
Active sieving across driven nanopores for tunable selectivity
Sophie Marbach, and Lydéric Bocquet

Citation: The Journal of Chemical Physics 147, 154701 (2017); doi: 10.1063/1.4997993
View online: http://dx.doi.org/10.1063/1.4997993
View Table of Contents: http://aip.scitation.org/toc/jcp/147/15
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2003863737/x01/AIP-PT/JCP_ArticleDL_091317/scilight717-1640x440.gif/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Marbach%2C+Sophie
http://aip.scitation.org/author/Bocquet%2C+Lyd%C3%A9ric
/loi/jcp
http://dx.doi.org/10.1063/1.4997993
http://aip.scitation.org/toc/jcp/147/15
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 147, 154701 (2017)

Active sieving across driven nanopores for tunable selectivity
Sophie Marbach and Lydéric Bocqueta)

Laboratoire de Physique Statistique, UMR CNRS 8550, Ecole Normale Supérieure, PSL Research University,
24 Rue Lhomond, 75005 Paris, France

(Received 28 July 2017; accepted 18 September 2017; published online 17 October 2017)

Molecular separation traditionally relies on sieving processes across passive nanoporous membranes.
Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple
model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven
at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of
the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared
to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the
osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue
for advanced filtration. Published by AIP Publishing. https://doi.org/10.1063/1.4997993

I. INTRODUCTION

Filtering specific molecules is a challenge faced for
numerous vital needs: from biomedical applications like dialy-
sis to the intensive production of clean water.1–3 Most modern
processes for filtration are based on passive sieving principles:
a membrane with specific pore properties allows us to separate
the permeating components from the retentate. The domain
has been boosted over the last two decades by the possibilities
offered by nanoscale materials, such as graphene or advanced
membranes.4–12 Selectivity requires small and properly dec-
orated pores at the scale of the targeted molecules, and this
inevitably impedes the flux and transport, making separation
processes costly in terms of energy. These traditional sieving
membranes are also passive, therefore unable to adapt to exter-
nal changes, like varying salt or contaminant concentrations
in the liquid to filtrate. Furthermore while nature is able to dis-
tinguish quasi-similar ions, e.g., like sodium and potassium,13

no artificial counterpart has been designed up to now to reach
such a fine selectivity.

In this context, we explore the possibility of active siev-
ing, harnessing non-equilibrium dynamics to separate particles
across nanopores. A Maxwell demon is the (utopian) prototyp-
ical system able to perform separation on the basis of transfer
of information.14 However designing active pores that can
distinguish between nanometer-scale molecules presents the
obvious challenge of measuring in situ the proper informa-
tion, i.e., fabricating feedback nanocontrollers.15–17 Now one
may consider a simpler situation of an active nanopore that
can change its transmission properties with time thanks to an
external energy input. This corresponds accordingly to a non-
equilibrium situation, baring some analogy with active matter,
which allows us to bypass to some extent the equilibrium
constraints for better separation.

Here we explore a simple situation, where an external
mechanical or electrical action modifies the pore properties,
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thus creating some blind, “crazy,” Maxwell demon. Typi-
cal geometries of driven nanopores under consideration are
sketched in Fig. 1: a driven nano-gate, a pore with a fluctu-
ating size, or a pore whose surface charge may be externally
gated. Such geometries are of special interest in the present
study since they are amenable to further experimental inves-
tigations. To model separation across these systems, we build
on the pioneering work of Zwanzig in Refs. 18 and 19, who
considered the translocation rate of molecules through fluctu-
ating pores. We consider as a supplementary ingredient that
the opening of the nanopore is forced externally at a given
frequency ω.

II. AN ACTIVE PORE MODEL
A. Effusion of solute through an active pore

We consider the effusion of a solute (with concentration
C in a reservoir) across a nanopore. Pore gating that controls
the translocation state across the nanopore is characterized by
an internal parameter x: for example, the radius of the pore,
the door opening, or the surface charge, see Fig. 1. In line
with Zwanzig’s model in Refs. 18 and 19, we assume that
the solute concentration C relaxes according to the following
leakage equation:

dC
dt
= −K(x)C, (1)

where K(x) is the x-dependent leakage constant. It is propor-
tional to the mobility of the solute. It also depends on the
characteristics of the gating. For steric gating, x is merely geo-
metrical: for the circular pore in Fig. 1(b), x is the radius r
of the pore and K(r) = k

′

r2, while for the nanodoor, x is the
aperture of the door and K(x) = k |x |. For electric gating, when
the pore is charged, see Fig. 1(c), x is proportional to the sur-
face charge of the pore Σ, and for small nanopores, one may
model K(x) = k ′′

√
1 + x2 (see Appendix A for details). The

constant k (respectively, k
′

and k
′′

) defines the mobility of the
solute.
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FIG. 1. (a) A driven nanodoor in a membrane, submitted to opening by
thermal fluctuations and by external application of a periodic excitation.
(b) Circular nanopore with fluctuating size and (c) with fluctuating charge.

We are interested in the separation of small sized particles
(say, ions, colloids, polymers, etc.) effusing through nano-
metric sized pores. Accordingly the internal parameter x is
further assumed to evolve dynamically due to (i) thermal noise,
expected at the nanoscale, and (ii) some external forcing that
drives an oscillation. To simplify the discussion, we assume
that the nanopore is excited such that its average opening x
oscillates at a frequency ω, and we further model the effects
of thermal noise by a simple Langevin equation for the excess
internal parameter δx = x − 〈x〉,

〈x〉= x0(t) = x0 sin(ωt),

d δx
dt
= −λδx + F(t),

(2)

where F(t) is the Gaussian white noise. The second moment
of δx is 〈δx2〉 = θ, and the fluctuation-dissipation the-
orem at equilibrium imposes 〈F(t)F(t ′)〉 = 2θλδ(t − t ′).
The goal now is to obtain more information on the evo-
lution of the solute concentration averaged over the noise:
〈C(t)〉.

B. From a rate process to the Smoluchowski equation

We turn to the equivalent Fokker-Planck—or
Smoluchowski—equation for C. This derivation is inspired
by Ref. 18. We denote f (C, x, t) as the probability distribution
that the variables C and x have specified values at time t. This
function satisfies the Liouville equation

∂f
∂t
= −

∂

∂C

(
dC
dt

f

)
−
∂ dx

dt f

∂x
(3)

or, substituting the velocities explicitly,

∂f
∂t
= −

∂

∂C
(−K(x)Cf )

−
∂

(
−λ(x − x0)f + dx0

dt f + F(t)f
)

∂x
. (4)

Now we would like to average this stochastic Liouville
equation to have the average of f over the noise: g(C, r, t)

= 〈f (C, r, t)〉noise. We may rewrite the Liouville equation in
terms of an operator L such that Eq. (4) is

∂f
∂t
= −Lf −

∂F(t)f
∂x

. (5)

It integrates into

f (C, r, t) = e−tLf (C, x, 0) −
∫ t

0
dse−(t−s)L ∂F(s)f

∂x
, (6)

which we use to rewrite the differential equation as

∂f
∂t
= −Lf −

∂F(t)
(
e−tLf (C, r, 0) − ∫

t
0 dse−(t−s)L ∂F(s)f

∂x

)
∂x

. (7)

Now we can safely average over the noise, using the Gaus-
sian properties of F(t), namely, 〈F(t)〉 = 0 and 〈F(t)F(t ′)〉
= 2θλδ(t − t ′), which gives

∂g
∂t
= −Lg +

∂λθ
∂g
∂x

∂x
. (8)

Now we look for the average value of C at time t and key
feature x: C̄(x, t) = ∫ dCCg(C, x, t). This yields the following
differential equation (Smoluchowski equation):

∂C̄
∂t
= −K(x)C̄ +

∂

∂x
λθ
∂C̄
∂x

+
∂

(
λ(x − x0) − dx0

dt

)
C̄

∂x
. (9)

C. Permeance of the active pore

The time-dependent concentration 〈C(t)〉 is accordingly
defined as ∫ C(x, t)dx = 〈C(t)〉. For simplicity in the follow-
ing, we consider that the noise damping parameter λ does
not depend on x. The Smoluchowski equation, Eq. (9), can be
solved analytically for some specific forms of K(x) [in particu-
lar, for K(x) ∝ x2]. Alternatively we solve Eq. (9) numerically
to deduce the time-dependent averaged concentration 〈C(t)〉.
We show in Fig. 2 an example for the averaged concentra-
tion 〈C(t)〉, here in the case of a nanodoor where K(x) = k |x |
[Fig. 1(a)].

FIG. 2. Relaxation of the difference in concentration between the two sides
of a nanodoor, averaged over noise. The data are a simulation result with λ/kθ
= 10�3,ω/kθ = 10�3, andω/kθ = 1. (Inset, Left) Illustration of a demon oscil-
lating the nanodoor. (Inset, Right) Log scale of the previous graph and example
of the extraction of the long time relaxation constant K∞, the permeance of
the system.
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As a generic feature, one may show that 〈C(t)〉 is
exponentially decaying at long times,

〈C(t)〉 ∼
t→∞

exp(−K∞t), (10)

and this allows us to define the permeance K∞ of the system.
Fast translocation of the solute corresponds to a large K∞.
The permeance K∞ depends on the thermal damping λ, noise
amplitude θ, but also on the external forcing (frequencyω and
amplitude x0). In the following, our goal is to identify general
rules on how the permeance depends on these antagonistic
effects. Units of lengths are given by

√
θ, while time is given in

terms of a renormalized parameter kθ with units of an inverse
time: for the nanodoor, kθ = k

√
θ, while for the nanopore,

kθ = k
′

θ.

III. TRANSPORT THROUGH THE ACTIVE PORE

Let us first focus on an oscillating circular pore, in which
case the leakage law writes as K(r) = k

′

r2, with r as the pore
radius, see Fig. 1(b). We study fluctuations around the aver-
aged forced radius 〈r(t)〉 = r0(1 + ε cos(ωt)) with a given
amplitude r0ε . In this case, the Smoluchowski equation can
be solved analytically (see Appendix B), and the expression
for the permeance is written as

K∞(ω) = λ/2 *
,

(
1 +

4k ′θ
λ

)1/2

− 1+
-

+ k ′r2
0

(
1 +

4k ′θ
λ

)−1

+ k ′
r2

0 ε
2

2

*..
,

(
1 + 4k′θ

λ

)−1

1 +
(

ω
ωc(λ)

)2
+

(
ω

ωc(λ)

)2

1 +
(

ω
ωc(λ)

)2

+//
-

(11)

with ωc(λ) =
√

4k ′θλ + λ2 as the cutoff frequency. The first
term in Eq. (11) corresponds to the solution for the non-forced
case studied by Zwanzig in Ref. 19. In Zwanzig’s deriva-
tion, only fluctuations of a bottleneck opening are considered
(with a hard reflecting barrier at r = 0 so that only positive
radii are considered). With r0 = 0 and ω = 0, one recov-
ers exactly the exponential factor of Eq. (8) of Ref. 19. The

last term corresponds to the supplementary leakage induced
by the forced oscillations: it is the combination of a low-
pass filter and a high-pass filter. The general behavior of
K∞(ω) is plotted in Fig. 3(a). It exhibits complex features
that are summarized in the diagram of Fig. 3(b). Although
it is presented here only for the nanopore, the diagram is
generic to all the systems investigated and represented in
Fig. 1.

Let us discuss the various regimes at play. It is first inter-
esting to explore the limiting behaviors at low damping. This
regime is actually relevant for ionic or liquid separation sys-
tems;4,20 see, for instance, the experimental study of biological
channels in Ref. 21 which is consistent with the low damping
limit relaxation with λ ∝ 1/η, with η as the fluid viscosity. For
low and high frequencies, we can calculate from Eq. (11) (at
highest order)

K∞(ω) ∼
ω�ωc
λ�kθ

√
k ′λθ,

K∞(ω) ∼
ω�ωc
λ�kθ

k ′r2
0 ε

2/2.
(12)

These results call for a generic physical interpretation. At high
frequency, the forced oscillations become too quick for the
thermal damping to rub them out and K∞ reduces simply to its
noise average: K∞ ' (ω/2π) ∫ K[x0(t)]dt. This is the forcing
dominated regime; see Fig. 3(d). The behavior at low forcing
frequencies ω, where noise dominates [see Fig. 3(c)], is more
subtle. According to Eq. (2), the gating variable will mainly
diffuse with a diffusion coefficient Dx = θ λ. Over a time
τ, the gating variable thus takes a typical value x̄ ∼

√
Dxτ.

Now the passage time is itself fixed by K−1
∞ so that one gets a

self-consistent estimate for K∞ as

K∞ '
ω�ωc
λ�kθ

K

x̄ ∼

√
λθ

K∞


. (13)

For the circular nanopore, where x is the radius r and K(r)
= k

′

r2, one deduces accordingly K∞ ≈
√

k ′ λθ as obtained in

FIG. 3. (a) Analytical solution of the permeance K∞ as
a function of the forcing frequency ω and the thermal
dampingλ for the forced nanopore system (r0 = 2

√
θ and

ε = 0.5). (b) Universal phase diagram of the permeance
K∞ withω and λ. (c) Schematic of the door opening x/x0
(solid black line) in the noise dominated regime, where
ω � λ, and (d) in the forcing dominated regime, where
ω � λ.
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Eq. (12). This interpretation for K∞ in Eq. (13) can be gener-
alized to the other types of gates. For the nanodoor, for which
K(x) = k |x |, Eq. (13) predicts K∞ ≈ (kλθ)1/3, as can indeed
be verified numerically (see Appendix C).

The transition between the low and high frequency
regimes results from the competition between the forced oscil-
lations and the noise. In Eq. (2) the thermal fluctuations f (t)
compete with the forced oscillations dx0(t)/dt ∼ ωx0(t), and
the crossover between the two regimes occurs accordingly
when f (t) ∼ dx0(t)/dt. Using the fluctuation-dissipation the-
orem and taking a typical time scale τ ∼ k−1

θ , this yields
ωc(λ) ∼

√
kθλ for the critical frequency. This estimation per-

fectly matches the scaling obtained numerically for all systems
in Fig. 1 and also with the full analytical expression, Eq. (11),
for the circular pore in Fig. 1(b).

IV. DYNAMICAL SELECTIVITY
A. Dynamical gating on mobility

The different scalings in Eq. (12) suggest further that the
passage rate K∞ exhibits a strongly contrasted dependence
on the particle mobility (via k

′

) in the low and high frequency
regimes. Accordingly, at finite frequency, solutes with different
mobilities will be separated by the active gate in a very different
way as compared to the static (passive) nanopore.

This is highlighted in Figs. 4(a)–4(c), where we show the
permeance of the nanopore to particles of different permeabil-
ities, corresponding to particles with different k

′

(here k1/k2

= 100 for illustration). The selectivity of the pore, defined
in terms of the ratio of the permeances of the two particles,
is plotted in Fig. 4(c). What is striking in this plot is that
the selectivity is a strongly dependent function of the fre-
quency (and furthermore non-monotonous) so that the relative
translocation rate of the two species can be finely tuned by
the forcing frequency. This stems from the fact that the criti-
cal frequency ωc for each particle is dependent on the particle
mobility (via k

′

). Thus, a slower-diffusing particle will reach
the forcing dominated regime at smaller frequencies. When
the slower (blue) particle has just transitioned to the forc-
ing dominated regime, the faster (purple) particle is still in
the noise dominated regime, and the selectivity is reduced.
This points to various non-trivial avenues for “on demand”
sieving.

We emphasize that these results are not dependent on the
choice of relative mobility, and here k1/k2 = 100 is chosen
for readability. In a more realistic case of ionic separation, for
instance, separating sodium and potassium, we would have
k(K+) /k(Na+) = 1.47.22 As a consequence, for low frequen-
cies, the selectivity K (K+)

∞ /K (Na+)
∞ ∼

√
k(K+)/k(Na+) ∼ 1.21,

and at high frequencies, the selectivity increases: K (K+)
∞ /K (Na+)

∞

∼ k(K+)/k(Na+) ∼ 1.47. Note that this does not depend on the
value of the noise damping parameter λ: as long as noise
is significant in the system, one will always find the critical
frequencies from one regime to another.

B. Dynamical gating on size

This behavior is generic to all gatings described in
Fig. 1. To highlight this generic feature, we conclude by

FIG. 4. (a) Schematic of gating through the fluctuating pore relying on mobil-
ity differences between particles. (b) Permeance K∞/λ through the nanopore
of two particles with mobility k1/λ = 104 and k2/λ = 102 as a function of
the forcing frequency ω/λ, for small λ. (c) Selectivity of the nanopore to
those particles, defined as the ratio of the permeances. (d) Schematic of gating
through the fluctuating door relying on size differences between particles. (e)
Permeance K∞/kθ through the nanodoor of two particles of different sizes
(the smallest, purple, is 0.52x0 in radius and the largest, blue, is 1.1x0) as
a function of the forcing frequency ω/kθ , for small λ. (f) Selectivity of the
nanodoor to those particles, defined as the ratio of their permeances.

considering the dynamical selectivity of the nanodoor, rep-
resented in Fig. 1(a), with a slightly modified gating process
taking explicitly in consideration the effect of the finite size
of the particle, see Fig. 4(d). We use a similar gating function
as in Ref. 23 so that particles cannot pass if the opening x of
the pore is smaller than their size xp. We modify accordingly
the leakage law of Eq. (1) to K(x − xp)H(x − xp), where H
is the Heaviside function. For this leakage law, the Smolu-
chowski equation cannot be solved analytically and we turn to
numerical solutions, see Appendix C. In Fig. 4(e) we compare
the measured permeance for three particle sizes: an infinitely
small particle (size 0 in grey), a small particle (in purple),
and a large particle (in blue). As above, we deduce the corre-
sponding selectivity factor for the two particles with different
sizes as the ratio of their permeance. As obtained above for the
other gating processes, we find a selectivity that is dependent
on the frequency, here a strongly increasing function of the
frequency.

V. DISCUSSIONS AND CONCLUSIONS
A. General conclusion

These results show that the selectivity of nanoporous
membranes can finely be tuned by an externally forced



154701-5 S. Marbach and L. Bocquet J. Chem. Phys. 147, 154701 (2017)

gating. Depending on the forcing frequency, dynamical gat-
ing allows us to better discriminate particles with different
sizes or mobilities. As a rule, in the limit of low damping com-
mon in liquid or ionic filtration, an active pore is thus capable
of filtering more precisely smaller particles than a standard
passive filter with fixed pore size (at zero frequency). Also, in
the high frequency regime, an active pore sieves particles in
terms of their mobility, which is interesting to separate par-
ticles with similar size or charge (as would be needed for
the separation of ions, for instance, for distinguishing sodium
and potassium that have similar size and charge but differ-
ent mobilities).22 Although simple, our model provides a rich
diagram, highlighting noise dominated or forcing dominated
regimes, with specific selectivity rules. These selectivity prop-
erties may be tuned by adjusting the frequency of the excitation
and rely on the strong interplay between noise and external
excitation.

Numerous extensions can be obviously proposed for the
model, which we now plan to explore exhaustively. The model
could be easily exploited to explore the consequences of sev-
eral extensions. If the noise damping parameter λ now depends
on x, one expects the critical frequency ωc and the limit-
ing regimes to be modified in a non-trivial way. Furthermore,
since the equations are not linear, when a non-monochromatic
excitation is triggered, mode coupling will occur and may
result into a broader variety of behaviors. Another underly-
ing question in the prospect of possible applications of this
research—in particular within the field of desalination and
filtration—is that of the energy consumption of such a device.
Obviously the active or dynamical part of the sieving requires
some energy input; however, that energy input depends on
the specific means of excitation and a detailed energy balance
is required to predict the energy efficiency of such dynam-
ical sieving process, a question which we leave for future
work.

However the present results already suggest a number
of developments for experimental implementations of active
pores. Nanoporous materials with piezoelectric or piezome-
chanical response, e.g., metal organic frameworks,24,25 are
promising candidates in this goal. Furthermore, a nanodoor
like in Fig. 1(a) can be designed by nanofabrication tech-
niques, e.g., carving membranes at the sub-micron scale using
a focused ion beam. Forcing at a tunable frequency, as well
as supplementary white noise, can be provided by piezo-
electric systems, allowing us to explore the various domains
in the dynamical sieving diagram. These possibilities are a
few examples for experimental realizations. They constitute
natural routes for a proof of concept of the ideas presented
here.

B. Towards an on-demand osmotic pressure

We conclude with a final comment on osmotic pres-
sure. As highlighted by Kedem and Katchalsky in the context
of membrane transport, there is an intimate symmetry link
between permeance and osmosis.26 A non-vanishing (respec-
tively, vanishing) osmotic pressure is expressed for a semi-
permeable (respectively, fully permeable) membrane. This
link is highlighted by the generic expression for the osmotic

pressure26

∆Π = σ × kBT〈C〉 (14)

introducing the rejection coefficient σ, whose value is equal
to 1 (respectively, 0) for a semi-permeable (respectively, fully
permeable) membrane; for a finite permeance K∞ of the mem-
brane, one then expects 1 − σ ∝ K∞.26 Going to dynami-
cal sieving, the pore opening occurs intermittently with the
frequency ω supplemented by thermal noise so that an inter-
mittent osmotic pressure builds up. Let us explicit this link
using the extended model with steric gating, with leakage
law K(x − xp)H(x − xp) leading to an effective permeance
K∞(ω |xp). The corresponding solute flux Js =K∞ V 〈C〉 (where
V is the volume of the reservoir) can be identified to its defini-
tion Js = AD

e κ〈C〉, where A is the average opening area of the
pore, D is the diffusion coefficient of the solute, and e is the
thickness of the membrane; the permeability coefficient κ is
accordingly related to σ as κ ∝ 1−σ.26 Gathering definitions,
one thus obtains the dynamical rejection coefficient in terms
of selectivity,

σ(ω) = 1 −
K∞(ω |xp)

K∞(ω |xp = 0)
, (15)

where the permeance of a particle with vanishing size xp = 0
is used as normalization. This leads to a frequency dependent
osmotic pressure, ∆Π(ω) = σ(ω) × kBT〈C〉. Note that this
expression for the osmotic pressure is pertinent on time scales
longer than the time-dependent forcing.

Our previous results for K∞(ω |xp) show that ∆Π(ω) is a
strongly dependent function of ω via active sieving. This fre-
quency dependence of the osmotic pressure is illustrated in
Fig. 5 for various solutes. Tuning the frequency of the forc-
ing therefore allows us to modify “on demand” the osmotic
pressure across the active membrane. This opens new avenues
in terms of separation for active and “on-demand” reverse
osmosis.

FIG. 5. Frequency dependent osmotic pressure through the nanodoor for two
particles of different sizes (the largest, purple, is 0.52x0 in radius and the
smallest, orange, is 0.21x0) as a function of the forcing frequency ω/kθ for
small λ. Inset: schematic of gating through the fluctuating door relying on size
differences between particles.
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APPENDIX A: EXAMPLES OF RATE PROCESS LAWS
1. Strictly diffusion limited processes through pores

The initially concentrated reservoir has volume V. The
concentration at the scale of the pore is equilibrating over the
typical thickness e of the pore with A as the pore’s apparent
section. We can write

dC
dt
= −

D
Ve

AC.

In the case of the nanodoor, A ∼ x(h + w), where x is the
opening depth of the door (see Fig. 1), h is the height of the
door, and 4 is its width. As a consequence, we find

dC
dt
= −k |x |C, with k =

D(h + w)
Ve

(A1)

for the case of the nanodoor. We find that k is directly pro-
portional to the mobility—or the diffusion coefficient—of the
solute.

In the case of the circular pore A = πr2, where r is the
radius of the circular pore. As a consequence, we find

dC
dt
= −k ′r2C, with k ′ =

Dπ
Ve

(A2)

for the case of the circular pore. This is the expression used in
Ref. 19.

2. Charge influenced rate process

Transport in a narrow charged channel of apparent section
A can be described within the one-dimensional Nernst-Planck
model from Ref. 27. For the linear response, the relation
between generalized fluxes and potentials is expressed via a
transport coefficient matrix,(

I
Φt

)
=

A
e

(
K µK

µK µeff

)
·

(
−∆V

−kT∆(log Cs)

)
,

K = 2µq2

√
C2

s +
(
Σ

h

)2

,

µeff = 2µ

√
C2

s +
(
Σ

h

)2

,

µK = 2µq
Σ

h
,

where Σ is the number of surface charge, h is the channel
height, µ = βD is the ionic mobility, and q is the elementary
charge.

We assume small initial concentration difference ∆Cs

(around the value Cs) between two reservoirs of volume
V; therefore, we approximate ∆(log Cs) ' (∆Cs)/Cs. We
apply no voltage difference; therefore, we focus on the

equation

d∆Cs

dt
=

2Φt

V
= −

2A
eV

µeff kT∆(log Cs)

' −
4DA
eV

√
1 +

(
Σ

hCs

)2

∆Cs

and finally
dC
dt
= −k ′′

√
1 + σ2C, (A3)

where we relabeled the variables (∆Cs → C, Σ/hCs → σ)
in the last equation and introduced the characteristic rate
k ′′ = 4DA/eV. Note that σ is the Dukhin number for the
channel.

APPENDIX B: EXACT SOLUTION OF THE RATE
PROCESS FOR CIRCULAR NANOPORES

We consider the case where an external force excites the
radius of the pore at the frequency ω around a non-zero mean
value so that

〈r(t)〉noise = r0(1 + ε sin(ωt)). (B1)

The Smoluchowski equation (9) becomes

∂C̄
∂t
= −kr2C̄ + λθ

∂2C̄

∂r2

+
∂

∂r

(
[λ(r − r0(1 + ε sin(ωt))) − r0εω cos(ωt)] C̄

)
.

(B2)

We assume that the probability distribution C̄ initially has
its equilibrium value in the absence of leakage, which simply
writes as C̄(r, t = 0) = exp(− 1

2θ (r − r0)2).
We look for a solution writing as C̄(r, t) = exp(a(t)

+ b(t)r − c(t)r2). This yields the following system of
equations:

ȧ(t) = −2λθc + b2λθ + λ − br0(εω cosωt + λ(1 + ε sinωt)),

(B3a)

ḃ(t) = λb − 4bcθλ + 2cr0(εω cosωt + λ(1 + ε sinωt)),

(B3b)

ċ(t) = k − 4c2λθ + 2λc. (B3c)

We begin with Eq. (B3c) which has the general solution

c(t) =
1

4θ
(1 + S tanh (λS(t − t0))) ,

where t0 is a constant that can be computed thanks to ini-

tial conditions and S =
(
1 + 4kθ

λ

)1/2
. The initial conditions

prescribe

c(t = 0) =
1

2θ
=

1
4θ

(1 + S tanh (−λSt0))

so that th (−λSt0) = 1/S. Replacing this result in the expression
for c gives

c(t) =
1

4θ

(
2 + (S + 1/S) tanh λSt

1 + 1/S tanh λSt

)
. (B4)

The differential Eq. (B3b) is solved using the simple
trick to write b(t) = b0(t)b1(t), where b0(t) verifies the time
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differential equation involving the terms depending on b
only,

ḃ0(t) = −λb0

(
1 + S tanh λSt

1 + 1/S tanh λSt

)
, (B5)

and so b0(t) = 1/ (S cosh λSt + sinh λSt). The equation on b1

is then

ḃ1(t) = 2c(t)r0(εω cosωt + λ(1 + ε sinωt))/b0(t) (B6)

and we find the integration constant such that b(t = 0) = r0/θ.
A lengthy but straightforward calculation leads to the solution
of this equation as

b(t) =
r0

2S
(
S2λ2 +ω2) (S cosh[Stλ] + sinh[Stλ])

· · ·

×

((
− 1 + S2) (ω2 + S2λ(λ − εω)

)
+ cosh[Stλ] · · ·

×
((

1 + S2) (S2λ2 + ω2) + S2 (S2 − 1
)
ελω cos[ωt]

+ S2ε
((

1 + S2)λ2 + 2ω2) sin[ωt]
)

+ S
(
2
(
S2λ2 + ω2) +

(
− 1 + S2)ελω cos[ωt]

+ ε
(
ω2 + S2 (2λ2 + ω2)) sin[ωt]

)
sinh[Stλ]

)
. (B7)

Using similar lines, one can also calculate the solution for a(t)
with the boundary condition a(t = 0) = −r2

0/(2θ). The solution
is not reported here because it is very lengthy.

We can now derive the average value on noise,〈
C̄(t)

〉
=

√
π

c(t)
exp

(
a(t) +

b2(t)
4c(t)

)
. (B8)

We then find that
〈
C̄(t)

〉
behaves as〈

C̄(t)
〉
= exp(−K∞(ω)t + k0(t)), (B9)

where k0(t) is a small and periodic time contribution, which
is sublinear in time and thus negligible for long time scales.
K∞(ω) is the permeance and is such that〈

C̄(t)
〉
∼

t→∞
exp(−K∞(ω)t), (B10)

with

K∞(ω) = λ/2(S − 1) + kr2
0

(
1

S2
+
ε2

2
λ2 + ω2

S2λ2 + ω2

)
. (B11)

By replacing S = (1 + 4k′θ
λ )1/2, we find exactly the result of

Eq. (11).

APPENDIX C: NUMERICAL METHODS
AND SOLUTIONS
1. Numerical methods

The Smoluchowski equations are solved with a finite dif-
ference scheme over 4 orders of magnitude of both ω and λ.
Several methods are used to ensure global convergence.

• Change in space variable. We define C̃(x, t) = C̄(x
− x0(t), t) such that C̃ obeys a simpler Smoluchowski
equation (no variation of the drift coefficient in time)
and solve for C̃ instead of C̄.

• Logarithmic scale. We define and solve for Ĉ = log C̃.
This yields a non-linear equation, but the advantage
is that high precision is gained—the initial condition
is indeed a Gaussian and behaves much better (on a
smaller number of orders of magnitude) in the Gaussian
scale.

• Partial Cranck-Nicholson. We perform the Cranck
Nicholson scheme on the linear part and explicit propa-
gation on the non-linear part. Auto-adaptive time scale
is used to check for convergence in time.

• The initial time step is chosen via a burning algorithm
that allows us to adapt for any kind of parameters in the
(ω, λ) parameter space.

• It was found that around a discretization of 1000
space steps usually gave reasonably convergent results.
This number had to be adapted for different val-
ues in the parameter space anyway to ensure optimal
convergence.

• K∞ was computed as an average over several peri-
ods (usually 10) of the relaxation rate, after an ini-
tial reasonably long transient phase. A very small
amount of configurations (less than 10 over 100 points),
with high λ and small ω, would relax to numerically
untractable small concentrations before a single oscil-
lation period expired. Averaging over several periods
was thus impossible. The data obtained for these very
few very small frequencies were equated with the val-
ues obtained for higher frequencies at the same λ, for
plotting purposes. At these high λ, K∞ is not expected
to depend on ω.

2. Systematic analysis in the absence of forcing

Limiting behaviors in the case of very high damping λ
� 1, x has almost the equilibrium distribution at all times, and
thus the transition ability can be approximated by

K∞ =
λ�1

∫
K(x)ρeq(x)dx. (C1)

In the case of very low damping, we expect the following
scaling discussed in the main paper:

K∞ =
λ�1

K(
√
λ/K∞). (C2)

Note that when the leakage law is a power law of the type K(x)
= |x|n, with n some integer, then one easily finds

K∞ ∼ λ
n

2+n . (C3)

Equivalently, since the mobility λ depends inversely on the
viscosity η of the fluid, K∞ ∼ η−

n
2+n .

In the following, we check these scaling laws for dif-
ferent rate processes. The results are summarized within the
following paragraphs.

Quadratic rate process: Correspondence between sim-
ulations of the quadratic rate process and its exact solution
was verified as a benchmark. We do not report this checking
procedure here because it adds nothing to the discussion.

Linear rate process: In the following paragraph, we con-
sider the leakage law associated typically with the nanodoor



154701-8 S. Marbach and L. Bocquet J. Chem. Phys. 147, 154701 (2017)

FIG. 6. Linear rate process permeance in the absence of forcing (nanodoor).
Simulation results for the permeance K∞ as a function of the thermal damping
λ and comparison to analytical estimates. In this analysis, kθ = k

√
θ. η is the

viscosity of the fluid and is proportional to 1/λ.

in Fig. 1(a), K(x) = k|x|. In Fig. 6 we show the perme-
ance of the linear rate process as computed numerically.
It verifies well the predicted low damping scaling law K∞
∼ λ1/3. The high damping limit is computed thanks to Eq. (C1)
and is also in very good agreement with numerical calculations.

Note that in order to probe the previous scaling argument,
K∞ ∼ λ

n
2+n , we also probed numerically other exponents in the

leakage laws. For example, for a cubic leakage law (n = 3), the
numerical resolution yields an exponent of 0.58, to compare
with the analytic estimate of 3/(2 + 3) = 0.6.

Charge regulated rate process: We finally consider the
leakage law associated typically with the charged nanopore of
Fig. 1(c), K(σ) = k ′′

√
1 + σ2. In Fig. 7 we show the permeance

of the charge regulated process. The process has more features
because in the present case θ accounts for the fluctuations of
the (dimensionless) surface charge σ. In Fig. 7(a) we observe
the permeance at different θ and find that for small λ and
large θ, the system behaves as if it had an average leakage
law behaving as K(σ) ∼ k ′′ + k ′′σ2, i.e., with an exponent
n = 2. This correspondence is not obvious a priori but allows
us to predict the scaling behavior for K∞. Indeed, one may

FIG. 7. Charge regulated rate process permeance in the absence of forcing. (a)
Simulation results for the permeance K∞ as a function of the thermal damping
λ and comparison to analytical estimates. In this analysis, kθ = k

′′

. θ is kept in
the derivation and varied. The dashed green line verifies K∞/kθ −1 ∝ (λ/kθ )β

with β ' 0.482. (b) Simulation results for the permeance K∞ as a function of
θ at high thermal damping λ and comparison to analytical estimates.

write that typically the diffusion time scales like 1/(K∞ − 1),
and one may then recover from Eq. (C1) that K∞ − 1 ∼ λ1/2.
This scaling prediction is confirmed numerically, see Fig. 7(a).
In the regime of high damping, see Fig. 7(b), we find that the
system is well described by the analytical expression Eq. (C1)
for any θ.

3. Systematic analysis with forcing

We now perform simulations with an external forcing
at frequency ω and check that we get for the different

FIG. 8. Linear rate process permeance. (a) Simulation
results for the permeance K∞ as a function of the thermal
damping λ and the forcing frequency ω and comparison
to analytical estimates. In this analysis, kθ = k

√
θ. The

simulation parameter for oscillations around the origin
is x0/

√
θ = 2. The black line indicates the fitting proce-

dure at a given λ to find ωc. (b) High plateau value for
λ/kθ = 10 andω/kθ = 0.1 for different values of the ratio
x0/
√
θ, where x0 is the amplitude of the forcing x0(t)

= x0 cosωt. (c) Example of a filter fit to determine
ωc from the permeance as a function of ω at a fixed
λ = 0.1kθ . The type of filter used is given in the legend
and the only fitting parameter is ωc. (d) Plot of ωc as
determined according to (c) as a function of

√
λ.
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FIG. 9. Charge regulated rate process permeance. (a)
Simulation results for the permeance K∞ as a function
of the thermal damping λ and the forcing frequency ω.
In this analysis, kθ = k

′′

. The simulation parameter for
oscillations around the origin is σ0/

√
θ = 2, and θ = 1.

The black line indicates the fitting procedure at a given
λ to find ωc. (b) Plot of ωc as determined from filter fits
as a function of λ and power law fit.

systems (nanodoor and charged pore in Figs. 8 and 9) the same
“universal features” as for the case of the circular pore. As for
the circular nanopores, we indeed find 3 regimes: a forcing
dominated regime, a noise dominated regime, and a global
average regime, as described in the main text.

We also want to check some analytic scaling laws on the
rate process theory with forcing at frequency ω. We have first
considered the predicted scaling of the critical frequency with
λ (see main text),

ωc(λ) ∼
√
λ. (C4)

We performed a fit of each simulation (at constant λ) of K∞
with the shape of a high pass filter (with a plateau at low
frequencies) similar to the function H. We accordingly extract
for each λ the value ofωc and then find the scaling law between
λ and ωc. Overall we have verified that for all systems, the
threshold frequencyωc does obey this scaling law over a range
of λ ∼ 10−3 → 10−1.

Furthermore, we can check that the plateau value for the
permeance at high λmatches the expected prediction assuming
that x reaches its equilibrium distribution [see Fig. 8(b)]. Since
the equilibrium distribution of x depends on t (it is periodic
over a period T = 2π

ω ), we should also average over a period.
This writes as

K∞ =
λ�1

〈∫
K(x)ρeq(x − x0(t))dx

〉
T

. (C5)

Quadratic rate process: As above, the correspondence
between simulations of the quadratic rate process at various
frequencies and its exact solution was verified before moving
onto cases not solvable analytically. This test procedure is not
shown here because it does not add to the discussion.

Linear rate process: In this paragraph, we consider
the leakage law associated typically with the nanodoor of
Fig. 1(a), K(x) = k|x|.

In Fig. 8(a) we show the permeance of the nanodoor sys-
tem over 4 ranges of frequencies and damping. We find the
three regimes of permeance (noise dominated regime in blue,
forcing dominated regime in orange, and global average in yel-
low). The fitting procedure, described in Fig. 8(c), allows us to
find ωc for each λ. In Fig. 8(d) we plot ωc as a function of

√
λ

and find a perfect agreement, which confirms the analytical
prediction that ωc ∝

√
λ. The high plateau value [in yellow in

Fig. 8(a)] for various forcing amplitudes is shown in Fig. 8(b)
and agrees well with the prediction of Eq. (C5).

Charge regulated rate process: Finally we consider the
leakage law associated typically with the charged nanopore
in Fig. 1(c), K(σ) = k ′′

√
1 + σ2. In Fig. 9 we show the

permeance of the charged pore over 4 orders of magnitude
in frequency and damping. We find the three regimes of per-
meance (noise dominated regime in blue, forcing dominated
regime in orange, and global average in yellow). The fitting
procedure yields a typical dependence ωc(λ) ∼ λ0.46, see
Fig. 9(b) very close to the analytical exponent (0.5).
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