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Shear thinning in non-Brownian suspensions

Guillaume Chatté,a Jean Comtet,b Antoine Niguès, b Lydéric Bocquet, b

Alessandro Siria,b Guylaine Ducouret,a François Lequeux,a Nicolas Lenoir,cd

Guillaume Ovarleze and Annie Colin *af

We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent.

Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear

thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we

show that during each of those regimes, the flow remains homogeneous and does not involve particle

migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force

profile and the microscopic friction coefficient m between two particles immersed into the solvent, as a

function of normal load. Coupling measurements from those three techniques, we propose that (1) the

first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as

a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged

repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs

for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction

coefficient at large normal load.

1 Introduction

Suspensions are made of solid particles immersed in a liquid.
Their flows are ubiquitous in nature and industry: water or oil
saturated sediments, muds, crystal-bearing magma, concrete,
silica suspensions, cornflour mixtures, latex suspensions and
clays are example of dispersions we meet in our everyday life.
Despite the numerous studies performed since Einstein’s
pioneering work in 1905,1,2 their rheological properties remain
poorly understood.

Let us consider the simple case of an assembly of hard
spheres suspended in a fluid of viscosity Zf sheared with shear
rate _g, under a constant particle pressure Pp. In the absence of
external force scales coming from inertia or thermal forces,
these dispersions have to be Newtonian. Indeed, in these

systems, there is only one single control parameter, IV ¼
Zf _g
Pp

,

governing the dynamics of the flow. Following the approaches

used in the studies of granular material,3 the shear stress t and
the solid fraction f are given by two constitutive equations:
t = meff(IV)Pp and f = f(IV), where meff(IV) is an effective frictional
coefficient. These relations led to t = g(f)Zf _g. In the situation
of a homogeneous controlled solid fraction dispersion, solid
particles immersed in a Newtonian fluid are viscous. Both shear
stress and normal stress differences are proportional to the
shear rate. Strikingly, this analysis does not describe the reality.
Dispersions exhibit a wide range of rheological behavior includ-
ing shear thinning and shear thickening.

Shear thickening corresponds to an increase of the viscosity
as a function of the shear rate. This behavior is one of the most
striking phenomena occurring in complex fluids. In cornflour
suspensions, the formation of a dynamic jamming front under
impact makes the fluid so resistant that a person can run on
it.4,5 Industrially, shear thickening can have disastrous effects
by enhancing the amount of energy required to pump suspen-
sions at high shear rates, damaging mixer blades or clogging
pipes.6 Shear thinning corresponds to a decrease of the viscosity
as a function of the shear rate. These non-linear phenomena are
essential from the perspective of applications and materials, and
a better understanding of controlling the flow of dispersions in
industrial processes is required.

At this stage, a global picture describing the mechanisms at
the origin of shear thickening starts to emerge. In the absence
of inertia, recent theoretical studies have put forward the role
of contact forces.7,8 At low pressure, the particles do not
touch. The suspension is a Newtonian fluid. At high pressure,
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c PLACAMAT, UMS 3626-CNRS/Université de Bordeaux, 33608 Pessac, France
d Grenoble-INP/UJF-Grenoble 1/CNRS UMR 5521, Laboratoire 3SR, Grenoble, France
e Univ. Bordeaux, CNRS, Solvay, LOF, UMR 5258, F-33608 Pessac, France
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repulsive forces are overcome, and frictional contacts are the
norm. Depending upon the value of the solid fraction, different
behaviors are predicted at high shear rates. At low solid frac-
tion, a gradually denser frictional contact network is observed
when the shear rate is increased. This regime corresponds to
continuous shear thickening (CST). For higher values of solid
fraction f, the theoretical flow curve displays an S-shape
allowing discontinuous shear thickening (DST) between a lower
(sparse contact network) and an upper (dense contact network)
branch at equal strain rates. Both branches correspond to a
Newtonian behavior. Finally, for very high solid fraction, the
system transits from a liquid state to a solid state unable to flow
without fracture. This situation corresponds to shear jamming
or shear-induced jamming. This picture and the role of fric-
tional forces have been validated through direct experimental
measurements.9,10 The pairwise force profile and the frictional
interactions between pairs of particles have been measured
using quartz-tuning fork based atomic force microscopy. The
normal load required to transit from lubricated to frictional
interactions is quantitatively related to the critical shear stress
at the shear thickening transition as predicted by numerical
simulations.

Many studies report shear thinning for various suspensions:
PMMA particles in polyethylene glycol (PEG),11 fumed silica
particles in polypropylene glycol (PPG),12 cornstarch particles
in water,13 glass spheres in mineral oil,14 cementitious pastes,15

polystyrene particles dispersed in PEG16 and also PVC particles
dispersed in a plasticizer.17–20

For Brownian suspensions, shear thinning occurs due to a
competition between diffusion and convection. At low shear
rates, particle diffusion is significant and particles occupy a
larger effective volume than at high shear rates, leading to a
larger viscosity. Explanations concerning shear thinning in non-
Brownian suspensions are more vague. At low shear rates, in a
non-Brownian suspension, shear thinning may occur due to the
presence of short-ranged stabilizing repulsive forces between
particles. In this situation, the apparent size of the particles
includes the hard sphere contribution and a part of the sur-
rounding soft repulsive potential. The apparent size value will
decrease with increasing shear rate. Indeed, higher shear rates
correspond to higher pressures and thus to a decrease of the
minimum possible distance between particles as they flow. The
apparent size of the particles and thus the suspension viscosity
would then decrease as a function of the shear rate. Such
thinning has already been observed in a charge stabilized
suspension21,22 and predicted numerically.23

At high shear rates, few other mechanisms have been pro-
posed. Using cornflour suspensions, Ovarlez and coworkers13

showed that the flow at high shear rates after DST is inhomo-
geneous. The system separates into two phases: a dilute phase
and a concentrated phase. This separation is concomitent with
a shear thinning behavior. The shear thinning variation seems
to be due to the particular rheological properties of the two
shear-induced phases and the evolution of their respective size
under shear. However, this explanation may not be universal,
as some dispersions display shear thinning by flowing

homogeneously. Inspired by the old order–disorder theory of
Hoffman et al.,17 Nakajima et al.24 explained the shear thinning
at high shear rates by the breakdown of spanning clusters to
smaller sizes, releasing the trapped plasticizer and increasing
the maximum packing density; thus causing a decrease of visco-
sity at high shear rates. More recently, elastohydrodynamic
interactions have been proposed to explain the shear thinning
behavior.11,25 Under high normal load and shear rates, the
particles may deform via a lubricating liquid film opposing
contact between particles. Last but not least, Vazquez-Queseda26

and coworkers have proposed recently that shear thinning might
be related to the non-Newtonian properties of the solvent. They
point out that hidden shear-thinning effects of the suspending
medium, which occur at shear rates at orders of magnitude larger
than the range investigated experimentally in dispersions, lead
to significant shear thinning of the overall suspension at much
smaller shear rates. They consider the behavior of the solvent at
ultra-high shear rates by assuming that the shear rate in the
film between the particles might be much greater than the
applied one.

In this article, we revisit the question of shear thinning in
non-Brownian suspensions. We take advantage of a system of
particles previously characterized. Our subject of study is the
dispersion of polyvinyl chloride (PVC) particles suspended in a
Newtonian plasticizer (Dinch) (see Fig. 1). This dispersion is an
assembly of lubricated grains that becomes frictional at a high
shear rate.9 Using capillary rheometry, X-ray radiography and
quartz-tuning fork based atomic force microscopy, we charac-
terize the system in the shear thinning regimes in DST materials.
We restrict our study to moderate solid volume fraction values
to avoid the shear jamming zone. The main originality of our
work is to couple these techniques to get a comprehensive
picture of the flow. The first part of the article deals with the
description of the sample. We report the rheological study in
the second part. The third part is devoted to X-ray radiography
analysis. In the fourth part, we report measurements of the
solid friction coefficient between two PVC beads in the

Fig. 1 Flow curve of the liquid Dinch at room temperature (25 1C).
Red circles correspond to measurements in a Couette cell (rotational
rheometry), whereas blue squares are measurements from a capillary
rheometer. The black dotted line stands for 0.041 Pa s.
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Newtonian plasticizer at high shear rate. The fifth part deals
with discussion and outlook.

2 Materials under scrutiny

The dispersions under scrutiny are PVC particles dispersed
in liquid 1,2-cyclohexane dicarboxylic acid di-isononyl ester
(Dinch). We prepare our dispersions by weighing a given
amount of PVC particles and a given amount of Dinch. The
continuous phase is Newtonian up to 104 s�1 and has a viscosity
of 41 mPa s at room temperature (cf. Fig. 1). There is no
observable thinning in the whole range of shear rates investi-
gated, which rules out the mechanism proposed in ref. 26 for
our suspensions. This oil does not evaporate, which allows for
long experiments. The solid fractions are then calculated
knowing the density of PVC rPVC = 1.38 g cm�3 and the density
of Dinch rd = 0.95 g cm�3. The solid volume fraction used in

this study is f ¼ mPVC=rPVC
mPVC=rPVC þmd=rd

where mPVC is the mass of

PVC particles and md is the mass of Dinch. Dinch is an organic
solvent that acts as a plasticizer for the particles. Dinch enters
the particles, creates a polymer brush around them and even-
tually completely swells them. Above the glass transition tem-
perature of PVC (Tg = 80 1C), this process occurs in less than one
minute. However, at room temperature, this process is far
slower and takes more than one year. Thus, Dinch swells
only the particle surface of a few nanometers (experimentally
measured in ref. 9) at room temperature creating a swelled PVC
brush layer at the particle surface that sterically stabilizes our
suspensions.27 The dispersions are used for a maximum of two
days after preparation to avoid variation of the interactions
between particles (ageing). Suspensions are also degassed prior
to experiments. In this work, we focus on concentrated non-
Brownian suspensions. The solid fraction varies between
50% and 64%.

We focus on two dispersions of PVC particles. SEM images of
the particles are displayed in Fig. 2 while particle size distribu-
tions in Dinch are displayed in Fig. 3. In the first dispersion (D1),

the mean particle radius, defined as R32 = hR3i/hR2i, is 1 mm.
The size distribution is lognormal and the standard deviation
estimated using the volume distribution is 45%. In the second
dispersion (D2), the particle size histogram using a volume
distribution is trimodal with lognormal peaks around 350 nm
(with a standard deviation of 25%), 3.3 mm (with a standard
deviation of 55%) and 20 mm (with a standard deviation of 22%).

Both dispersions will reach Peclet numbers (Pe ¼ 6pZsR
3 _g

kBT
� 250 _g

where Zf is the suspending fluid viscosity, _g is the shear rate and
R is the particle radius) in the range of 10–106 for which
Brownian effects are practically negligible.28

The random close packing fractions fRCP of these disper-
sions are measured. fRCP corresponds to the value of the solid
fraction at which the viscosity diverges at low shear rate under
the hypothesis of frictionless particles.9 We measure the value
of the viscosity at _g = 10 s�1 to get rid of interparticle inter-
actions at low shear rate.29 The data are fitted using a Krieger–

Dougherty model Z ¼ Zs 1� f
fRCP

� ��n
, where Zs is the solvent

viscosity. We get fRCP = 69.4% � 0.25% for D1 suspensions and

Fig. 2 Scanning Electron Microscopy (SEM) images of (a) PVC used for D1 and (b) PVC used for D2. Scale bar at the bottom right of each image is 1 mm.

Fig. 3 Particle size distributions of D1 (red) and D2 (blue) obtained with a
laser diffraction apparatus (Mastersizer 3000 from Malvern).
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fRCP = 77.2% � 0.25% for D2 suspensions. The exponents n of
the Krieger–Dougherty models are respectively n = 2.3 for the
D1 dispersion and n = 2.9 for the D2 dispersion. Zs is equal to
41 mPa s.

3 Rheology
3.1 Experimental set-up

To measure the rheological properties over a large range of shear
rate, we combined measurements from both rotational and
capillary rheometers. For normal stress differences lower than
1000 Pa, global rheological measurements were performed on a
stress-controlled rheometer (DHR-3 from TA instruments) or on
a strain-controlled rheometer (ARES from TA Instruments). We
used either a Couette cell (gap e = 1 mm, inner radius R1 = 14 mm,
and height H = 42 mm) with smooth surfaces or a cone-and-plate
geometry with smooth surfaces of diameter 25 mm (angle a = 21).
The temperature was fixed at 25 1C. The geometry of the Couette
rheometer is a conventional cup and bob with a conical bottom.
The truncation is equal to 2 mm. The rheometer measures (or
imposes depending upon the controlled mode) both the torque
G exerted on the geometry and its angular velocity O in real-
time. From O and G, a global shear rate _g and a global shear
stress s were computed as a function of time.

This computation resulted from the assumption that (i) the
flow is azimuthal (i.e. the flow field is purely tangential), (ii) the
fluid is Newtonian and does not slip at the wall. Under these
assumptions, _g and s are simply proportional to o and G,
respectively, with proportionality factors that depend upon the
geometrical parameters of the shear cell. For a Couette cell,
these links write:

_g ¼ R1
2 þ R2

2

R2
2 � R1

2
O (1)

s ¼ R1
2 þ R2

2

4pHR1
2R2

2
G (2)

where R1 and R2 are respectively the inner radius and the external
radius of the Couette geometry and H is the height of the Couette
cell. In a cone-and-plate cell, we get:

_g ¼ O
tanðaÞ (3)

s ¼ 3G
2pR3

(4)

where R is the radius of the cone–plate and a is the angle of the
cone–plate.

As discussed earlier, we use two procedures: an applied shear
rate procedure and an applied shear stress procedure. For the
applied shear stress procedure, we apply the following instruc-
tions. At room temperature (25 1C), we first apply a pre-shear
step at _g = 10 s�1 for 60 s that allows us to start the experiment
with a well-defined steady state. We then apply a ramp of
increasing shear stress. The shear stress is swept logarithmically
from 1 to 1300 Pa. When two consecutive measurements are

within 5%, an equilibrium is assumed and the shear stress is
increased. For the applied shear rate procedure, we also apply a
pre-shear step at _g = 10 s�1 for 60 s. We then apply a ramp of
increasing shear rate. The shear rate is swept logarithmically
from 0.1 to 1000 s�1. When two consecutive measurements are
within 5%, equilibrium is assumed and the shear rate is
increased. We checked the reproducibility of the flow curve
measurements using the two procedures. We anticipate that the
shear stress procedure allows a better characterization of the
rheological properties in the shear thickening transition.

In all cases, the rotational rheometer cannot access normal
stress differences N1 higher than 1000 Pa due to sample
ejection or edge instability. This corresponds to the region of
the shear thickening transition close to the maximal viscosity
measured. We discarded such data. To circumvent these issues
at high shear rate and high normal load, we used two kinds of
capillary rheometers: a home-made capillary rheometer to
access the intermediate range of shear rates and a commercial
capillary rheometer (Gottfert Rheo-Tester) to access larger shear
rates. This approach has been used previously for PVC particle
suspensions in several works.18–20 The Gottfert Rheo-Tester
capillary rheometer is equipped with a capillary die of diameter
D = 0.5 mm (silicon carbide; 3 length-to-diameter ratios: L/D = 4,
8, and 16) or with a capillary die of D = 0.3 mm (silicon carbide;
2 length-to-diameter ratios: L/D = 4 and 8). L is the length of the
capillary. The volumetric flow rate Q is imposed by imposing to
the piston successive steps of increasing speed from 0.1 to
1 mm s�1. The drop of pressure is measured thanks to a
pressure transducer of 100 bar (10 MPa) full scale.

Home-made capillary rheometers are displayed in Fig. 4. They
consist of a manometer (pressure range 0–8 bars) plugged on a
compressed air network (0–7 bars), a syringe with a piston and a
capillary firmly plugged to the syringe. Two kinds of syringes are
used: (i) commercial ones in plastic with a volume of 30 mL
(Fig. 4a). The capillary used is made of PEEK (polyether ether
ketone) polymer, which ensures good rigidity. The real die diameter
was measured with an optical microscope and found to be
1.55 mm. The capillary length used varies between experiments
but is always between 12 and 25 mm. (ii) A home-made syringe
made up of PMMA with a larger volume of 250 mL (Fig. 4b). The
latter one is nearly transparent to X-ray and will be used in the
experiments devoted to the measurement of particle volume frac-
tions. The die diameter is 2.0 mm and different lengths are
available (L = 6.5, 11.5 or 16.5 mm). In contrast to the commercial
capillary rheometer described earlier, these in-house built capillary
rheometers work in a stress-controlled mode. Stress is imposed and
computed from air pressure. The shear rate is computed from the
flow rate, which is measured by weighing the amount of sample
going out from a cup after and before a known time of experiments.

Capillary rheometers measure or impose the drop of pres-
sure DP required to get a given flow rate Q. From these data,
they compute a shear rate at the wall _gw and a shear stress at the
wall sw. The wall shear stress sw is given by:

sw ¼
DP

2L=Rþ le
(5)
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where DP is the drop of pressure, L is the length of the die, R is
the radius of the die and le is an equivalent length of the die
representing the extra entrance drop of pressure. It is measured
by using Bagley plots30 that report the drop of pressure DP as a
function of the L/R ratio for a given flow rate. These plots are
lines and le corresponds to the intersection of the line with the
abscissa (see Fig. 6).

The shear rate at the wall is given by the Weissenberg–
Rabinowitsch analysis31 (Fig. 7):

_gw ¼
3nþ 1

4

� �
4Q

pR3
(6)

where n ¼ dlog sw

dlog
4Q

pR3

� �. The viscosity is then defined as Z ¼ sw
_gw

.

We checked that the resulting flow curves do not depend upon
the radius of the capillary tubes, which proves that no slip at the
wall is present in our experiments (see the figure). Note that this
behavior is not universal. Usually slip at the wall is measured in
dispersions. Attractive interactions32 between the walls and the
PVC particles might be at the origin of this phenomenon. The
resulting flow curves are plotted in Fig. 5.

3.2 Flow curves

The rheological curves for both samples D1 and D2 are reported
in Fig. 5. Subfigures (a) and (c) display the rheological response
for D1 suspensions with solid fractions equal to f = 55% (open
symbols) and f = 60% (filled symbols). Subfigures (b) and (d)
display the rheological response for D2 suspensions with solid
fractions f = 60% (open symbols) and f = 64% (filled symbols).
All the dispersions share a common behavior. The experimental
data collected with various experimental setups collapse on a
single flow curve. The dispersions exhibit a slight shear thinning
behavior at low shear rate, a shear thickening behavior in the
intermediate range of shear rate and a strong shear thinning
behavior at high shear rate. D2 dispersions display a continuous
shear thickening transition whatever the value of the solid
fraction, whereas D1 dispersions display a discontinuous shear
thickening transition at high solid fractions. The presence of a
shear thinning region beyond the shear thickening region has

been reported previously in the literature, but has not been
studied in great detail. Let us underline that this behavior
is not universal. Newtonian behavior after continuous shear
thickening has been observed in PPMA suspensions for a solid
fraction of less than 40%, CaCO3 suspensions for a solid fraction
of less than 25%, or for charged Brownian polymer spheres (see
ref. 25 and the references in ref. 25). However, we are not aware
of studies reporting a Newtonian plateau after discontinuous
shear thickening. Our data of the viscosity in the high shear rate
shear thinning regime can be fitted versus shear rate by a power
law scaling (linear in log–log graph, cf. dotted lines in Fig. 5a
and c). All fits have a correlation coefficient over 0.99. The slopes
showing viscosity scaling in the shear thinning region at low and
high shear rates are plotted in Fig. 8 as a function of the solid
fraction divided by the random close packing fraction fRCP of
each dispersion in order to ease comparison.

In the low shear rate situation, the exponent does not depend
on the dispersion nor on the solid fraction f. It is roughly equal
to �0.4. In the high shear rate situation, the exponent of the
power law depends upon the volume fraction. The higher the
volume fraction, the higher the absolute value of the exponent.
Data from D1 and D2 collapse roughly on the same straight line.
The point for n close to �0.7 is the only case where the absence
of wall slip has not been checked.

Shear thinning with no wall slip is striking for non-Brownian
suspensions immersed in a Newtonian fluid. Post-DST shear
thinning has been previously associated with shear-induced
migration.13 In order to probe the homogeneity of the flow, we
perform X-ray absorption measurements.

4 Particle volume fraction
measurements under flow

To measure particle volume fraction under flow, we couple
rheometry with in situ X-ray radiography. The device used is a
phoenix v|tome|x from General Electrics, which is able to do 2D
X-ray inspection or 3D computed tomography. Here we use it
only in 2D mode by undertaking radiography of spatial X-ray
absorption and then monitoring the real-time spatial particle

Fig. 4 A home-made device for capillary measurements consisting of a manometer branched on a compressed air network (pressure range 0–8 bars),
a syringe with a piston and a capillary at the exit of the syringe. Pressure is imposed and flow rate is measured by weighting. (a) Purchased syringe
(V = 30 mL, smax = 20 kPa); (b) home-made syringe (V = 250 mL, smax = 50 kPa). The piston is the white part in (a) and the metallic part in (b).
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Fig. 6 (a) Bagley plot for the commercial rheometer for D1 (circles) and D2 (squares) at 60%: pressure versus L/D for different shear rates: from top to
bottom, the shear rates are given by 13 490 s�1, 10 800 s�1, 8100 s�1, 5400 s�1, 2700 s�1, 9258 s�1, 7407 s�1, 5555 s�1, 3703 s�1, 1852 s�1, and 925 s�1.
(b) Bagley plot for the home-made rheometer for D1 at 60%: from top to bottom, the shear rates are given by 25 s�1, 33.7 s�1, and 41 s�1. Dotted lines are
linear fits. Their intercepts with the y-axis represent the entrance pressure losses for each shear rate.

Fig. 5 (a) Flow curves Z( _g) of D1 55% (open symbols) and 60% (closed symbols); (b) flow curves of D2 60% (open symbols) and 64% (closed symbols);
(c) same as (a) but for s = f ( _g); (d) same as (a) but for s = f ( _g). For all curves, blue squares are obtained from the rotational rheometer; purple diamonds
from the in house-built capillary rheometer and red circles from the commercial capillary rheometer. Dotted lines are power law fits of Z = g( _g).
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repartition upon flow. The apparatus allows us to get 2 pictures
per second and thus to probe the evolution of the sample under
flow. The experimental set-up and the measurement methods have
been described in detail in ref. 33. We recall here the main points.

Fig. 9 is a schematic that shows a planar wave of the X-ray
penetrating the syringe. In the experiments, the camera’s response
is first calibrated to provide a homogeneous intensity response I0

over all pixels when there are no objects between the X-ray source
and the detector. When an object is present, X-rays are absorbed
by the various media crossing the beam (the PMMA, the PVC
particles, the Dinch, the air) following Beer–Lambert’s law. In our
situation, the recorded intensity reads:

Iðy; z; tÞ
I0

¼ exp �Lsyrðy; zÞmsyr � Lgapðy; zÞðFðy; z; tÞmbðy; zÞ
�

þ ð1� Fðy; z; tÞÞmfðy; zÞ� (7)

where msyr, mb and mf are the attenuation coefficients of respec-
tively the PMMA from the syringe, the PVC beads and the fluid
Dinch; and I0 is the intensity of the planar wave, Lsyr is the
thickness of the PMMA from the syringe and Lgap is the thickness
of the sample inside the syringe.

This can be read:

I( y,z,t) = Ifluid( y,z)exp(�Lgap( y,z)(F( y,z,t)mbeads( y,z) � mfluid( y,z)))
(8)

where Ifluid( y,z) is the recorded intensity in the absence of
particles (liquid Dinch alone).

This leads to:

Fðy; z; tÞ ¼ ln Iðy; z; tÞ=Ifluidðy; zÞð Þ
ln Iðy; z; 0Þ=Ifluidðy; zÞð ÞFðy; z; 0Þ (9)

From the intensity field, eqn (9) allows us to measure the varia-
tion (in both time and space) of the averaged particle volume fraction
seen by the beam F( y,z,t) in the syringe as a function of the applied
drop of pressure. Please note that we did not compute directly the
local volume fraction f( y,z,t), but only averaged the particle volume
fraction seen by the beam along its path through the syringe.

We focus on the suspension exhibiting DST (D1 at f = 60%).
More precisely, we are interested in the DST region and the shear
thinning observed beyond. We take advantage of our home-made
PMMA syringe that enables viscosity measurements both in the
DST and the shear thinning beyond. The syringe was placed in the
X-ray tomograph. Viscosity measurements were carried out
simultaneously with X-ray absorption recording (cf. Fig. 9).

From the X-ray radiography data, we extract the value of the
solid fractions. These 10 measurements have been performed using
a high spatial resolution (less than 20 microns). The noise is 1%.
This noise is homogeneously distributed in space and time.
Averaging these data leads to a variation of 0.3%. We thus conclude
that the sample is homogeneous before, during and after the shear
thickening transition. Note that this contrasts with the case of the

Fig. 8 Slopes (a1 and a2) for D1 (red symbols) and D2 (blue symbols) extracted from a power law fit of (Z = _ga1) in the first (a) and second (Z = _ga2) (b) shear
thinning regions (above shear thickening) as measured by the commercial capillary rheometer. To ease comparison between the two PVC powders, solid
volume fractions f are normalized by the respective random close packing fRCP.

Fig. 7 Rheological curve obtained for D1 (top 60% and bottom 55%). The
squares correspond to a file with a diameter of 5 mm, and the circles to a file
with a diameter of 3 mm. These measurements suggest no slip at the wall.
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apparent thinning behavior observed in cornstarch suspensions. In
this situation, the sample separates into two phases: a dilute phase
and a concentrated phase13 that clogs the syringe.

To conclude this section, note that this does not preclude
anisotropy or local stress heterogeneity.22,34

5 Measurements of the pairwise
frictional profiles between particles
5.1 Experimental set-up

To measure the force profile between pairs of PVC particles,
we take advantage of a quartz-tuning fork based atomic force

microscope9 (see Fig. 11a). We glue an electrochemically etched
tungsten tip of approximately 50 nm end radius to a millimetric
quartz tuning fork, which serves as our force sensor. Using an
in-house-built nano-manipulator in a scanning electron micro-
scope, we can glue individual PVC particles to the end of the
tungsten tip. During a typical experiment, the attached particle
is immersed in solvent and brought into contact with another
bead, fixed on the substrate, while monitoring the force profile.

To simultaneously measure the normal and tangential force
profiles between the two approaching particles, we simulta-
neously excite the tuning fork via a piezo-dither at two distinct
resonance frequencies fN E 31 kHz and fT E 17 kHz, corres-
ponding to the excitation of both normal (N) and shear (T)

Fig. 10 Relative variation of the averaged particle volume fraction seen by the beam along (a) the flow direction Z or (b) the radial direction X for D1 60%.
hfii is the value of f averaged over the x direction. Applied stresses range from 180 (electric blue) to 9.8� 103 (blue), 1.5� 104 (cyan blue), 2.3� 104 (green),
3.0 � 104 (yellow), 3.9 � 104 (orange), 4.6 � 104 (red), and 6.2 � 104 (brown) Pa and correspond to the ones obtained with the large PMMA syringes
(from 0 to 8 bars) as shown in Fig. 5a & c (before, in and beyond the DST transition).

Fig. 9 (a) Scheme of the home-made capillary rheometer placed in an X-ray tomograph; (b) usual picture of the capillary flow obtained from X-ray
radiography. V-shape and capillary die limits are underlined by black dotted lines. Black solid lines refer to the bottom edge of the syringe. fi = hF(y,z,0)i
where the average is taken over y and z.
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modes of the tuning fork (Fig. 11a). Monitoring the changes in
the resonance of each mode allows us to measure the con-
servative force gradient rFi [N m�1] and dissipative frictional
forces Fi

D [N] for those two directions (i A {N,T}).9 In the
following, we show measurements performed with particles of
PVC 1. We anticipate similar friction properties for PVC 2 as
surface properties are similar.

5.2 Measurements under low normal load

We have already presented in a previous work9 the measure-
ment of the tangential and normal dissipative and conservative
forces as a function of the distance between particles. We recall
in Fig. 11b, the variation of the tangential frictional dissipative
force FT

D as a function of the normal load FN, characterizing the
transition between two regimes of lubricated (i) and frictional
(ii) contact at a critical normal load F C

N. For FN o F C
N, a finite

repulsive interaction between the particles exists due to entro-
pic repulsion between polymer brushes formed at the PVC
surface, and dissipative forces between particles are of hydro-
dynamic origin, leading to a very low friction coefficient m. For
FN 4 F C

N, the two particles enter into hard frictional contact,
characterized by a sudden increase of dissipative tangential
forces. In this second frictional regime, we recover Coulomb-type
friction, with a proportionality between tangential friction and
normal forces, and a friction coefficient independent of speed.9

The transition from lubricated to frictional contacts occurs upon
the application of a normal force F C

N (or equivalently the critical
pressure P* = F C

N/pR2) corresponding to the load necessary to
completely compress the soft polymer layers and reach hard
contact. The value of this critical normal load F C

N is a well-defined
property of each particle interaction, but will also depend on
the physicochemical, geometrical, mechanical and roughness

surface states of the two sliding beads. Over 30 different pairs of
beads,9 we find a mean critical interaction potential W0 = F C

N

/(pR) equal to 6.1 � 10�3 N m�1 � 2 � 10�4 N m�1.

5.3 Measurements under moderate and high normal loads

We focus now on the behavior at high normal load, for which the
particles experience frictional interactions. We plot in Fig. 12a the
tangential dissipative friction forces FT

D as a function of the normal
load FN, for loads up to 2 mN. Whereas in the initial frictional
regime uncovered in Fig. 11b (ii), the friction was found to obey
Coulomb’s law,9 we clearly observe in Fig. 12a a sublinear variation
of tangential dissipative forces with normal load at larger loads.
We can extract from Fig. 12a a microscopic friction coefficient
defined as m = FT

D/FN, which we plot in Fig. 13 as a function of the
normal load. m decreases as a function of the applied load.

To understand this deviation from Coulomb’s law, we express
the frictional force between the two PVC surfaces as FT

D = t�Areal,
where Areal is the real area of contact, and the shear strength t [Pa]
characterizes the friction per real contact area between the PVC
surfaces. The deviation from the classical Amontons–Coulomb law
at large loads, i.e. the non-linear dependence between the tangen-
tial friction and the normal load (Fig. 12a), and the decrease in the
friction coefficient m (Fig. 13) could stem from (1) a geometrical
origin, i.e. a non-linear variation of the real contact area Areal with
the normal load FN or (2) a physical origin, i.e. a decrease in the
shear strength t [Pa] with the normal load. To disentangle those
two effects, we plot in Fig. 12b the tangential stiffness kT [N m�1]
as a function of the normal load. kT can be considered to be
directly proportional to the real area of contact Areal (i.e. to the
number of contacts). This tangential stiffness is found to vary
proportionally to the normal load over the entire range of
measurements. We thus deduce that the real area of contact

Fig. 11 (a) Sketch of the experimental set-up used to measure force and the frictional profile between the pairs of the PVC particles. A PVC particle is
attached to one prong of the tuning fork and is oscillated normally (N) and tangentially (T) to a particle attached to the substrate. (b) Frictional profile
between the particles of PVC 1 (tangential frictional dissipative forces FT

D as a function of normal load FN) showing the transition from hydrodynamic
lubricated contacts (i) to frictional contacts (ii) at a critical normal load FC

N.
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increases proportionally with the normal load, in agreement
with classical multi-asperity models. The non-linear variation of
tangential dissipation with normal load thus has its origin in a
decrease of the shear strength t with increasing normal loads,
and stems from the physical interaction between the two PVC
surfaces.

Such a decrease of the friction coefficient with load has
already been reported in the literature for strongly compressed
polymer brushes in good solvents.35,36 It is important to under-
line that the friction coefficient is a well-defined property between
two particles. However, it displays a rather large distribution.
Over 30 different pairs of beads, we find a mean m coefficient
under a small load equal to 0.45 � 0.35.9

6 Results and discussion: toward a
global vision of the viscosity of
non-Brownian suspensions

Let us summarize the main points of our work. We have
studied suspensions of PVC particles dispersed in a Newtonian
solvent. Combining classical rotational rheometry and capillary
rheometry, we point out that the viscosity of the dispersions
decreases at low shear rate, increases for more than one or two
orders of magnitude as a function of the applied shear for
intermediate values of shear rate, and then decreases following
the power law at high shear rate (Fig. 5). We show that the flow
is homogeneous (Fig. 10). We observed no particle migration
nor slip at the wall. In the following, we show that the presence
of an additional force scale in the suspension, identified as the

critical microscopic pressure P� ¼ FC
N

pR2
at which particles enter

into contact (Fig. 11), and the non-trivial variation of the inter-
particle friction coefficient m with normal load (Fig. 13) leads to
a shear rate dependent rheology and allows us to rationalize the
two observed shear thinning regimes.

6.1 Shear thinning at low shear rate

Let us first focus on the first regime, i.e. the shear thinning
regime at low shear rate (Fig. 5 and 14a). In our system, this
regime cannot be attributed to a competition between diffusion
and convection, to the non-Newtonian properties of the solvent,
nor to the migration of particles. Force measurements between
the particles prove that the contact between particles is lubri-
cated at low normal loads, i.e. at low shear rates (Fig. 11b). In
this situation, shear thinning comes from the fact that the
suspension behaves essentially as soft lubricated particles at
low shear stresses, with an apparent size that includes the hard

Fig. 12 (a) Tangential frictional forces FT
D versus normal load FN, showing a sublinear variation of frictional forces with normal load at large normal loads

(FN c FC
N). The radius of the attached bead is 0.5 mm and the solvent between the two beads is pure Dinch. (b) Variation of the tangential conservative

forces kT as a function of the normal load FN. The linear relation between kT and FN suggests that the real area of contact varies proportionally to the
normal load.

Fig. 13 Variation of the microscopic interparticle friction coefficient m = F
T
D/FN as a function of the normal load. m decreases with increasing load.
Note that the particles involved in this measurement are not the same as
that used in Fig. 11.
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sphere (radius R) and a part of the surrounding soft repulsive
potential, which varies as a function of shear rate. If a particle is
subjected to a particular pressure P, the minimum gap 2h(P)
between this particle and its neighbors will be such that FN(h) =
PpR2, where FN is the conservative normal repulsive force between
the particles. Under this pressure, the apparent radius of the
particle will be given by R + h(P). In this regime, the particles have
an apparent radius larger than that of their hard core and this
effective radius decreases as a function of the applied pressure, i.e.
applied shear rate and shear stress. As shown in Fig. 14b, the
decrease of the effective radius leads to a decrease of the effective
solid fraction feff towards the hard sphere packing fraction f. This
decrease in feff comes with an increase of the distance between
feff and fRCP, the random close packing fraction at which viscosity
diverges for frictionless spheres, and thus to a decrease of the
suspension viscosity and a shear thinning behavior. Such thinning
has already been observed in a charge stabilized suspension21,22

and predicted numerically.23

To go further and quantitatively analyse our results, we extract
the repulsive force profiles from the rheological measurements
and we compare them to the data obtained using our atomic force
microscope. We start by building upon the analyses of Wyart and
Cates for dense suspensions.7 For the sake of simplicity, we
assume as in ref. 7 that the pressure P and the shear stress s are
proportional, and can be expressed as

s/_g = BP/ _g = Z (10)

Z ¼ Zs
fRCP

fRCP � feff

� �n

(11)

where n is a fitting parameter, Zs is the shear viscosity of the
Dinch solvent, feff is the effective volume fraction and fRCP is

the random close packing fraction at which viscosity diverges
for frictionless particles (see Fig. 14b). B is a constant and does
not depend upon the nature of contact between particles. The
effective solid fraction can be related to the apparent minimum
possible gap h(P) between particles and to the hard sphere
volume fraction f and will be given by:

feff ¼ f 1þ hðPÞ
R

� �3

(12)

By combining the last two equations, we get the evolution of the
interaction potential between the particles W(h) = PR as a
function of h.37

h ¼ feff

f

� �1=3

�1
 !

� R (13)

feff ¼ fRCP �
Zð _gÞ
Z _g�ð Þ

� �1=n

fRCP � fð Þ (14)

W(h) = PR = sR/B = W0(s/s*) (15)

In these expressions, _g* is the shear rate at the entry of the
shear thickening zone, and s* is the shear stress associated
with the shear thickening transition. At the entry of the shear
thickening zone, the particles are close to contact. This leads to
h E 0 and feff = f. The pressure at the entry of the shear
thickening zone P* is linked to the potential of the interaction
at the contact onset W0 through P* = FC

N/(pR2) = W0/R. The
knowledge of P* allows us to also estimate B through B = s*/P*.
The mean value of P* averaged over 30 measurements is equal
to P* = 6300 Pa, s* = 100 Pa and B = 0.016 for the D1 sus-
pensions and to P* = 4200 N, s* = 100 Pa and B = 0.025 for the
D2 suspension.

To find n and fRCP, we measure the value of the viscosity Z* at
_g* where the viscosity vs. shear rate curve goes through a
minimum as a function of the solid fraction, and fit the curve
using a Krieger–Dougherty model. We get fRCP = 69.4%� 0.25%
for D1 suspensions and fRCP = 77.2% � 0.25% for D2. The
exponents n of the Krieger–Dougherty models are respectively
n = 2.3 for the D1 dispersion and n = 2.9 for the D2 dispersion.

Fig. 15 displays the values W(h) from eqn (15), which lead to
the four rheological curves displayed in Fig. 5. All the data
collapse on a single curve, which is very close to the repulsive
profile measured by the tuning fork, shown as the black line in
Fig. 15.9 To compute this curve we use R equal to 1 mm for D1
and R equal to 1.5 mm for D2. The slight differences between
the measurements and the theoretical model may be related to
the polydispersity of the samples.

This quantitative analysis shows that the existence of short-
ranged repulsive forces along with lubricated contacts at
low particular pressure is responsible for the shear thinning
behavior observed at low shear rate.

6.2 Shear thinning at high shear rate

In our system, shear thinning at high shear rate cannot be
attributed to a competition between diffusion and convection,

Fig. 14 (a) Scheme of the process involved in the first shear thinning
regime: increasing the pressure decreases the effective size of the parti-
cles, leading to a decrease of the effective solid fraction feff. (b) The
decrease of the effective volume fraction feff towards the solid fraction for
hard spheres f leads to an increase in the distance from the random close
packing fraction fRCP at which viscosity diverges for frictionless particles,
and thus a decrease of the suspension viscosity.
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to the non-Newtonian properties of the solvent, nor to the
migration of particles. Before discussing the measurements of
the microscopic frictional coefficient, let us summarize the
main models of the literature describing shear thinning of
non-Brownian dispersions at high shear rates.

6.2.1 Analysis in the framework of the models existing in
the literature. It has been proposed11,25 that flow may deform the
particles at high shear rate. The deformation d varies as s/G
where G is the elastic modulus of the beads. The elastic modulus
of PVC is equal to 3 � 109 Pa. In the shear thinning regime, the
shear stress is less than 106 Pa. The deformation is less than
3� 10�4 and cannot be the origin of shear thinning. The created
film h = Rd due to particle deformation is thus much less than
3 � 10�10 m. Such a film is not physical since it does not contain
a single molecule of Dinch.

Shear thickening relies on the transition between the lubricated
contact and frictional ones. The solvent film has to be drained
during the collision between the particles. At low shear rates, this
process is likely to happen. However at high shear rates, one may
suggest that the time required to go to the contact and drain the
liquid is less than the time involved in the collision 1/_g. This would
lead to fewer contacts when _g is increased and thus to a decrease of
Z with _g. Let us estimate the time required for the particles to form
the contact. By neglecting the inertial forces, the time required for
the particles to go into contact may be estimated by balancing the
normal dissipative forces Fd with the forces involved during the
contact PR2� Frepulsive. Frepulsive is the force that has to be overcome
to enter into contact. Then,9 in the shear thinning region at high
shear rates, Frepulsive is much less than PR2. We assume P close to s

and write Fd ’
ZsolventR

2

h

dh

dt
’ ZsolventR

2

t
’ sR2. t is the character-

istic time to reach contact. We get t ¼ Zsolvent
Zdispersion

1

_g
. In all the

situations involved in the shear thinning regime, t is much less

than 1/_g, which suggests that the particles have time to come close
to each other during the collision. At this stage, Dinch has to be
drained from the brushes of polymers in order to obtain a
frictional contact.

Mass conservation of the solvent writes
@c

@t
¼ div kc ~rP

� �
,

where c is the solvent fraction. During the collision, i.e. for a

time equal to 1/ _g, this leads to
Dc
c
¼ kP

�
a2 _g
� 	

. In the frictional

situation, the contact has become fully plastic and deforms so
that the normal stress remains quasi-constant P = H, where H is
the hardness of the material. At room temperature, for polymer
glasses, H/E = 10�1–10�2. a is the size of the micro-contact and is

roughly given by a ¼
ffiffi
ð

p
sRasperityÞ, where s is the roughness of

the material and Rasperity is the radius of curvature of the asperity.
In D1 and D2 suspensions, Rasperity is roughly equal to 100 nm

and s is 2 nm, which gives a = 14 nm. k is the ratio of the
permeability of the PVC brushes to Dinch over the viscosity of

Dinch, k = 10�20 kg�1 m3 s. We get
Dc
c
	 104 or 103/_g, which

proves that all the Dinch has time to drain out of the contact
during the collision at least for a shear rate of less than 103 s�1.

6.2.2 Variation of the microscopic friction coefficient. The
second shear thinning behavior at large shear rates occurs after
the shear thickening transition and thus happens in the context
of a frictional rheology (see Fig. 16a). To explain this shear
thinning behavior, we thus turn to our experimental measure-
ments of the friction coefficient between two beads, as shown
in Fig. 12 and 13. We pointed out that m decreases as a function

Fig. 15 Variation of the interaction potential W as a function of h. The black
curve corresponds to the value of W for D1 extracted from the tuning fork
experiment. The blue squares correspond to the D2 dispersion (f = 0.64), the
blue circles to the D2 dispersion (f = 0.6), the red squares to the D1 dispersion
(f = 0.6) and the red circles to the D1 dispersion (f = 0.55). To compute this
curve, we use R equal to 1 mm for D1 and R equal to 1.5 mm for D2.

Fig. 16 (a) Scheme of the process involved in the second shear thinning
regime: increasing the pressure decreases the value of the microscopic
frictional coefficient m. (b) The decrease of the microscopic friction
coefficient m leads to an increase in the critical volume fraction fm(m) at
which viscosity diverges for the frictional sphere towards the random close
packing fraction fRCP. The increasing distance between the suspension
volume fraction f and fm(m) with increasing pressure leads to a decrease
in suspension viscosity.
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of the normal load, going down from 0.12 to as low as 0.03 for
normal forces up to 1 mN. In our experiments, the shear stress
varies between 104 Pa and 105 Pa in the shear thinning region.
Normal forces are of the order of 105–5 � 105 Pa with B = 0.016
or B = 0.025 (eqn (10)). Even though local heterogeneities might
be present at the level of the stress field,34 we use a simple
argument to estimate the normal load. Assuming that the stress
is homogeneous in the sample, the normal force applied on a
single bead of radius 1 mm comprises between 0.3 and 1.5 mN,
which corresponds to the range of normal loads for which
m decreases.

To go further in our analysis, we follow the model of Wyart
and Cates.7 As shown in Fig. 16b, a decrease of m will increase
the value of the friction-dependent jamming density fm and
thus will increase the distance between the volume fraction f
and the critical volume fraction fm. It is worth noting that
fm(m) is very sensitive to m in the range 0–0.2, which corre-
sponds to our microscopic friction coefficient variations. At the
scale of the suspension, an increase in the shear rate _g will lead
to an increase in the particular pressure and thus a decrease of
the value of the inter-particle friction coefficient m. To validate
this picture, we correlate the critical volume fraction fm with
the microscopic friction coefficient m in the following.

For a frictional rheology, the viscosity of the suspension can
be expressed as:

Z ¼ Zs
fmð _gÞ

fmð _gÞ � f

� �n

where Zs is the solvent viscosity. Here, we assume that the
exponent n of the Krieger–Dougherty model does not depend
upon the nature of the contact, and thus can be considered
equal to the exponent found for the lubricated rheology at low

shear rates (eqn (11)). This leads to fmð _gÞ ¼
f

1� Zs
Zð _gÞ

� �1=n
. The

shear rate is given by _g ¼ BFN

pR2Z
. Knowing experimentally the

link between m and FN, we display in Fig. 17 the evolution of
fm(_g) as a function of m. The data obtained by using the
rheological measurements displayed in Fig. 17 collapse on a
single curve for each of the dispersions revealing the validity of
our analysis. The variations of fm( _g) required to explain the
shear thinning behavior are of the order of 10% when m varies
between 0.08 (close to the entry of the shear thickening zone)
and 0.04–0.01 in the shear thinning zone. Such behavior is in
agreement with simulations.38

7 Conclusions

We studied in this work the behavior of concentrated non-
Brownian suspensions over a large range of shear rates. We
evidenced two shear thinning mechanisms in those non-Brownian
suspensions (Fig. 5). At low shear rate, shear thinning occurs for a
lubricated rheology due to short-range repulsive forces (Fig. 14). In
this regime, the suspension behaves essentially as soft particles,
with an apparent size that includes the hard sphere and a part of
the surrounding soft repulsive potential. An increase in the shear
rate leads to an increase in the particular pressure, a decrease of
the effective solid fraction and thus to a decrease of the suspension
viscosity, leading to shear thinning. We have indirectly proved this
mechanism by comparing the force profile extracted from the
rheological data and the one measured directly. Further studies
deal with the direct measurements of the hydrodynamic size of the
particle by scattering.

The second shear thinning regime at high shear rate occurs after
the shear thickening transition and thus for a frictional rheology
(Fig. 16). At the scale of two particles, we measure a decrease of the
friction coefficient at large normal loads (Fig. 13). In this second
frictional regime, an increase in the shear rate leads to an increase
in the particular pressure, a decrease of the inter-particle friction
coefficient, and thus an increase of the critical volume fraction fm

at which viscosity diverges for frictional spheres. This increase in the
critical volume fraction fm with shear rate explains the observed
shear thinning behavior.

In conclusion, let us evaluate the generality of our results. As
pointed out in the introduction, the second shear thinning
regime observed after the shear thickening transition has also
been observed in cornflour suspensions. In this situation, the
second shear thinning regime has been attributed to phase
separation.13 The behavior reported in this paper for PVC
suspensions is thus not universal. Our ongoing work deals
with experiments on silica particles stabilized by electrostatic
forces. Both shear thinning regimes will be analyzed.
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