ln
ln0

0 (27)

Then we check our theory described in the previous section by
analytically calculating the boundaries between the four regimes
of different asymptotic behavior (γ = 0, 1/3, 1/2, and 1).
Figure 1 shows a color map of γ in the c0-pH plane for a

nanotube with radius R = 35 nm calculated by numerically
solving eq 1. To solve eq 1, we use ε = 78, T = 298 K, η = 0.89

Figure 1.Color map of γ in the c0-pH plane for a nanotube of radius R =
35 nm. We use ε = 78, T = 298 K, η = 0.89 mPa·s, and ν0 = 75 cm

2·S/(e·
mol). We choose Γsite = 0.2/nm2 and pKa = 5.0 in order to visualize the
entire power-law sequence. The local exponent γ is calculated
numerically, whereas the straight lines denote analytical results for the
scaling boundaries. The black dotted line shows eq 28. The black broken
line shows eq 29. The green broken line shows eq 30. The blue broken
line shows eq 31. The red broken line shows eq 32. The purple line
shows eq 33.
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mPa·s, R = 35 nm, and ν0 = 75 cm
2·S/(e·mol) which satisfies ν0≈

(νK + νCl)/2 where νK (νCl) is the experimental value of the ionic
mobility of potassium (chloride). For the charge regulation at the
surface, we use Γsite = 0.2/nm2 and pKa = 5.0, which have been
chosen to ensure the appearance of the entire power-law
sequence in a single figure. Note that we use different values for
our comparison with experiments, where Γsite = 19/nm2 is
estimated based on the carbon bond length and the pKa is used as
a fit parameter. The region with γ = 1 is colored black, γ = 1/2
green, γ = 1/3 blue, and γ = 0 red. Determination of the scaling
with c0 in the region to the left of the black solid lines at low c0
does not make sense because there the minimum salinity is
determined by the pH of the solution. At high salinity, we
observe the common behavior that γ→ 1, whereas at low salinity
γ approaches either 1/2, 1/3, or 0, depending on pH.
Boundaries between Different Asymptotic Regimes.

To determine the boundaries between the four regimes that
display different asymptotic behavior, we further analyze our
theory. The boundary between γ = 0 and 1/3 is derived by
combining eqs 18 and 23 with Σ ≫ 1, giving the following:

π
≈

Γ→
−c

2
100

0 1/3 B site
2

pH pK a (28)

We plot eq 28 by the black dotted line in Figure 1. It exhibits a
slope of −1 in the c0-pH plane and accurately delineates the
boundary between the blue and red regions obtained numeri-
cally.
The boundary between γ = 1/3 and 1/2 is derived using Σ≈ 1

in eqs 6, 7, and 16 as follows:
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We plot eq 29 by the black broken line in Figure 1. It also shows a
slope of−1 in the c0-pH plane and follows the boundary between
the green and blue regions well.
The boundary between the bulk behavior, γ = 1, and either γ =

1/2, 1/3, or 0 is determined by comparing the bulk conductivity
Kb = 2eν0c0 to each of the asymptotic conductivity formulas, eqs
21, 24, and 26. First, the boundary between γ = 1 and 1/2 is given
by the following:

≈
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Second, the boundary between γ = 1 and 1/3 is given by the
following:
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Third, the boundary between γ = 1 and 0 is given by the
following:

≈ +
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We plot eqs 30, 31, and 32 by the green, blue, and red broken
lines, respectively (each line separating the bulk region from the
region with the corresponding color) in Figure 1. Note that eqs
30, 31, and 32 have different slopes in the c0-pH plane and
together describe the boundary very well.

Finally, we examine the condition for the validity of the co-ion-
exclusion approximation. The solid purple line in Figure 1 shows
the following:

=Ψe 0.52 (0) (33)

where Ψ(0) is the potential in the center of the nanotube
calculated by eqs 1 and 2 without any approximation. In the
regime left of the line, we have e2Ψ(0) < 0.5, and thus the co-ion-
exclusion approximation is valid. The region where e2Ψ(0) < 0.5
overlaps with each of the regimes with power-law exponents γ =
0, 1/3, and 1/2, which means that a priori each of these scaling
laws is expected to be visible for the corresponding combination
of salt concentration and pH, depending on pKa and Γsite of the
nanotube. To the right of the purple line, the co-ion-exclusion
approximation breaks down, but we see that the analytically
calculated scaling boundaries with the γ = 1 region match the
numerical results very well nonetheless.

■ COMPARISON WITH EXPERIMENTS
The circles in Figure 2 show the experimental conductivity data
of single multiwalled carbon nanotubes of radii R = 35 nm (a)

and 3.5 nm (b) and lengths 1.5 and 3 μm, respectively.19 We
consider them long enough to neglect the inlet and outlet
conductances. Since the charging mechanism of the carbon
nanotube surface is still unclear, we assume that a dissociable site
is located on every center of the carbon hexagons. On the basis of
the bond length between carbons of 0.142 nm, the surface
density of adsorbing sites is therefore Γsite = 19/nm2. We fit pKa
by examining various values, pKa = 4.0, 4.5, ..., 8.5, 9.0, from
which we obtain pKa = 8.5 for R = 35 nm and pKa = 4.5 for R = 3.5
nm, respectively, as best fits. Different pKa values for different
radii implies a strong dependence of the charging mechanism on
R. The solid lines denote the numerical solution of eq 1 by using
the fitted pKa value. The broken and dotted lines denote the
analytic asymptotic scaling predictions eqs 24 and 21, exhibiting
the exponents γ = 1/3 and 1/2, respectively.
For R = 35 nm, as shown in Figure 2a, the solid lines agree well

with the experimental data. In the cases pH = 9 and 10 (red and
blue), the solid lines approach the broken lines eq 24, which
exhibit the exponent γ = 1/3 at low salinity. In contrast, at pH = 6
(green), the solid line approaches the dotted line (γ = 1/2) at low
salinity, in agreement with our theoretical predictions. To show
the crossover from γ = 1/3 to 1/2 for a given pH value, however,

Figure 2. Conductivity of a single multiwalled carbon nanotube with
radius R = 35 nm (a) and 3.5 nm (b). The points are the experimental
data.19 The solid lines denote the numerical solution of eq 1 using (a)
pKa = 8.5 and (b) pKa = 4.5. The broken lines are eq 24 exhibiting a slope
of γ = 1/3, whereas the dotted lines denote eq 21 exhibiting a slope of γ =
1/2.
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we would need more experimental data. Also for R = 3.5 nm,
shown in Figure 2b, the solid lines agree with the experimental
data, except for pH = 6. Similar to the case of R = 35 nm, the solid
lines of pH = 10 and 8 (red and blue) approach the broken lines
(γ = 1/3), whereas the solid line and the experimental data of pH
= 4 approach the dotted line (γ = 1/2), clearly showing the
crossover of the exponent from γ = 1/3 to 1/2.
To clarify how the appearance of the different power-law

exponents in experimental data depends on pKa and Γsite, we
show the color map of the exponent γ in the c0-pH plane in Figure
3 for the cases R = 35 and 3.5 nm and pKa = 8.5 and 4.5. For R =
35 nm and pKa = 8.5, Figure 3a, corresponding to Figure 2a, a
region with γ = 0 (red) does not appear and the region with γ = 1/
2 (green) appears only at very low salinity, c0 < 10−4 M, and low
pH. The green stripe between the regions with γ = 1 (black) and
γ = 1/3 (blue) is transitional, so the conductivity plotted as a
function of salinity does not clearly show the exponent γ = 1/2, in
agreement with Figure 2a. For R = 3.5 nm and pKa = 8.5, Figure
3b, the green region (γ = 1/2) becomes larger than the one in
Figure 3a whereas the black and blue regions (γ = 1, 1/3) become
smaller. This fact is understood by the shift of the boundaries
[eqs 29 and 30] for small R. For R = 35 nm and pKa = 4.5, Figure
3c, the green and black regions (γ = 1/2, 1) disappear whereas
the blue region (γ = 1/3) becomes larger than the one in Figure
3a, which can be understood by the shift of the boundaries [eqs
29 and 31] for small pKa. For R = 3.5 nm and pKa = 4.5, Figure 3d,
corresponding to Figure 2b, a region with γ = 1 (black) does not
appear, meaning that the surface conductivity dominates the bulk
conductivity even up to c0 = 1 M. In contrast to Figure 3c, a red
region (γ = 1) emerges because the boundary of eq 32 moves to
the right.

■ CONCLUSIONS
On the basis of the Poisson−Boltzmann and hydrodynamic
equations in cylindrical coordinates, we calculate the con-
ductivity of single charged nanotubes filled with electrolyte. We
use the co-ion-exclusion approximation and describe the
crossover between the asymptotic behaviors theoretically. We
analytically show the existence of four different power-law
regimes with the exponents γ = 0, 1/3, 1/2, and 1, in good
agreement with the numerical solution of the full PB equation in
cylindrical coordinates. Furthermore, we apply our theory to
recent experimental results on carbon nanotube conductance.
Using an estimated density of dissociable sites and fitted pKa
values for each radius, our theory agrees with the experimental
data. For both radii, the experimental data exhibit the γ = 1/3
power law and at very low pHwe find a crossover from γ = 1/3 to
1/2. In general, our results show that the power-law exponent of
the conductivity as a function of the reservoir salt concentration
shows a succession of different values which depend sensitively
on the nanotube radius R, the pH and the pKa.
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mPa·s, ν0 = 75 cm2·S/(e·mol), and Γsite = 19/nm2.
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